Mol Genet Metab. 2025 Apr 18. pii: S1096-7192(25)00104-0. [Epub ahead of print]145(2): 109113
BOLA3 is one of the proteins involved in the assembly and transport of [4Fe-4S] clusters, which are incorporated into mitochondrial respiratory chain complexes I and II, aconitase, and lipoic acid synthetase. Pathogenic variants in the BOLA3 gene cause a rare condition known as multiple mitochondrial dysfunctions syndrome 2 with hyperglycinemia, characterized by life-threatening lactic acidosis, nonketotic hyperglycinemia, and hypertrophic cardiomyopathy. The aim of this study was to elucidate the biochemical characteristics of patients with BOLA3 variants and to clarify the role of BOLA3 protein in humans. The characteristics, clinical course, and biochemical data of eight Japanese patients with BOLA3 pathogenic variants were collected. In addition, metabolomic analyses were performed using capillary electrophoresis time-of-flight mass spectrometry, blue native polyacrylamide gel electrophoresis (BN-PAGE)/Western blot analysis of mitochondrial respiratory chain complexes, and in-gel enzyme staining of mitochondrial respiratory chain complexes of fibroblasts from all eight patients. Metabolomic data were compared between the eight patients with BOLA3 variants and three control samples using Welch's t-test. In the metabolomic analysis, levels of lactic acid, pyruvic acid, alanine, tricarboxylic acid (TCA) cycle intermediates (such as α-ketoglutaric acid and succinic acid), branched-chain amino acids, and metabolites of lysine and tryptophan were significantly elevated in the BOLA3 group. Data collected during the patients' lives showed increased lactic acid and glycine levels. In BN-PAGE/Western blot analysis and in-gel enzyme staining, bands for complexes I and II were barely detectable in all eight cases. These results indicate that BOLA3 variants decrease the activity of lipoic acid-dependent proteins (pyruvate dehydrogenase complex, α-ketoglutarate dehydrogenase, 2-oxoadipate dehydrogenase, branched-chain ketoacid dehydrogenase, and the glycine cleavage system), as well as mitochondrial respiratory chain complexes I and II, but do not affect aconitase. Thus, it is believed that BOLA3 is involved in transporting [4Fe-4S] clusters to respiratory chain complexes I and II and lipoic acid synthetase, but does not interfere with aconitase. These findings suggest that while lipoic acid supplementation or vitamin cocktails may provide benefits, the impaired [4Fe-4S] cluster pathway itself should be targeted for treatment to improve the extensive metabolic abnormalities caused by BOLA3 deficiency.
Keywords: BOLA3; Lipoic acid; Mitochondria; TCA cycle