bims-cepepe Biomed News
on Cell-penetrating peptides
Issue of 2024–11–17
eightteen papers selected by
Henry Lamb, Queensland University of Technology



  1. Angew Chem Int Ed Engl. 2024 Nov 08. e202418057
      Here we report a macrocyclization route towards the synthesis of glycophane peptides by a selective C-H arylation of the anomeric bond. This approach demonstrates the power of Pd-catalysis C-H activation to access unusual cyclic peptides.
    Keywords:  Glycosides Peptides C-H activation Palladium Cyclic glycopeptides
    DOI:  https://doi.org/10.1002/anie.202418057
  2. J Biol Chem. 2024 Nov 13. pii: S0021-9258(24)02493-1. [Epub ahead of print] 107991
      Understanding how natural and engineered peptides enter cells would facilitate the elucidation of biochemical mechanisms underlying cell biology and is pivotal for developing effective intracellular targeting strategies. In this study, we demonstrate that our peptide stapling technique, fluorine-thiol displacement reaction (FTDR), can produce flexibly constrained peptides with significantly improved cellular uptake, particularly into the nucleus. This platform confers enhanced flexibility, which is further amplified by the inclusion of a D amino acid, while maintaining environment-dependent α helicity, resulting in highly permeable peptides without the need for additional cell-penetrating motifs. Targeting the ERα-coactivator interaction prevalent in estrogen receptor-positive (ER+) breast cancers, we showcased that FTDR-stapled peptides, notably SRC2-LD, achieved superior internalization, including cytoplasmic and enriched nuclear uptake, compared to peptides stapled by ring-closing metathesis (RCM). These FTDR-stapled peptides utilize different mechanisms of cellular uptake, including energy-dependent transport such as actin-mediated endocytosis and macropinocytosis. As a result, FTDR peptides exhibit enhanced anti-proliferative effects despite their slightly decreased target affinity. Our findings challenge existing perceptions of cell permeability, emphasizing the possibly incomplete understanding of the structural determinants vital for cellular uptake of peptide-like macromolecules. Notably, while α helicity and lipophilicity are positive indicators, they alone are insufficient to determine high cell permeability, as evidenced by our less helical, more flexible, and less lipophilic FTDR-stapled peptides.
    Keywords:  Estrogen receptor; Fluorine; Fluorine displacement reaction (FDR); Membrane; Nucleus uptake; Protein protein interaction(s); Stapled peptides
    DOI:  https://doi.org/10.1016/j.jbc.2024.107991
  3. Acta Pharm Sin B. 2024 Oct;14(10): 4478-4492
      Intracellular delivery of biologicals such as peptides, proteins, and nucleic acids presents a great opportunity for innovative therapeutics. However, the endosome entrapment remains a major bottleneck in the intracellular delivery of biomacromolecules, largely limiting their therapeutic potential. Here, we converted a cell-penetrating peptide (CPP), low molecular weight protamine (LMWP), to endosomal escape peptides (EEPs) by masking LMWP with a pH-responsive counter-ionic peptide. The resulting masked CPPs (mLMWP and mLMWP2) effectively promoted the escape of peptide/protein cargoes from endosomes into the cytoplasm. Consequential lysosome repair and lysophagy were initiated upon the endolysosomal leakage. Minimal reactive oxygen species (ROS) elevation or cell death was observed. Based on mLMWP2, we constructed an intracellular protein delivery system containing an antibody as a targeting module, mLMWP2 as an endosomal escape module, and the desired protein cargo. With the HER2-targeting delivery system, we efficiently translocated cyclization recombination enzyme (Cre) and BH3-interacting domain death agonist (BID) into the cytosol of HER2+ cells to exert their biological activity. Thereby, the modular delivery system shows its potential as a promising tool for scientific studies and therapeutic applications.
    Keywords:  Antibody; Cell-penetrating peptides; Cytosolic delivery; Electrostatic masking; Endosomal escape; LMWP; Targeted delivery; pH responsiveness
    DOI:  https://doi.org/10.1016/j.apsb.2024.06.022
  4. Chem Rev. 2024 Nov 14.
      The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
    DOI:  https://doi.org/10.1021/acs.chemrev.4c00423
  5. Microbiol Res. 2024 Nov 05. pii: S0944-5013(24)00364-1. [Epub ahead of print]290 127963
      Bacteria and viruses pose significant threats to human health, as drug molecules and therapeutic agents are often hindered by cell membranes and tissue barriers from reaching intracellular targets. Cell-penetrating peptides (CPPs), composed of 5-30 amino acids, function as molecular shuttles that facilitate the translocation of therapeutic agents across biological barriers. Despite their therapeutic potential, CPPs exhibit limitations, such as insufficient cell specificity, low in vivo stability, reduced delivery efficiency, and limited tolerance under serum conditions. However, intelligent design and chemical modifications can enhance their cell penetration, stability, and selectivity. These advancements could significantly improve CPP-based drug delivery strategies, facilitating both infection treatment and immunization against bacterial and viral diseases. This review provides an overview of the applications of CPPs in various infections and immune diseases, summarizing their mechanisms and the challenges encountered during their application.
    Keywords:  Antibiotic resistance; Cell penetrating peptide; Inflammation; Intracellular bacteria; Virus
    DOI:  https://doi.org/10.1016/j.micres.2024.127963
  6. Molecules. 2024 Oct 31. pii: 5147. [Epub ahead of print]29(21):
      Activating tumor necrosis factor receptor 1 (TNFR1) with tumor necrosis factor alpha (TNFα) is one of the key pathological mechanisms resulting in the exacerbation of rheumatoid arthritis (RA) immune response. Despite various types of drugs being available for the treatment of RA, a series of shortcomings still limits their application. Therefore, developing novel peptide drugs that target TNFα-TNFR1 interaction is expected to expand therapeutic drug options. In this study, the detailed interaction mechanism between TNFα and TNFR1 was elucidated, based on which, a series of linear peptides were initially designed. To overcome its large conformational flexibility, two different head-to-tail cyclization strategies were adopted by adding a proline-glycine (GP) or cysteine-cysteine (CC) to form an amide or disulfide bond between the N-C terminal. The results indicate that two cyclic peptides, R1_CC4 and α_CC8, exhibit the strongest binding free energies. α_CC8 was selected for further optimization using virtual mutations through in vitro activity and toxicity experiments due to its optimal biological activity. The L16R mutant was screened, and its binding affinity to TNFR1 was validated using ELISA assays. This study designed a novel cyclic peptide structure with potential anti-inflammatory properties, possibly bringing an additional choice for the treatment of RA in the future.
    Keywords:  TNFR1; TNFα; computational drug design; cyclic peptide; molecular dynamics simulation
    DOI:  https://doi.org/10.3390/molecules29215147
  7. Nat Commun. 2024 Nov 11. 15(1): 9746
      Peptidylarginine deiminase IV (PADI4, PAD4) deregulation promotes the development of autoimmunity, cancer, atherosclerosis and age-related tissue fibrosis. PADI4 additionally mediates immune responses and cellular reprogramming, although the full extent of its physiological roles is unexplored. Despite detailed molecular knowledge of PADI4 activation in vitro, we lack understanding of its regulation within cells, largely due to a lack of appropriate systems and tools. Here, we develop and apply a set of potent and selective PADI4 modulators. Using the mRNA-display-based RaPID system, we screen >1012 cyclic peptides for high-affinity, conformation-selective binders. We report PADI4_3, a cell-active inhibitor specific for the active conformation of PADI4; PADI4_7, an inert binder, which we functionalise for the isolation and study of cellular PADI4; and PADI4_11, a cell-active PADI4 activator. Structural studies with PADI4_11 reveal an allosteric binding mode that may reflect the mechanism that promotes cellular PADI4 activation. This work contributes to our understanding of PADI4 regulation and provides a toolkit for the study and modulation of PADI4 across (patho)physiological contexts.
    DOI:  https://doi.org/10.1038/s41467-024-53554-1
  8. Chembiochem. 2024 Nov 15. e202400760
      Oral delivery of peptide therapeutics is limited by degradation by gut proteases like chymotrypsin. Existing databases of peptidases are limited in size and do not enable systematic analyses of protease substrate preferences, especially for non-natural amino acids. Thus, stability optimization of hit compounds is time and resource intensive. To accelerate the stability optimization of peptide ligands, we generated large datasets of chymotrypsin-resistant peptides via mRNA display to create a predictive model for chymotrypsin-resistant sequences. Through analysis of enriched motifs, we recapitulate known chymotrypsin cleavage sites, reveal positionally dependent effects of monomers on peptide cleavage, and report previously unidentified protective and destabilizing residues. We then developed a machine-learning-based model predicting peptide resistance to chymotrypsin cleavage and validated both model performance and the NGS experimental data by measuring chymotrypsin half-lives for a subset of peptides. Finally, we simulated stability predictions on non-natural amino acids through a leucine hold-out model and observed robust performance. Overall, we demonstrate the utility of mRNA display as a tool for big data generation and show that pairing mRNA display with machine learning yields valuable predictions for chymotrypsin cleavage. Expansion of this workflow to additional proteases could provide complementary predictive models that focus future peptide drug discovery efforts.
    Keywords:  Peptides; cheminformatics; enzymes; mRNA; machine learning
    DOI:  https://doi.org/10.1002/cbic.202400760
  9. ACS Pharmacol Transl Sci. 2024 Nov 08. 7(11): 3618-3625
      Due to their high specificity, peptides are promising candidates in drug development, but fast degradation often limits their biological activity. Thus, a short half-life is one of the major challenges in the development of new peptide therapeutics. Moreover, the enzymatic cleavage of peptides can be a reason for misleading results in biological assays. Peptide stability assays typically consist of incubation, precipitation, and detection steps. However, the current methods differ greatly regarding these three steps, thus limiting the compatibility. Here, we systematically evaluate different parameters of peptide stability assays. First, we quantified and compared the analyte loss during the precipitation of plasma proteins. Especially, broadly used precipitation by strong acids was found to be unsuitable, while mixtures of organic solvents preserved more peptides for further analysis. Next, the stability of four fluorescently labeled model peptides was analyzed in blood plasma and two different cell culture supernatants. Strong variation in the degradation dynamics and patterns was found. Finally, we evaluated the role of fluorescent labeling on peptide stability and compared results to peptides with isotopic labels, underlining the individual advantages of both methods. Altogether, the data provide important parameters for analyzing and comparing the peptide stability.
    DOI:  https://doi.org/10.1021/acsptsci.4c00503
  10. Sci Rep. 2024 11 12. 14(1): 27726
      Optical monitoring of peptide binding to live cells is hampered by the abundance of naturally occurring fluorophores such as tryptophan. Unnatural amino acids incorporating synthetic fluorophores such as BODIPY overcome these optical limitations. A drawback to using fluorophores in lipid binding peptide design is their propensity to override other interactions, potentially causing the peptides to lose their binding selectivity. Here, the binding strength of a selection of peptides incorporating a variety of BODIPY derivatized amino acids has been studied via molecular dynamics simulations to quantify the impact of BODIPY incorporation on peptide-membrane binding behaviour.
    Keywords:  BODIPY; Membrane active peptide; Molecular dynamic simulations; deltaG
    DOI:  https://doi.org/10.1038/s41598-024-72662-y
  11. Int J Mol Sci. 2024 Oct 23. pii: 11389. [Epub ahead of print]25(21):
      CycloAnt is an opioid peptide that produces potent and efficacious antinociception with significantly reduced side effects upon systemic administration in mice. To verify its CNS-mediated antinociception, we determined its binding affinity at the opioid receptors, its proteolytic stability in mouse serum, metabolic stability in mouse liver microsomes, and pharmacokinetics in mice. CycloAnt exhibited stability toward proteolytic degradation in serum and resistance against metabolism mediated by cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyl transferases (UGTs) in mouse liver microsomes. A pharmacokinetic study of CycloAnt in mice confirmed that CycloAnt crossed the blood-brain barrier (BBB) with a brain-to-plasma ratio of 11.5%, a high extent of BBB transport for a peptide. To elucidate the structural basis underlying its BBB penetration, we investigated its conformation in water and DMSO using 1H NMR spectroscopy. The results show that CycloAnt displays an extended conformation in water with most amide NHs being exposed, while in less polar DMSO, it adopts a compact conformation with all amide NHs locked in intramolecular hydrogen bonds. The chameleonic property helps CycloAnt permeate the BBB.
    Keywords:  conformational plasticity; cyclic peptide; membrane-permeable peptide; opioid ligand
    DOI:  https://doi.org/10.3390/ijms252111389
  12. Mol Pharm. 2024 Nov 08.
      T-cell immunoglobulin and mucin domain-3 (TIM3) is an immune checkpoint that plays a negative regulatory role in the immune response. TIM3-targeted drugs inhibit this negative regulation, thereby modulating the level of immune response activation. In the previous investigation, several peptides targeting TIM3 were identified through screening from a phage peptide library. In this research, three peptides were selected to construct the radioactive molecular probes according to the characteristic that targeting TIM3 drugs would lead to the increase of interferon-γ (IFN-γ) secretion. Molecular docking was performed to assess the binding properties of the selected peptides with the TIM3 protein. To further enhance the targeting properties, one of the peptides with a higher-affinity peptide was structurally modified. Then, 68Ga was used to construct the peptide probe 68Ga-DOTA-peptide by labeling the six peptides with 68Ga riboprobes, and the binding affinity and specificity were assessed using TIM3 overexpressing cell line A549TIM3 and the parental A549 cells. In addition, in Micro-PET/CT imaging, transfected model mice were dynamically imaged for 30 min after injection of 3.7-7.4 MBq 68Ga-DOTA-peptides via the tail vein. Meanwhile, the same dose of molecular probes was injected in the MC38 model (colorectal cancer in mice) and the CCRCC (clear cell renal cell carcinoma) xenografted model, followed by static scans at 15, 30, and 60 min postinjection. Finally, immunohistochemical (IHC) staining was performed to assess TIM3 expression in the dissected tumor tissues. The molecular docking results showed that the binding energy of P26 to TIM3 protein was -6.5 kcal/mol, which was lower than that of P24 to TIM3 protein, -3.6 kcal/mol, indicating that the affinity of P26 peptide to TIM3 protein was higher than that of P24 and P20 peptide. After structural modification of the P26 peptide, P26NH2, r-NH2, and P26X2 were obtained, and the above peptides were successfully constructed into six targeting TIM3 peptide probes by 68Ga labeling. Cellular uptake experiments demonstrated that 68Ga-DOTA-P26, 68Ga-DOTA-P26NH2, and 68Ga-DOTA-r-NH2 showed significantly higher uptake in A549TIM3 cells than in A549 cells and could be blocked by the unlabeled peptide. Micro-PET imaging experiments showed that the uptake of each probe in the A549TIM3 model tumor tissue was significantly higher than that in the A549 model tumor tissue, and a comparison of the tumor-to-cardiac uptake ratios of each group showed that the 68Ga-DOTA-P26 had a better tumor-to-cardiac uptake ratio in the A549TIM3 model than several other molecular probes, and in the MC38 model, similar results were obtained, with the difference that the 68Ga-DOTA-P26NH2 had the highest tumor-to-cardiac uptake ratio in the CCRCC model. Finally, validation by IHC showed that A549TIM3, MC38, and CCRCC tumor tissues had varying degrees of TIM3 expression. Upon comparison of ex vivo and in vivo studies, one of them, the 68Ga-DOTA-P26 probe, demonstrated significant target specificity for TIM3. These results suggest that studying peptide probes targeting TIM3 will promote the process of TIM3-targeted drug research and is expected to guide the application of TIM3 immune checkpoint drugs in immunotherapy.
    Keywords:  T-cell immunoglobulin and mucin domain-3; immune checkpoint inhibitor; micro-PET/CT imaging; peptides; radioactive tracer
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.4c00884
  13. J Med Chem. 2024 Nov 13.
      Overcoming clinical resistance to osimertinib mediated by the tertiary C797S mutation remains an unmet medical need. To date, there are no effective drugs that have been approved for patients who harbor EGFRT790M/C797S mutations. Herein, we applied a structure-based drug design strategy to discover a series of potent and selective diaminopyrimidine macrocycles as novel EGFRT790M/C797S inhibitors. The representative compound 21v potently inhibited EGFR19del/T790M/C797S and EGFRL858R/T790M/C797S mutants with IC50 values of 2.3 nM and 12.5 nM, respectively, and exhibited antiproliferative activity against Ba/F3-EGFR19del/T790M/C797S and Ba/F3-EGFRL858R/T790M/C797S cells with IC50 values of 41 and 52 nM, respectively. Further, 21v inhibited proliferation of the EGFR19del/T790M/C797S mutant PC-9-OR NSCLC cell line with an IC50 value of 56 nM and displayed selectivity over parental Ba/F3 and A431 cells. Moreover, 21v exhibited antitumor efficacy in a Ba/F3-EGFR19del/T790M/C797S xenograft model. This study provides a promising macrocyclic lead for anticancer drug discovery overcoming EGFRC797S mutation mediated resistance in NSCLC patients.
    DOI:  https://doi.org/10.1021/acs.jmedchem.4c01975
  14. Bioorg Chem. 2024 Nov 03. pii: S0045-2068(24)00844-7. [Epub ahead of print]153 107939
      Antimicrobial peptides (AMPs) are considered an attractive generation of novel antibiotics due to their advantageous properties such as a broad spectrum of antimicrobial activity against pathogens, low cytotoxicity, and drug resistance. Although they have common structural features and it has been widely demonstrated that bacterial membranes represent the main target of the peptide activity, the exact mechanism underlying the membrane perturbation by AMPs is not fully understood. Nevertheless, all the proposed modes of action implicate the preliminary interaction of AMPs with the negatively charged lipids in bacterial membranes. Recently, the structural and functional characterization of two AMPs, RiLK1 and RiLK3, was reported. Specifically, both peptides were revealed to be multitalented compounds capable of binding Gram-positive and Gram-negative liposome models with high affinity, but their mechanism of action remains elusive. In this paper, the effects of RiLK1 and RiLK3 on vesicles mimicking prokaryotic and eukaryotic cell membranes were further examined by using different approaches. Fluorescence and quenching assays either by acrylamide or lipophilic probes suggested that the peptides were mainly located at the interface of the negatively charged membranes that mimicked those of Salmonella Typhimurium and Staphylococcus aureus, possibly oriented in a parallel manner. Furthermore, RiLK1 and RiLK3 caused a significant leakage of carboxyfluorescein from bacterial liposomes, demonstrating that they can permeabilize the target membranes at high doses. Conversely, both peptides appear to behave like cell penetrating peptides (CPPs) at concentrations near their MIC values evaluated against the bacterial targets. Moreover, Dynamic Light Scattering provided further insights on the mechanisms of antimicrobial peptide against the bacterial liposomes. Conclusively, in vitro experiments indicated that RiLK1 and RiLK3 displayed potent bacteriostatic efficacy at low micromolar concentrations against an antibiotic-resistant ESKAPE pathogen, making them a valuable tool in preventing and treating infections caused by such bacteria.
    Keywords:  Antimicrobial peptide; Dynamic Light Scattering; ESKAPE pathogen; Fluorescence spectroscopy; Liposome
    DOI:  https://doi.org/10.1016/j.bioorg.2024.107939
  15. Bioconjug Chem. 2024 Nov 14.
      Multiple myeloma (MM) is an incurable disease characterized by its clinical and prognostic heterogeneity. Despite conventional chemotherapy and autologous hematopoietic stem cell transplantation, the management of relapsed and refractory MM disease poses significant challenges, both medically and socioeconomically. CD38, highly expressed on the surface of MM cells, serves as a distinct tumor biological target in MM. Peptides offer advantages over antibodies, enabling precise tumor imaging and facilitating early tumor diagnosis and dynamic immunotherapy monitoring. In this study, we developed PF381, a CD38-targeted peptide, and investigated its role in diagnosis, biodistribution, and dosimetry through 68Ga-labeling for preclinical evaluation in tumor-bearing models. We screened a microchip-based combinatorial chemistry peptide library to obtain the amino acid sequence of PF381. Affinity for human CD38 was evaluated by SPRi. PF381 was conjugated with DOTA for radiolabeling with 68Ga, and the complex was characterized by HPLC. PET imaging was performed in murine tumor models after the administration of [68Ga]Ga-DOTA-PF381. Biodistribution analysis compared CD38-positive H929 and CD38-negative U266 tumors, and human radiation dosimetry was estimated. Tumor sections were stained for CD38 expression. SPRi showed that PF381 had a high affinity for CD38 with a KD of 2.49 × 10-8 M. HPLC measured a radiolabeling efficiency of 78.45 ± 7.91% for [68Ga]Ga-DOTA-PF381, with >98% radiochemical purity. PET imaging revealed rapid and persistent accumulation of radioactivity in CD38-positive H929 tumors, contrasting with negligible uptake in CD38-negative U266 tumors. Biodistribution confirmed higher uptake in H929 tumors (0.75 ± 0.03%ID/g) vs U266 (0.26 ± 0.08%ID/g, P < 0.001). The kidney received the highest radiation dose (3.57 × 10-02 mSv/MBq), with an effective dose of 1.41 × 10-02 mSv/MBq. Immunofluorescence imaging supported PET and biodistribution findings. We developed a novel peptide targeting CD38 and proved that 68Ga-labeled PF381 had rapid targeting and good tumor penetration capabilities. Therefore, 68Ga-labeled PF381 could achieve high sensitivity in vivo imaging for CD38-positive hematological malignancies.
    DOI:  https://doi.org/10.1021/acs.bioconjchem.4c00497
  16. Talanta. 2024 Nov 08. pii: S0039-9140(24)01549-2. [Epub ahead of print]283 127170
      Monitoring collagen denaturation is crucial for diagnosing collagen-related diseases such as tumors and fibrosis. Herein, we have developed specific probes to detect denatured collagen (d-Col) and collagen I (Col I), utilizing peptide probes with sequences (GOP)10 and HVWMQAP, targeting at d-Col and Col I, respectively. These peptides were conjugated with 1,10-phenanthroline-5-carboxylic Acid (Phen), forming Phen-Ahx-(GOP)10 and Phen-Ahx-HVWMQAP. Phen acts as both an antenna sensitizer and a chelator, coordinating with Terbium (III) and Europium (III) ions via its nitrogen atom, facilitating fluorescent emission in green and red, respectively. The investigation demonstrated that Tb3+ interacts with three (GOP)10 peptide units through Phen, while Eu3+ connects with four units of Ahx-HVWMQAP peptides. Additionally, it is important to note that the structure of the peptides remains unchanged after chelating with the lanthanide ions, maintaining their integrity throughout the process. These probes have effectively demonstrated their ability to bind to specific collagen types with selectivity, enabling accurate identification of their presence. The excellent binding of these probes is due to the branched structure of the formed lanthanide-peptide complexes. A dose-dependent linear association was observed in the binding of Eu-[Phen-Ahx-HVWMQAP]4 to Col I, with concentration levels ranging from 0.5 to 100 μM and a minimal detectable concentration of 0.113 μM. We anticipate that our developed probes will improve understanding of collagen remodeling and provide opportunities for the diagnosis of collagen-associated diseases.
    Keywords:  Collagen; Fluorescent peptide probes; Lanthanides; Precise detection
    DOI:  https://doi.org/10.1016/j.talanta.2024.127170
  17. J Med Chem. 2024 Nov 11.
      Peptides can operate as therapeutic agents that sit within a privileged space between small molecules and larger biologics. Despite examples of their potential to regulate receptors and modulate disease pathways, the development of peptides with drug-like properties remains a challenge. In the quest to optimize physicochemical parameters and improve target selectivity, unnatural amino acids (UAAs) have emerged as critical tools in peptide- and peptidomimetic-based drugs. The utility of UAAs is illustrated by clinically approved drugs such as methyldopa, baclofen, and gabapentin in addition to small drug molecules, for example, bortezomib and sitagliptin. In this Perspective, we outline the strategy and deployment of UAAs in FDA-approved drugs and their targets. We further describe the modulation of the physicochemical properties in peptides using UAAs. Finally, we elucidate how these improved pharmacological parameters and the role played by UAAs impact the progress of analogs in preclinical stages with an emphasis on the role played by UAAs.
    DOI:  https://doi.org/10.1021/acs.jmedchem.4c00110
  18. FEBS Lett. 2024 Nov 12.
      Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
    Keywords:  blood–brain barrier; cell‐based BBB model; in vitro BBB models; neurovascular unit
    DOI:  https://doi.org/10.1002/1873-3468.15053