bims-cepepe Biomed News
on Cell-penetrating peptides
Issue of 2024–12–01
thirteen papers selected by
Henry Lamb, Queensland University of Technology



  1. bioRxiv. 2024 Nov 18. pii: 2024.11.18.622547. [Epub ahead of print]
      The development of macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource-intensive and provide little control over binding mode. Despite considerable progress in physics-based methods for peptide design and deep-learning methods for protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here, we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic peptide binders against protein targets of interest. We test 20 or fewer designed macrocycles against each of four diverse proteins and obtain medium to high-affinity binders against all selected targets. Designs against MCL1 and MDM2 demonstrate K D between 1-10 μM, and the best anti-GABARAP macrocycle binds with a K D of 6 nM and a sub-nanomolar IC 50 in vitro . For one of the targets, RbtA, we obtain a high-affinity binder with K D < 10 nM despite starting from the target sequence alone due to the lack of an experimentally determined target structure. X-ray structures determined for macrocycle-bound MCL1, GABARAP, and RbtA complexes match very closely with the computational design models, with three out of the four structures demonstrating Ca RMSD of less than 1.5 Å to the design models. In contrast to library screening approaches for which determining binding mode can be a major bottleneck, the binding modes of RFpeptides-generated macrocycles are known by design, which should greatly facilitate downstream optimization. RFpeptides thus provides a powerful framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.
    DOI:  https://doi.org/10.1101/2024.11.18.622547
  2. J Org Chem. 2024 Nov 29.
      Protein-protein interactions (PPIs) are pivotal in regulating cellular functions and life processes, making them promising therapeutic targets in modern medicine. Despite their potential, developing PPI inhibitors poses significant challenges due to their large and shallow interfaces that complicate ligand binding. This study focuses on mimicking peptide loops as a strategy for PPI inhibition, utilizing synthetic peptide loops for replicating critical binding regions. This work explores turn-inducing elements and highlights the importance of proline in promoting favorable conformations for lactamization, yielding high-purity cyclic peptides. Notably, our one-pot method offers enhanced versatility and represents a robust strategy for efficient and selective macrolactamization, expanding the scope of peptide synthesis methodologies. This approach, validated through the synthesis of AAV capsid-derived loops, offers a robust platform for developing peptide-based therapeutics and highlights the potential of peptide macrocycles in overcoming PPI drug discovery challenges and advancing the development of new therapeutics.
    DOI:  https://doi.org/10.1021/acs.joc.4c02178
  3. Chem Commun (Camb). 2024 Nov 27.
      Precision genetic medicine enlists antisense oligonucleotides (ASOs) to bind to nucleic acid targets important for human disease. Peptide nucleic acids (PNAs) have many desirable attributes as ASOs but lack cellular permeability. Here, we use an assay based on the corrective splicing of an mRNA to assess the ability of synthetic peptides to deliver a functional PNA into a human cell. We find that the endosomolytic peptides L17E and L17ER4 are highly efficacious delivery vehicles. Co-treatment of a PNA with low micromolar L17E or L17ER4 enables robust corrective splicing in nearly all treated cells. Peptide-PNA conjugates are even more effective. These results enhance the utility of PNAs as research tools and potential therapeutic agents.
    DOI:  https://doi.org/10.1039/d4cc05214e
  4. Biochem Biophys Res Commun. 2024 Nov 12. pii: S0006-291X(24)01516-X. [Epub ahead of print]741 150980
      As a new alternative to antibody-drug conjugates, we developed "ligand-targeting" peptide-drug conjugates (PDCs), in which conformationally constrained helix-loop-helix (HLH) peptide M49 targeting human vascular endothelial growth factor-A (VEGF) was used as a drug carrier. The biochemical study showed that HLH peptide M49 made a complex with VEGF in the extracellular environment, and then the M49/VEGF complex interacts with the receptor on the cell surface to induce cellular internalization via the endocytic pathway. Here, we present an X-ray crystal structure of the M49/VEGF complex at 1.5 Å resolution using a protein crystal grown in microgravity. The structure illustrated the "ligand-targeting" cellular uptake mechanism for intracellular drug delivery and the molecular basis on the peptide-VEGF binding mode with tight binding and high target specificity. In addition, mutational studies and thermodynamic analysis provided information on the driving forces of the complex formation. This work would contribute to the design of mid-size molecular-targeting peptides as well as HLH peptides, advancing the research in drug discovery and chemical biology.
    Keywords:  Helix–loop–helix; Peptide-drug conjugate; VEGF; X-ray crystal structure
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150980
  5. Pharmaceutics. 2024 Nov 20. pii: 1486. [Epub ahead of print]16(11):
      Recent technological advancements, including computer-assisted drug discovery, gene-editing techniques, and high-throughput screening approaches, have greatly expanded the palette of methods for the discovery of peptides available to researchers. These emerging strategies, driven by recent advances in bioinformatics and multi-omics, have significantly improved the efficiency of peptide drug discovery when compared with traditional in vitro and in vivo methods, cutting costs and improving their reliability. An added benefit of peptide-based drugs is the ability to precisely target protein-protein interactions, which are normally a particularly challenging aspect of drug discovery. Another recent breakthrough in this field is targeted protein degradation through proteolysis-targeting chimeras. These revolutionary compounds represent a noteworthy advancement over traditional small-molecule inhibitors due to their unique mechanism of action, which allows for the degradation of specific proteins with unprecedented specificity. The inclusion of a peptide as a protein-of-interest-targeting moiety allows for improved versatility and the possibility of targeting otherwise undruggable proteins. In this review, we discuss various novel wet-lab and computational multi-omic methods for peptide drug discovery, provide an overview of therapeutic agents discovered through these cutting-edge techniques, and discuss the potential for the therapeutic delivery of peptide-based drugs.
    Keywords:  PROTACs; micropeptides; multi-omics; peptide drug delivery; peptide drug design; peptide drugs; targeted protein degradation
    DOI:  https://doi.org/10.3390/pharmaceutics16111486
  6. Pharmaceuticals (Basel). 2024 Nov 18. pii: 1545. [Epub ahead of print]17(11):
       BACKGROUND AND OBJECTIVES: A novel antitubercular cyclic peptide, Cyclo(1,6)-Ac-CLYHFC-NH2, was designed to bind at the rifampicin (RIF) binding site on the RNA polymerase (RNAP) of Mycobacterium tuberculosis (MTB). This peptide inhibits RNA elongation in the MTB transcription initiation assay in the nanomolar range, which can halt the MTB transcription initiation complex, similar to RIF. Therefore, determining the solution conformation of this peptide is useful in improving the peptide's binding affinity to the RNAP.
    METHODS: Here, the solution structure of Cyclo(1,6)-Ac-CLYHFC-NH2 was determined by two-dimensional (2D) NMR experiments and NMR-restrained molecular dynamic (MD) simulations.
    RESULTS: All protons of Cyclo(1,6)-Ac-CLYHFC-NH2 were assigned using TOCSY and NOE NMR spectroscopy. The NOE cross-peak intensities were used to calculate interproton distances within the peptide. The JNH-HCα coupling constants were used to determine the possible Phi angles within the peptide. The interproton distances and calculated Phi angles from NMR were used in NMR-restrained MD simulations. The NOE spectra showed NH-to-NH cross-peaks at Leu2-to-Tyr3 and Tyr3-to-His4, indicating a βI-turn formation at the Cys1-Leu2-Tyr3-His4 sequence.
    CONCLUSIONS: The NMR-restrained MD simulations showed several low-energy conformations that were congruent with the NMR data. Finally, the conformation of this peptide will be used to design derivatives that can better inhibit RNAP activity.
    Keywords:  Mycobacterium tuberculosis; cyclic peptide conformation; mRNA polymerase inhibitor; molecular dynamics simulation; nuclear magnetic resonance
    DOI:  https://doi.org/10.3390/ph17111545
  7. Cancers (Basel). 2024 Nov 08. pii: 3768. [Epub ahead of print]16(22):
      Chemotherapy remains the primary therapeutic approach in treating cancer. The tumor microenvironment (TME) is the complex network surrounding tumor cells, comprising various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as ECM components, blood vessels, and signaling molecules. The often stiff and dense network of the TME interacts dynamically with tumor cells, influencing cancer growth, immune response, metastasis, and resistance to therapy. The effectiveness of the treatment of solid tumors is frequently reduced due to the poor penetration of the drug, which leads to attaining concentrations below the therapeutic levels at the site. Cell-penetrating peptides (CPPs) present a promising approach that improves the internalization of therapeutic agents. CPPs, which are short amino acid sequences, exhibit a high ability to pass cell membranes, enabling them to deliver drugs efficiently with minimal toxicity. Specifically, the iRGD peptide, a member of CPPs, is notable for its capacity to deeply penetrate tumor tissues by binding simultaneously integrins ανβ3/ανβ5 and neuropilin receptors. Indeed, ανβ3/ανβ5 integrins are characteristically expressed by tumor cells, which allows the iRGD peptide to home onto tumor cells. Notably, the respective dual-receptor targeting mechanism considerably increases the permeability of blood vessels in tumors, enabling an efficient delivery of co-administered drugs or nanoparticles into the tumor mass. Therefore, the iRGD peptide facilitates deeper drug penetration and improves the efficacy of co-administered therapies. Distinctively, we will focus on the iRGD mechanism of action, drug delivery systems and their application, and deliberate future perspectives in developing iRGD-conjugated therapeutics. In summary, this review discusses the potential of iRGD in overcoming barriers to drug delivery in cancer to maximize treatment efficiency while minimizing side effects.
    Keywords:  cancer therapy; cell-penetrating peptides (CPPs); iRGD; nanocarriers; tumor microenvironment
    DOI:  https://doi.org/10.3390/cancers16223768
  8. Eur J Med Chem. 2024 Nov 25. pii: S0223-5234(24)00989-9. [Epub ahead of print]282 117107
      Peptidomimetics of Suppressors of cytokine signaling 1 (SOCS1) protein demonstrated valid therapeutic potentials as anti-inflammatory agents. Indeed, SOCS1 has a small kinase inhibitory region (KIR) primarily involved in the inhibition of the JAnus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway Herein, on the basis of previous investigations on a potent mimetic of KIR-SOCS1, named PS5, we designed and evaluated the SAR (Structure Activity Relationship) features of two xylene-based macrocycles analogues of PS5. These novel compounds bear thiol-xylene linkages with mono- and bi-cyclic scaffolds: they were in vitro functionally investigated toward JAK2 catalytic domain, as ligands with microscale thermophoresis (MST) and as inhibitors through LC-MS analyses. To evaluate structural properties Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopies were employed along with serum stability assays. Results indicated that a monocycle scaffold is well-tolerated by PS5 sequence enhancing the affinity toward the kinase with a KD in the low micromolar range and providing consistent inhibitory effects of the catalytic activity, which were evaluated for the first time in the case of SOCS1 mimetics. Conformationally, the presence of xylene scaffold affects the flexibility of the compounds and their stabilities to proteases degradation. This study contributes to the understanding of the factors necessary for accurately mimicking the inhibitory mechanism of SOCS1 protein towards JAK2 and to the translation of proteomimetics into drugs.
    Keywords:  Cyclic peptides; Cytokine signaling; JAK-STAT; Mimetic peptides; SOCS1
    DOI:  https://doi.org/10.1016/j.ejmech.2024.117107
  9. Pharmaceutics. 2024 Nov 12. pii: 1443. [Epub ahead of print]16(11):
      Peptides possess a number of pharmacologically desirable properties, including greater chemical diversity than other biomolecule classes and the ability to selectively bind to specific targets with high potency, as well as biocompatibility, biodegradability, and ease and low cost of production. Consequently, there has been considerable interest in developing peptide-based therapeutics, including amyloid inhibitors. However, a major hindrance to the successful therapeutic application of peptides is their poor delivery to target tissues, cells or subcellular organelles. To overcome these issues, recent efforts have focused on engineering cell-penetrating peptide (CPP) antagonists of amyloidogenesis, which combine the attractive intrinsic properties of peptides with potent therapeutic effects (i.e., inhibition of amyloid formation and the associated cytotoxicity) and highly efficient delivery (to target tissue, cells, and organelles). This review highlights some promising CPP constructs designed to target amyloid aggregation associated with a diverse range of disorders, including Alzheimer's disease, transmissible spongiform encephalopathies (or prion diseases), Parkinson's disease, and cancer.
    Keywords:  Alzheimer’s disease; Parkinson’s disease; alpha-synuclein; amyloid-beta peptide; cancer; mutant p53; neurodegeneration; prion; protein aggregation; tau
    DOI:  https://doi.org/10.3390/pharmaceutics16111443
  10. Anal Biochem. 2024 Nov 22. pii: S0003-2697(24)00266-5. [Epub ahead of print] 115722
      Although Green Fluorescent Protein (GFP) is useful and most widely used, steric hindrance due to its size and the time required for chromophore formation are complications. However, it is difficult to form chromophores with peptides to reduce the molecular weight. Therefore, we focused on peptides that can become fluorescent by binding to dyes. In this study, a novel dye-fluorescence-enhancing peptide aptamer was selected by the cDNA display method, which was confirmed by the yeast surface display method. This peptide aptamer binds to the non-fluorescent dye QSY®9 and enhances its fluorescence by preventing rotation of its benzene sulfone group. The method described in this paper should enable the development of new cell imaging methods using non-fluorescent dyes and peptides.
    Keywords:  cDNA display; cell imaging; non-fluorescent dye; peptide aptamer
    DOI:  https://doi.org/10.1016/j.ab.2024.115722
  11. Biophys Chem. 2024 Nov 14. pii: S0301-4622(24)00182-0. [Epub ahead of print]317 107353
      Here we present studies of the structure and membrane interactions of ecPis-4 s, a new antimicrobial peptide from the piscidin family, which shows a wide-range of potential biotechnological applications. In order to understand the mode of action ecPis-4 s, the peptide was chemically synthesized and structural investigations in the presence of anionic POPC:POPG (3:1, mol:mol) membrane and SDS micelles were performed. CD spectroscopy demonstrated that ecPis-4 s has a high content of helical structure in both membrane mimetic media, which is in line with solution NMR spectroscopy that revealed an amphipathic helical conformation throughout the entire peptide chain. Solid-state NMR experiments of ecPis-4 s selectively labeled with 15N/2H and reconstituted into uniaxially oriented POPC:POPG membranes revealed an ideal partition of hydrophilic and hydrophobic residues within the bilayer interface. The peptide aligns in parallel to the membrane surface, a topology stabilized by aromatic side-chain interactions of the Phe-1, Phe-2 and Trp-9 with the phospholipids. 2H NMR experiments using deuterated lipids revealed that anionic lipid accumulates in the vicinity of the cationic peptide upon peptide-membrane binding.
    Keywords:  Antimicrobial peptides; Conformational analysis of peptides; Membrane active peptides; Peptide topology; Peptide-membrane interaction; Piscidins peptides
    DOI:  https://doi.org/10.1016/j.bpc.2024.107353
  12. SLAS Discov. 2024 Nov 27. pii: S2472-5552(24)00059-5. [Epub ahead of print] 100197
      The NanoBiT Biochemical Assay (NBBA) was designed as a biochemical format of the NanoBiT cellular assay, aiming to screen weak protein-protein interactions (PPIs) in mammalian cell lysates. Here we present a High Throughput Screening (HTS) application of the NBBA to screen small molecule and fragment libraries to identify compounds that block the interaction of KRAS-G12D with phosphatidylinositol 3-kinase (PI3K) p110α. This interaction promotes PI3K activity, resulting in the promotion of cell growth, proliferation and survival, and is required for tumour initiation and growth in mouse lung cancer models, whilst having little effect on the health of normal adult mice, establishing the significance of the p110α/KRAS interaction as an oncology drug target. Despite the weak binding affinity of the p110α/KRAS interaction (KD = 3 μM), the NBBA proved to be robust and displayed excellent Z'-factor statistics during the HTS primary screening of 726,000 compounds, which led to the identification of 8,000 active compounds. A concentration response screen comparing KRAS/p110α with two closely related PI3K isoforms, p110δ and p110γ, identified selective p110α-specific compounds and enabled derivation of an IC50 for these hits. We identified around 30 compounds showing greater than 20-fold selectivity towards p110α versus p110δ and p110γ with IC50 < 2 μM. By using Differential Scanning Fluorimetry (DSF) we confirmed several compounds that bind directly to purified p110α. The most potent hits will be followed up by co-crystallization with p110α to aid further elucidation of the nature of the interaction and extended optimisation of these compounds.
    Keywords:  Drug Discovery; High throughput screening; KRAS; NanoBiT assay; PI 3-kinase; assay development
    DOI:  https://doi.org/10.1016/j.slasd.2024.100197
  13. Sci Rep. 2024 Nov 29. 14(1): 29668
      Carbon nanotubes (CNT) have unique properties that make them an excellent option for use as drug carriers. However, to make them safe for the human body, their walls are typically coated with a layer of peptide, which also helps to neutralize their toxicity. Additionally, a specific peptide sequence can be used to deliver therapeutic agents exclusively to cancer cells. In recent years, considerable progress has been made in the development of drug delivery systems (DDS) for drug delivery by computer-assisted. The present study inquires about the loading of ketoprofen (Ket) and naproxen (Nap) conjugated with RGD peptide sequence on CNT and its interaction with the double-layer membrane using the molecular dynamics (MD) simulation method. The obtained results show that the investigated complexes often interact through van der Waals and π-π interactions. Energy values for ketoprofen and naproxen with CNT were evaluated - 270.63 and - 195.8 kJ/mol, respectively. The results of the physical adsorption of the complexes on the membrane surface show that the CNT-KRG and CNT-NRG complexes spontaneously diffuse into the biological membrane. In addition, the study of the interaction energy values ​​of these two complexes with the membrane shows that the van der Waals energy plays a significant role in the stability of the systems. On the other hand, the study of the interaction between the drug-CNT complex and the membrane surface shows that the drug can easily penetrate the membrane in the presence of the peptide sequence and the carrier.
    Keywords:  Carbon nanotubes; Drug delivery systems; MD simulation; Metadynamic; Naproxen
    DOI:  https://doi.org/10.1038/s41598-024-80060-7