bims-cepepe Biomed News
on Cell-penetrating peptides
Issue of 2024–03–17
nine papers selected by
Henry Lamb, Queensland University of Technology



  1. ACS Chem Neurosci. 2024 Mar 11.
      TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia. Pathological mislocalization and aggregation of TDP-43 disrupt RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of in silico techniques to design and evaluate peptide-based therapeutics that bind to pathological TDP-43 amyloid-like filament crystal structures and resist β sheet conversion. Our computational approaches, including biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations, were used to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our in silico analyses identified a selection of promising peptides which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Molecular dynamics simulations provided further support for the structural and thermodynamic stability of these peptides, as they exhibited lower root-mean-square deviation and more favorable free energy landscapes over 300 ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for the rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both in vitro and in vivo experiments.
    Keywords:  TDP-43; aggregation; helical propensity peptide; neurodegenerative disease
    DOI:  https://doi.org/10.1021/acschemneuro.3c00659
  2. Chembiochem. 2024 Mar 11. e202400072
      Peptide therapeutics have gained great interest due to their multiple advantages over small molecule and antibody-based drugs. Peptide drugs are easier to synthesize, have the potential for oral bioavailability, and are large enough to target protein-protein interactions that are undruggable by small molecules. However, two major limitations have made it difficult to develop novel peptide therapeutics not derived from natural products, including the metabolic instability of peptides and the difficulty of reaching antibody-like potencies and specificities. Compared to linear and disulfide-monocyclized peptides, multicyclic peptides can provide increased conformational rigidity, enhanced metabolic stability, and higher potency in inhibiting protein-protein interactions. The identification of novel multicyclic peptide binders can be difficult, however, recent advancements in the construction of multicyclic phage libraries have greatly advanced the process of identifying novel multicyclic peptide binders for therapeutically relevant protein targets. This review will describe the current approaches used to create multicyclic peptide libraries, highlighting the novel chemistries developed and the proof-of-concept work done on validating these libraries against different protein targets.
    Keywords:  peptide, phage display, cyclization, multicyclic peptides
    DOI:  https://doi.org/10.1002/cbic.202400072
  3. Chemistry. 2024 Mar 15. e202400308
      Cyclic peptides are increasingly important structures in drugs but their development can be impeded by difficulties associated with their synthesis. Here, we introduce the 3-aminoazetidine (3-AAz) subunit as a new turn-inducing element for the efficient synthesis of small head-to-tail cyclic peptides. Greatly improved cyclizations of tetra-, penta- and hexapeptides (28 examples) under standard reaction conditions are achieved by introduction of this element within the linear peptide precursor. Post-cyclization deprotection of the amino acid side chains with strong acid is realized without degradation of the strained four-membered azetidine. An special feature of this chemistry is that further late-stage modification of the resultant macrocyclic peptides can be achieved via the 3-AAz unit.  This is done by: (i) chemoselective deprotection and substitution at the azetidine nitrogen, or by (ii) a click-based approach employing a 2-propynyl carbamate on the azetidine nitrogen. In this way, a range of dye and biotin tagged macrocycles are readily produced. Structural insights gained by XRD analysis of a cyclic tetrapeptide indicate that the azetidine ring encourages access to the less stable, all-trans conformation. Moreover, introduction of a 3-AAz into a representative cyclohexapeptide improves stability towards proteases compared to the homodetic macrocycle.
    Keywords:  macrocyclization * peptidomimetics * cyclic peptides * azetidine * functionalization
    DOI:  https://doi.org/10.1002/chem.202400308
  4. J Med Chem. 2024 Mar 14.
      Directly blocking the Keap1-Nrf2 pathway is a promising strategy for the mitigation of acute lung injury (ALI). Peptide Keap1-Nrf2 inhibitors have been reported to have a high Keap1 binding affinity. However, these inhibitors showed weak activity in cells and/or animals. In this study, we designed a series of linear peptides from an Nrf2-based 9-mer Ac-LDEETGEFL-NH2. To improve the cellular activity, we further designed cyclic peptides based on the crystal complex of Keap1 with a linear peptide. Among them, cyclic 9-mer ZC9 targeting Keap1 showed a better affinity (KD2 = 51 nM). Specifically, it exhibited an acceptable water solubility (>38 mg/mL), better cell permeability, cell activity, and metabolic stability (serum t1/2 > 24 h). In the in vitro LPS-induced oxidative damages and ALI model, ZC9 showed significant dose-response reversal activity without apparent toxicity. In conclusion, our results suggested ZC9 as a lead cyclic peptide targeting the Keap1-Nrf2 pathway for ALI clinical treatment.
    DOI:  https://doi.org/10.1021/acs.jmedchem.4c00065
  5. Cancers (Basel). 2024 Mar 02. pii: 1032. [Epub ahead of print]16(5):
      The United States Food and Drug Administration (FDA) has approved a plethora of peptide-based drugs as effective drugs in cancer therapy. Peptides possess high specificity, permeability, target engagement, and a tolerable safety profile. They exhibit selective binding with cell surface receptors and proteins, functioning as agonists or antagonists. They also serve as imaging agents for diagnostic applications or can serve a dual-purpose as both diagnostic and therapeutic (theragnostic) agents. Therefore, they have been exploited in various forms, including linkers, peptide conjugates, and payloads. In this review, the FDA-approved prostate-specific membrane antigen (PSMA) peptide antagonists, peptide receptor radionuclide therapy (PRRT), somatostatin analogs, antibody-drug conjugates (ADCs), gonadotropin-releasing hormone (GnRH) analogs, and other peptide-based anticancer drugs are analyzed in terms of their chemical structures and properties, therapeutic targets and mechanisms of action, development journey, administration routes, and side effects.
    Keywords:  ADC; PDC; antineoplastic; cancer; chemotherapy; drugs; imaging; oncology; peptides; theragnostic; tumor
    DOI:  https://doi.org/10.3390/cancers16051032
  6. ACS Nano. 2024 Mar 13.
      Immune checkpoint blockade (ICB) therapy is promising to revolutionize cancer regimens, but the low response rate and the lack of a suitable patient stratification method have impeded universal profit to cancer patients. Noninvasive positron emission tomography (PET) imaging in the whole body, upon coupling with specific biomarkers closely related to the immune response, could provide spatiotemporal information to prescribe cancer therapy. Herein, we demonstrate that antisilencing function 1a (ASF1a) could serve as a biomarker target to delineate tumor immune microenvironments by immune PET (iPET). The iPET radiotracer (68Ga-AP1) is designed to target ASF1a in tumors and predict immune response, and the signal intensity predicts anti-PD-1 (αPD-1) therapy response in a negative correlation manner. The ICB-resistant tumors with a high level of ASF1a as revealed by iPET (ASF1aHigh-iPET) are prescribed to be treated by either the combined 177Lu-labeled AP1 and αPD-1 or the standalone α particle-emitting 225Ac-labeled AP1, both achieving enhanced therapeutic efficacy and prolonged survival time. Our study not only replenishes the iPET arsenal for immune-related response evaluation by designing a reliable biomarker and a facile radiotracer but also provides optional therapeutic strategies for ICB-resistant tumors with versatile radionuclide-labeled AP1 peptides, which is promising for real-time clinical diagnosis and individualized therapy planning simultaneously.
    Keywords:  ASF1a; ICB therapy; iPET; radionuclide; α particle therapy
    DOI:  https://doi.org/10.1021/acsnano.4c00081
  7. Cancer. 2024 Mar 14.
       BACKGROUND: Clinical studies on programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors for treating triple-negative breast cancer (TNBC) have shown unsatisfactory efficacy due to low tumor-infiltrating lymphocyte (TIL) levels. Inhibitors targeting cyclin-dependent kinase (CDK) proteins can affect the immune microenvironment, increase TIL levels, and promote antitumor immunity, thus providing a new direction for TNBC treatment strategies.
    METHODS: The authors tested three CDK inhibitors on the TNBC cell lines MDA-MB-231 and 4T1 and validated their antitumor effects and impact on the immune microenvironment using multiple detection methods. They verified the efficacy and immune-related mechanisms of different combination therapy experiments in a 4T1 cell-transplanted BALB/c mouse model.
    RESULTS: Treatment with CDK inhibitors for 72 hours inhibited cell proliferation, clone formation, migration, and cell-cycle arrest and induced apoptosis in human breast cancer MDA-MB-231 cells and mouse breast cancer 4T1 cells. CDK inhibitors suppressed DNA methylation by downregulating DNMT1, DNMT3a, and DNMT3b expression. These three inhibitors promoted the secretion of various chemokines, enhanced tumor cell antigen presentation, and increased PD-L1 expression. CDK inhibitors improved the efficacy of immunotherapy in animal models and increased TIL levels.
    CONCLUSIONS: Combination therapy with CDK and PD-L1 immune checkpoint inhibitors affects the immune microenvironment, promotes antitumor immunity, and improves the efficacy of immunotherapy for TNBC.
    Keywords:  CDK inhibitors; immune checkpoint blockers; immune microenvironment; triple-negative breast cancer (TNBC)
    DOI:  https://doi.org/10.1002/cncr.35270
  8. J Phys Chem B. 2024 Mar 12.
      An established method for the quantitation of the helix content in peptides using circular dichroism (CD) relies on the linear spectroscopic model. This model assumes an average value of the helix-length correction for all peptide conformers, irrespective of the length of the helical segment. Here we assess the validity of this approximation and introduce a more physically realistic ensemble-based analysis of the CD signal in which the length correction is assigned specifically to each ensemble conformer. We demonstrate that the linear model underestimates peptide helicity, with the difference depending on the ensemble composition. We developed a computer program that implements the ensemble model to estimate the peptide helicity. Using this model and the CD data set covering a broad range of helicities, we recalibrate CD baseline parameters and redetermine helix-coil parameters for the alanine-rich peptide. We show that the ensemble model leverages small differences in signal between conformers to extract more information from the experimental data, enabling the determination of several poorly defined quantities, such as the nucleation constant and heat capacity change associated with helix folding. Overall, the presented ensemble-based treatment of the CD signal, together with the recalibrated values of the spectroscopic baseline parameters, provides a coherent framework for the analysis of the peptide helix content.
    DOI:  https://doi.org/10.1021/acs.jpcb.3c07511
  9. Front Microbiol. 2024 ;15 1362252
       Introduction: Leishmaniasis comprises a complex group of diseases caused by protozoan parasites from the Leishmania genus, presenting a significant threat to human health. Infection starts by the release into the skin of metacyclic promastigote (MP) form of the parasite by an infected sand fly. Soon after their release, the MPs enter a phagocytic host cell. This study focuses on finding peptides that can inhibit MP-phagocytic host cell interaction.
    Methods: We used a phage display library to screen for peptides that bind to the surface of L. amazonensis (causative agent for cutaneous leishmaniasis) and L. infantum (causative agent for cutaneous and visceral leishmaniasis) MPs. Candidate peptide binding to the MP surface and inhibition of parasite-host cell interaction were tested in vitro. Peptide Inhibition of visceral leishmaniasis development was assessed in BALB/c mice.
    Results: The selected L. amazonensis binding peptide (La1) and the L. infantum binding peptide (Li1) inhibited 44% of parasite internalization into THP-1 macrophage-like cells in vitro. While inhibition of internalization by La1 was specific to L. amazonensis, Li1 was effective in inhibiting internalization of both parasite species. Importantly, Li1 inhibited L. infantum spleen and liver infection of BALB/c mice by 84%.
    Conclusion: We identified one peptide that specifically inhibits L. amazonensis MP infection of host cells and another that inhibits both, L. amazonensis and L. infantum, MP infection. Our findings suggest a promising path for the development of new treatments and prevention of leishmaniasis.
    Keywords:  Leishmania-macrophage interaction; ligand-receptor interaction; metacyclic promastigote; phage display 12-mer peptide library; visceral leishmaniasis
    DOI:  https://doi.org/10.3389/fmicb.2024.1362252