bims-cepepe Biomed News
on Cell-penetrating peptides
Issue of 2024‒08‒18
23 papers selected by
Henry Lamb, Queensland University of Technology



  1. Comput Struct Biotechnol J. 2024 Dec;23 2985-2994
      Cyclic peptides present a robust platform for drug design, offering high specificity and stability due to their conformationally constrained structures. In this study, we introduce an updated version of the Cyclic Peptide Matching program (cPEPmatch) tailored for the identification of cyclic peptides capable of mimicking protein-glycosaminoglycan (GAG) binding sites. We focused on engineering cyclic peptides to replicate the GAG-binding affinity of antithrombin III (ATIII), a protein that plays a crucial role in modulating anticoagulation through interaction with the GAG heparin. By integrating computational and experimental methods, we successfully identified a cyclic peptide binder with promising potential for future optimization. MD simulations and MM-GBSA calculations were used to assess binding efficacy, supplemented by umbrella sampling to approximate free energy landscapes. The binding specificity was further validated through NMR and ITC experiments. Our findings demonstrate that the computationally designed cyclic peptides effectively target GAGs, suggesting their potential as novel therapeutic agents. This study advances our understanding of peptide-GAG interactions and lays the groundwork for future development of cyclic peptide-based therapeutics.
    Keywords:  Antithrombin; Cyclic peptides; Glycosaminoglycans; Isothermal titration calorimetry; Molecular dynamics; Nuclear magnetic resonance; Rational design
    DOI:  https://doi.org/10.1016/j.csbj.2024.07.016
  2. bioRxiv. 2024 Aug 09. pii: 2024.08.09.607221. [Epub ahead of print]
      Biological language modeling has significantly advanced the prediction of membrane penetration for small molecule drugs and natural peptides. However, accurately pre-dicting membrane diffusion for peptides with pharmacologically relevant modifications remains a substantial challenge. Here, we introduce PeptideCLM, a peptide-focused chemical language model capable of encoding peptides with chemical modifications, unnatural or non-canonical amino acids, and cyclizations. We assess this model by pre-dicting membrane diffusion of cyclic peptides, demonstrating greater predictive power than existing chemical language models. Our model is versatile, able to be extended beyond membrane diffusion predictions to other target values. Its advantages include the ability to model macromolecules using chemical string notation, a largely unex-plored domain, and a simple, flexible architecture that allows for adaptation to any peptide or other macromolecule dataset.
    DOI:  https://doi.org/10.1101/2024.08.09.607221
  3. Chem Sci. 2024 Aug 02.
      Fluorination has emerged as a promising strategy in medicinal chemistry to improve the pharmacological profiles of drug candidates. Similarly, incorporating fluorinated non-canonical amino acids into macrocyclic peptides expands chemical diversity and enhances their pharmacological properties, from improved metabolic stability to enhanced cell permeability and target interactions. However, only a limited number of fluorinated non-canonical amino acids, which are canonical amino acid analogs, have been incorporated into macrocyclic peptides by ribosomes for de novo construction and target-based screening of fluorinated macrocyclic peptides. In this study, we report the ribosomal translation of a series of distinct fluorinated non-canonical amino acids, including mono-to tri-fluorinated variants, as well as fluorinated l-amino acids, d-amino acids, β-amino acids, etc. This enabled the de novo discovery of fluorinated macrocyclic peptides with high affinity for EphA2, and particularly the identification of those exhibiting broad-spectrum activity against Gram-negative bacteria by targeting the BAM complex. This study not only expands the scope of ribosomally translatable fluorinated amino acids but also underscores the versatility of fluorinated macrocyclic peptides as potent therapeutic agents.
    DOI:  https://doi.org/10.1039/d4sc04061a
  4. Chem Commun (Camb). 2024 Aug 14.
      Oxidation of a thioether linkage in thioether-closed macrocyclic peptides led to collision-induced site-selective linearization of the peptides. This method has allowed for de novo sequencing of thioether macrocyclic peptides. The utility of the sequencing method was demonstrated by identifying the correct peptide sequences from a virtually randomized thioether macrocyclic peptide library.
    DOI:  https://doi.org/10.1039/d4cc03179b
  5. J Cell Biochem. 2024 Aug 15. e30633
      Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.
    Keywords:  Cdk5/p25 complex; molecular dynamics simulations; neurodegenerative diseases; peptide inhibitor; protein–protein interaction
    DOI:  https://doi.org/10.1002/jcb.30633
  6. Chem Sci. 2024 Jul 30.
      Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>103 M-1 s-1) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions. The ABT-crosslinked peptides are fairly stable in endogenous environments, but can provide the linear diazaborine peptides via treatment with α-nucleophiles. This efficient peptide crosslinking protocol was further extended for regioselective bicyclizations and engineering of α-helical structures. Finally, ABT-grafted peptides were exploited in biorthogonal conjugation, leading to highly effective intracellular delivery of an apoptotic peptide (KLA) in cancer cells. The mechanism of action by which ABT-grafted KLA peptide induces apoptosis was also explored.
    DOI:  https://doi.org/10.1039/d4sc04348k
  7. Sci Data. 2024 Aug 09. 11(1): 859
      Computational and machine learning approaches to model the conformational landscape of macrocyclic peptides have the potential to enable rational design and optimization. However, accurate, fast, and scalable methods for modeling macrocycle geometries remain elusive. Recent deep learning approaches have significantly accelerated protein structure prediction and the generation of small-molecule conformational ensembles, yet similar progress has not been made for macrocyclic peptides due to their unique properties. Here, we introduce CREMP, a resource generated for the rapid development and evaluation of machine learning models for macrocyclic peptides. CREMP contains 36,198 unique macrocyclic peptides and their high-quality structural ensembles generated using the Conformer-Rotamer Ensemble Sampling Tool (CREST). Altogether, this new dataset contains nearly 31.3 million unique macrocycle geometries, each annotated with energies derived from semi-empirical extended tight-binding (xTB) DFT calculations. Additionally, we include 3,258 macrocycles with reported passive permeability data to couple conformational ensembles to experiment. We anticipate that this dataset will enable the development of machine learning models that can improve peptide design and optimization for novel therapeutics.
    DOI:  https://doi.org/10.1038/s41597-024-03698-y
  8. Bioorg Med Chem. 2024 Aug 08. pii: S0968-0896(24)00285-2. [Epub ahead of print]111 117871
      Cell-penetrating peptides (CPPs) are crucial for delivering macromolecules such as nucleic acids into cells. This study investigates the effectiveness of dual-modified penetratin peptides, focusing on the impact of stapling structures and an endosomal escape domain (EED) on enhancing intracellular uptake. Some CPPs were synthesized with an EED at either the N- or C-terminus and stapling structures, and then complexed with plasmid DNA (pDNA) to evaluate their cellular uptake. Results revealed that the combination of stapling and an EED significantly improved delivery efficiency, primarily via macropinocytosis and clathrin-mediated endocytosis. These findings underscore the importance of optimizing CPP sequences for effective nucleic acid delivery systems.
    Keywords:  Cell-penetrating peptides; Endosomal escape domain; Nucleic acid delivery; Penetratin; Stapling structures; pDNA
    DOI:  https://doi.org/10.1016/j.bmc.2024.117871
  9. J Am Chem Soc. 2024 Aug 13.
      Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalization─installation of a covalent warhead─with mRNA display and showcases its application in targeted covalent ligand discovery.
    DOI:  https://doi.org/10.1021/jacs.4c07851
  10. Angew Chem Int Ed Engl. 2024 Aug 13. e202407381
      METTL3 has emerged as a promising therapeutic target in cancer treatment, although its oncogenic functions in melanoma development and potential for therapeutic targeting drug have not been fully explored. In this study, we define the oncogenic role of METTL3 in melanoma development and progression. Building on this insight, we examine our recently designed peptide inhibitor RM3, which targets the binding interface of METTL3/14 complex for disruption and subsequent ubiquitin-mediated proteasomal degradation via the E3 ligase STUB1. RM3 treatment reduces proliferation, migration, and invasion, and induces apoptosis in melanoma cells in vitro and in vivo. Subsequent transcriptomic analysis identified changes in immuno-related genes following RM3-mediated suppression of METTL3/14 N6-methyladenosine (m6A) methyltransferase activity, suggesting a potential for interaction with immunotherapy. A combination treatment of RM3 with anti-PD-1 antibody results in significantly higher beneficial tumor response in vivo, with a good safety profile. Collectively, these findings not only delineate the oncogenic role of METTL3 in melanoma but also showcase RM3, acting as a peptide degrader, as a novel and promising strategy for melanoma treatment.
    Keywords:  Degradation; Immunotherapy; METTL3; Melanoma; peptide
    DOI:  https://doi.org/10.1002/anie.202407381
  11. Int J Biol Macromol. 2024 Aug 12. pii: S0141-8130(24)05523-5. [Epub ahead of print] 134718
      Peptides are a very critical class of pharmaceutical compounds that can control several signaling pathways and thereby affect many physiological and biochemical processes. Previous research suggests that both peptides and antibodies may serve as potent tools for research, diagnostics, vaccination, and therapeutics across diverse domains. The distinct attributes of peptides, like their profound tissue penetration, efficient cellular internalization, reduced immunogenicity, and adaptability to chemical modification, underscore their significance in biomedical applications. However, they also possess drawbacks such as lower affinity, poor absorption, low stability to proteolytic digestion, and rapid clearance. The advent of peptibodies is a significant advance that improves the limitations of both peptides and antibodies. Peptibodies, or Peptide-Fc fusions, represent a promising therapeutic modality comprising biologically active peptides fused to an Fc domain. The stability and efficacy of the peptide are enhanced by this fusion strategy, which overcomes some of the inherent limitations. Many peptibodies have been developed to treat conditions like cancer, diabetes, and lupus. Romiplostim and Dulaglutide are the only ones approved by the EMA and FDA, respectively. Given the growing significance of peptibodies in the pharmaceutical landscape, this investigation aims to explain key aspects encompassing the intrinsic properties of peptides, the intricacies of peptibody production, and their potential therapeutic applications.
    Keywords:  Antibodies; Peptibodies; Peptide-Fc; Peptides; Romiplostim and Dulaglutide
    DOI:  https://doi.org/10.1016/j.ijbiomac.2024.134718
  12. Protein Sci. 2024 Sep;33(9): e5135
      Tardigrades are unique micro-organisms with a high tolerance to desiccation. The protection of their cells against desiccation involves tardigrade-specific proteins, which include the so-called cytoplasmic abundant heat soluble (CAHS) proteins. As a first step towards the design of peptides capable of mimicking the cytoprotective properties of CAHS proteins, we have synthesized several model peptides with sequences selected from conserved CAHS motifs and investigated to what extent they exhibit the desiccation-induced structural changes of the full-length proteins. Using circular dichroism spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations, we have found that the CAHS model peptides are mostly disordered, but adopt a more α$$ \alpha $$ -helical structure upon addition of 2,2,2-trifluoroethanol, which mimics desiccation. This structural behavior is similar to that of full-length CAHS proteins, which also adopt more ordered conformations upon desiccation. We also have investigated the surface activity of the peptides at the air/water interface, which also mimics partial desiccation. Interestingly, sum-frequency generation spectroscopy shows that all model peptides are surface active and adopt a helical structure at the air/water interface. Our results suggest that amino acids with high helix-forming propensities might contribute to the propensity of these peptides to adopt a helical structure when fully or partially dehydrated. Thus, the selected sequences retain part of the CAHS structural behavior upon desiccation, and might be used as a basis for the design of new synthetic peptide-based cryoprotective materials.
    Keywords:  conformational changes; environmental tolerance; peptides; spectroscopy; tardigrade
    DOI:  https://doi.org/10.1002/pro.5135
  13. Bioorg Med Chem Lett. 2024 Aug 09. pii: S0960-894X(24)00317-2. [Epub ahead of print]112 129915
      Many reports have shown that stabilization of secondary structure by stapling functional peptides enhances the intracellular bioactivity. However, no report has discussed the correlation between stabilization and biological activity based on the configuration of amino acid residues used as anchors for stapling. To clarify this, we investigated the helix content and apoptotic efficiency of an apoptosis-inducing peptide, Bim, and four stapled Bim peptides containing stapling-related Cys residues introduced with different configurations within the sequence. The results demonstrated that the configuration of Cys residues in stapled Bim peptides affected the secondary structure and intracellular activity of the peptides, and furthermore, there was a correlation between these latter two variables.
    Keywords:  Apoptosis; Bim peptide; Cell-penetrating peptide; Intracellular delivery; Stapling
    DOI:  https://doi.org/10.1016/j.bmcl.2024.129915
  14. Biochim Biophys Acta Gen Subj. 2024 Aug 13. pii: S0304-4165(24)00136-3. [Epub ahead of print] 130693
      BACKGROUND: Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.MAJOR CONCLUSIONS: Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it. PaDBS1R6 was evaluated against Acinetobacter baumannii and Escherichia coli clinical isolates and had minimal inhibitory concentration (MIC) values from 8 to 32 μmol L-1. It had a rapid bactericidal effect, with eradication showing within 3 min of incubation, depending on the bacterial strain tested. In addition, PaDBS1R6 inhibited biofilm formation for A. baumannii and E. coli and was non-toxic toward healthy mammalian cells. These findings are explained by the preference of PaDBS1R6 for anionic membranes over neutral membranes, as assessed by surface plasmon resonance assays and molecular dynamics simulations. Considering its potent antibacterial activity, PaDBS1R6 was used as a template for sliding-window fragmentation studies (window size = 10 residues). Among the sliding-window fragments, PaDBS1R6F8, PaDBS1R6F9, and PaDBS1R6F10 were ineffective against any of the bacterial strains tested. Additional biological assays were conducted, including nitric oxide (NO) modulation and wound scratch assays, and the R6F8 peptide fragment was found to be active in modulating NO levels, as well as having strong wound healing properties.
    GENERAL SIGNIFICANCE: This study proposes a new concept whereby peptides with different biological properties can be derived by the screening of fragments from within potent AMPs.
    Keywords:  Antibacterial peptides; Immunomodulatory peptides; Resistant bacteria; Wound healing
    DOI:  https://doi.org/10.1016/j.bbagen.2024.130693
  15. Bioorg Med Chem. 2024 Aug 03. pii: S0968-0896(24)00283-9. [Epub ahead of print]111 117869
      Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.
    Keywords:  Anticancer; Camptothecin (CPT); Hybrid peptide; Solid-phase peptide synthesis (SPPS); Sortilin; TH19P01
    DOI:  https://doi.org/10.1016/j.bmc.2024.117869
  16. J Am Chem Soc. 2024 Aug 15.
      In the fast-evolving landscape of targeted cancer therapies, the revolutionary class of biotherapeutics known as antibody-drug conjugates (ADCs) are taking center stage. Most clinically approved ADCs utilize cleavable linkers to temporarily attach potent cytotoxic payloads to antibodies, allowing selective payload release under tumor-specific conditions. In this study, we explored the utilization of 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), a cyclic β-diketone featuring an active alkylidene group, to develop a novel chemically labile linker. This linker was designed to exploit the difference in reduction potential between the intracellular compartment and plasma. Upon reduction of an azido trigger strategically installed neighboring the cyclic β-diketone, the resulting nucleophilic primary amine reacts with the alkylidene group facilitated by a favorable ring closure reaction in accordance with Baldwin's rules. Consequently, this reaction enables the simultaneous release of the attached cytotoxic payload. The therapeutic utility of this novel linker strategy was demonstrated by separate conjugation of the linker to two epidermal growth factor receptor (EGFR)-targeting ligands to afford a peptide-drug conjugate and an ADC. This work comprises a significant contribution to the bioconjugation field by introducing the alkylidene cyclic β-diketone as a tunable scaffold used for the temporary conjugation of therapeutic agents to peptides and proteins.
    DOI:  https://doi.org/10.1021/jacs.4c04567
  17. ACS Nano. 2024 Aug 12.
      Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
    Keywords:  bispecific antibodies; blood−brain barrier; brain drug delivery; cell-penetrating peptides; central nervous system; focused ultrasound; nanobodies; nanoparticles; nose-to-brain delivery; therapeutic proteins and peptides
    DOI:  https://doi.org/10.1021/acsnano.4c06851
  18. Soft Matter. 2024 Aug 12.
      Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air-water interfaces to enable REE separations. Peptide sequences, designed to selectively bind REEs, depend crucially on the position of ligands within their binding loop domain. These ligands form a coordination sphere that wraps and retains the cation. We study variants of lanthanide binding tags (LBTs) designed to complex strongly with Tb3+. The peptide LBT5- (with net charge -5) is known to bind Tb3+ and adsorb with more REE cations than peptide molecules, suggesting that undesired non-specific coulombic interactions occur. Rheological characterization of interfaces of LBT5- and Tb3+ solutions reveal the formation of an interfacial gel. To probe whether this gelation reflects chelation among intact adsorbed LBT5-:Tb3+ complexes or destruction of the binding loop, we study a variant, LBT3-, designed to form net neutral LBT3-:Tb3+ complexes. Solutions of LBT3- and Tb3+ form purely viscous layers in the presence of excess Tb3+, indicating that each peptide binds a single REE in an intact coordination sphere. We introduce the variant RR-LBT3- with net charge -3 and anionic ligands outside of the coordination sphere. We find that such exposed ligands promote interfacial gelation. Thus, a nuanced requirement for interfacial selectivity of PEPS is proposed: that anionic ligands outside of the coordination sphere must be avoided to prevent the non-selective recruitment of REE cations. This view is supported by simulation, including interfacial molecular dynamics simulations, and interfacial metadynamics simulations of the free energy landscape of the binding loop conformational space.
    DOI:  https://doi.org/10.1039/d4sm00493k
  19. Mol Pharm. 2024 Aug 12.
      The blood-brain barrier (BBB) poses a significant challenge for drug delivery and is linked to various neurovascular disorders. In vitro BBB models provide a tool to investigate drug permeation across the BBB and the barrier's response to external injury events. Yet, existing models lack fidelity in replicating the BBB's complexity, hindering a comprehensive understanding of its functions. This study introduces a three-dimensional (3D) model using polyethylene glycol (PEG) hydrogels modified with biomimetic peptides that represent recognition sequences of key proteins in the brain. Hydrogels were functionalized with recognition sequences for laminin (IKVAV) and fibronectin peptides (RGD) and chemically cross-linked with matrix metalloprotease-sensitive peptides (MMPs) to mimic the extracellular matrix of the BBB. Astrocytes and endothelial cells were seeded within and on the surface of the hydrogels, respectively. The barrier integrity was assessed through different tests including transendothelial electrical resistance (TEER), the permeability of sodium fluorescence (Na-F), the permeability of Evan's blue bound to albumin (EBA), and the expression of zonula occluden-1 (ZO-1) in seeded endothelial cells. Hydrogels with a combination of RGD and IKVAV peptides displayed superior performance, exhibiting significantly higher TEER values (55.33 ± 1.47 Ω·cm2) at day 5 compared to other 2D controls including HAECs-monoculture and HAECs-cocultured with NHAs seeded on well inserts and 3D controls including RGD hydrogel and RGD-IKVAV monoculture with HAECs and RGD hydrogel cocultured with HAECs and NHAs. The designed 3D system resulted in the lowest Evan's blue permeability at 120 min (0.215 ± 0.055 μg/mL) compared to controls. ZO-1 expression was significantly higher and formed a relatively larger network in the functionalized hydrogel cocultured with astrocytes and endothelial cells compared to the controls. Thus, the designed 3D model effectively recapitulates the main BBB structure and function in vitro and is expected to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.
    Keywords:  3D in vitro models; blood−brain barrier; fibronectin-mimetic RGD; hydrogels; laminin-mimetic IKVAV; polyethylene glycol
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.4c00599
  20. ChemMedChem. 2024 Aug 11. e202400488
      A preference for several amino acids is observed to occur at particular positions of cationic α-helical antimicrobial peptides (AMPs), which ensures the formation of amphipathic regions once they assume their correct secondary structure in membranes or membrane-mimicking environments and makes them active against pathogens. This study determined the effect of alanine mutations on the secondary structure and bioactivity of lyp1987 (GRLQAFLAKMKEIAAQTL-NH2), a  cationic α-helical AMP obtained from the venom of Lycosa poonaensis which exhibits broad range activity against Gram-positive and Gram-negative bacteria with micromolar minimum inhibitory concentrations (MIC). CD spectroscopy revealed no significant difference in the secondary structure, with all alanine-substituted analogs exhibiting predominantly α-helical structure in buffered 2,2,2-trifluoroethanol solution. Alanine substitution at Glu12 and Thr17 increased the activity of lyp1987 against Gram-positive and -negative bacteria, while alanine substitution at Lys9 increased its selectivity against Gram-positive bacteria. Further investigation can be done to determine positions and substitutions that will give less cytotoxic analogs.
    Keywords:  Alanine scanning; Antibiotics; Peptides; antimicrobial peptide; spider venom
    DOI:  https://doi.org/10.1002/cmdc.202400488
  21. J Pept Sci. 2024 Aug 12. e3648
      Secondary structure refers to highly regular local sub-structures formed by the polypeptide backbone through hydrogen bonding. The two main types of secondary structures are α-helices and β-strands (which can form β-sheets). The development of a robust circular dichroism (CD) method for structural analysis of biomolecules requires careful consideration of several key factors. Solvent selection plays a crucial role in maintaining the native or desired conformation of the sample while ensuring transparency in the relevant wavelength regions. Aqueous buffers are often preferred for studying proteins in their native state. Optimizing the sample concentration and path length is essential to achieve an optimal absorbance range and maximize the signal-to-noise ratio. Typical concentrations for far-UV CD measurements range from 0.1 to 1 mg/ml, with shorter path lengths (1 mm) allowing for higher concentrations and longer path lengths (5 mm) suitable for dilute solutions. Instrumental parameters, such as scanning speed, accumulations, and nitrogen flow rate, significantly impact the quality and reliability of the acquired CD spectra. Data processing is a critical step in obtaining accurate and interpretable CD spectra. Baseline correction, smoothing, and conversion to mean residue ellipticity are essential for reliable secondary structure analysis.
    Keywords:  CD method development; secondary structure; tertiary structure; thermal study of proteins and peptides
    DOI:  https://doi.org/10.1002/psc.3648
  22. bioRxiv. 2024 Aug 05. pii: 2024.08.01.606165. [Epub ahead of print]
      Therapeutically targeting the brain requires interactions with endothelial cells, pericytes, and astrocytes at the blood brain barrier (BBB). We evaluated regional and cell-type specific drug metabolism and transport mechanisms using rhesus macaques and in vitro treatment of primary human cells. Here, we report heterogenous distribution of representative drugs, tenofovir (TFV), emtricitabine (FTC), and their active metabolites, which cerebrospinal fluid measures could not reflect. We found that all BBB cell types possessed functional drug metabolizing enzymes and transporters that promoted TFV and FTC uptake and pharmacologic activation. Pericytes and astrocytes emerged as pharmacologically dynamic cells that rivaled hepatocytes and were uniquely susceptible to modulation by disease and treatment. Together, our findings demonstrate the importance of considering the BBB as a unique pharmacologic entity, rather than viewing it as an extension of the liver, as each cell type possesses distinct drug metabolism and transport capacities that contribute to differential brain drug disposition.
    DOI:  https://doi.org/10.1101/2024.08.01.606165