bims-celmim Biomed News
on Cellular and mitochondrial metabolism
Issue of 2025–02–02
nineteen papers selected by
Marc Segarra Mondejar



  1. bioRxiv. 2025 Jan 18. pii: 2025.01.13.632864. [Epub ahead of print]
      Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no targeted treatments currently available. TNBC cells participate in metabolic symbiosis, a process that optimizes tumor growth by balancing metabolic processes between glycolysis and oxidative phosphorylation through increased activity by the enzyme lactate dehydrogenase B (LDHB). Metabolic symbiosis allows oxidative cancer cells to function at a similar rate as glycolytic cancer cells, increasing overall metabolic activity and proliferation. Here, fluorescence lifetime imaging microscopy (FLIM) is used to analyze the metabolism of TNBC cells with inhibition of LDHB using a multiphoton microscope to measure the fluorescent lifetimes of two metabolic coenzymes, NAD(P)H and FAD. LDHB is inhibited via an indole derivative known as AXKO-0046 in varying concentrations. Understanding how TNBC cell metabolism changes due to LDHB inhibition will provide further insight into metabolic symbiosis and potential new TNBC treatment options.
    DOI:  https://doi.org/10.1101/2025.01.13.632864
  2. Nat Rev Mol Cell Biol. 2025 Jan 27.
      Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
    DOI:  https://doi.org/10.1038/s41580-024-00820-1
  3. Cell Death Dis. 2025 Jan 25. 16(1): 40
      Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed. Yet, how this is regulated and whether it is involved in ferroptotic cell death has remained unexplored. Here, we provide evidence that Drp1 is activated upon experimental induction of ferroptosis and promotes cell death execution and mitochondrial fragmentation. Using time-lapse microscopy, we found that ferroptosis induced mitochondrial fragmentation and loss of mitochondrial membrane potential, but not mitochondrial outer membrane permeabilization. Importantly, Drp1 accelerated ferroptotic cell death kinetics. Notably, this function was mediated by the regulation of mitochondrial dynamics, as overexpression of Mitofusin 2 phenocopied the effect of Drp1 deficiency in delaying ferroptosis cell death kinetics. Mechanistically, we found that Drp1 is phosphorylated and activated after induction of ferroptosis and that it translocates to mitochondria. Further activation at mitochondria through the phosphatase PGAM5 promoted ferroptotic cell death. Remarkably, Drp1 depletion delayed mitochondrial and plasma membrane lipid peroxidation. These data provide evidence for a functional role of Drp1 activation and mitochondrial fragmentation in the acceleration of ferroptotic cell death, with important implications for targeting mitochondrial dynamics in diseases associated with ferroptosis.
    DOI:  https://doi.org/10.1038/s41419-024-07312-2
  4. Genes Cells. 2025 Jan;30(1): e13195
      Tumor development often requires cellular adaptation to a unique, high metabolic state; however, the molecular mechanisms that drive such metabolic changes in TFE3-rearranged renal cell carcinoma (TFE3-RCC) remain poorly understood. TFE3-RCC, a rare subtype of RCC, is defined by the formation of chimeric proteins involving the transcription factor TFE3. In this study, we analyzed cell lines and genetically engineered mice, demonstrating that the expression of the chimeric protein PRCC-TFE3 induced a hypoxia-related signature by transcriptionally upregulating HIF1α and HIF2α. The upregulation of HIF1α by PRCC-TFE3 led to increased cellular ATP production by enhancing glycolysis, which also supplied substrates for the TCA cycle while maintaining mitochondrial oxidative phosphorylation. We crossed TFE3-RCC mouse models with Hif1α and/or Hif2α knockout mice and found that Hif1α, rather than Hif2α, is essential for tumor development in vivo. RNA-seq and metabolomic analyses of the kidney tissues from these mice revealed that ketone body production is inversely correlated with tumor development, whereas de novo lipid synthesis is upregulated through the HIF1α/SREBP1-dependent mechanism in TFE3-RCC. Our data suggest that the coordinated metabolic shift via the PRCC-TFE3/HIF1α/SREBP1 axis is a key mechanism by which PRCC-TFE3 enhances cancer cell metabolism, promoting tumor development in TFE3-RCC.
    Keywords:  HIF1α; SREBP1; TFE3–rearranged renal cell carcinoma; glycolysis; ketone body production; lipid synthesis; metabolism
    DOI:  https://doi.org/10.1111/gtc.13195
  5. bioRxiv. 2025 Jan 15. pii: 2025.01.13.632822. [Epub ahead of print]
      The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis. FLIM revealed that both wild-type and POLG mutator macrophages switch to a decreased NAD(P)H τ 1 , and τ m after immune stimulation by Lipopolysaccharides (LPS). Furthermore, a bimodality index of subpopulation analysis identified heterogenous populations of POLG mutator macrophage responses under immune challenge by LPS. Moreover, to quantify the mitochondria variations in POLG mutator macrophages, a customized thresholding image processing pipeline was developed to segment mitochondria regions within each cell from the NADH image, allowing for the feature analysis of mitochondria clusters. Consequently, the wild-type macrophages exhibited a higher percentage of mitochondria-containing pixels and longer lengths of connected mitochondria, as compared with POLG mutated macrophages. Altogether, these results illustrate the potential of optical metabolic imaging for non-invasive detection and quantification of cellular metabolism, metabolic heterogeneity within cell populations, and intra-cellular mitochondria morphology differences in POLG mutator macrophages. Optical metabolic imaging will be valuable for studying POLG-mutation diseases and evaluating efficacy of potential therapies.
    DOI:  https://doi.org/10.1101/2025.01.13.632822
  6. Trends Endocrinol Metab. 2025 Jan 28. pii: S1043-2760(25)00003-7. [Epub ahead of print]
      Mitochondria perform essential metabolic processes that sustain cellular bioenergetics and biosynthesis. In a recent article, Ryu et al. explored how mitochondria coordinate biochemical reactions with opposing redox demands within the same cell. They demonstrate that subcellular mitochondrial heterogeneity enables metabolic compartmentalization to permit concurrent oxidative ATP production and reductive proline biosynthesis.
    Keywords:  metabolic compartmentalization; mitochondria dynamics; mitochondrial ultrastructure; organelle communication; proline metabolism
    DOI:  https://doi.org/10.1016/j.tem.2025.01.003
  7. Sci Rep. 2025 Jan 27. 15(1): 3399
      Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice. It was found that insulin resistance increased both the number and size of lipid droplets in the liver by enhancing the accumulation of free fatty acids, which is accompanied by an increase in contacts with mitochondria. We described the different patterns of tight contacts between small lipid droplets and mitochondria in purified CM and PDM by examining their oxidation states and morphological characteristics. In CM, enhanced fatty acid oxidation resulted in elongated mitochondria that surrounded single small lipid droplets and were responsible for lipid droplet consumption, while in PDM, increased substrates for lipid synthesis promoted lipid droplet expansion with the assistance of the endoplasmic reticulum. These data show the different ways in which mitochondrial contact with lipid droplets could provide new insights for future research on liver lipid metabolism.
    Keywords:  Cytoplasmic mitochondria; Lipid droplets-mitochondria contacts; Lipid metabolism; Nonalcoholic fatty liver disease; Peridroplet mitochondria; Type-2 diabetes mellitus
    DOI:  https://doi.org/10.1038/s41598-025-87871-2
  8. Cell Commun Signal. 2025 Jan 24. 23(1): 45
      Glutamine is the most abundant amino acid in human serum, and it can provide carbon and nitrogen for biosynthesis, which is crucial for proliferating cells. Moreover, it is widely known that glutamine metabolism is reprogrammed in cancer cells. Many cancer cells undergo metabolic reprogramming targeting glutamine, increasing its uptake to meet their rapid proliferation demands. An increasing amount of study is being done on the particular glutamine metabolic pathways in cancer cells.Further investigation into the function of glutamine in immune cells is warranted given the critical role these cells play in the fight against cancer. Immune cells use glutamine for a variety of biological purposes, including the growth, differentiation, and destruction of cancer cells. With the encouraging results of cancer immunotherapy in recent years, more investigation into the impact of glutamine metabolism on immune cell function in the cancer microenvironment could lead to the discovery of new targets and therapeutic approaches.Oral supplementation with glutamine also enhances the immune capabilities of cancer patients, improves the sensitivity to chemotherapy and radiotherapy, and improves prognosis. The unique metabolism of glutamine in cancer cells, its function in various immune cells, the impact of inhibitors of glutamine metabolism, and the therapeutic use of glutamine supplements are all covered in detail in this article.
    Keywords:  Cancer; Glutaminase inhibitors; Glutamine antimetabolites; Glutamine metabolism; Immune cells
    DOI:  https://doi.org/10.1186/s12964-024-02018-6
  9. Nat Commun. 2025 Jan 30. 16(1): 1191
      Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types. Mitochondrial KMT9 regulates PDC activity by monomethylation of its subunit dihydrolipoamide transacetylase (DLAT) at lysine 596. Depletion of KMT9 compromises PDC activity, de novo lipogenesis, and PCa cell proliferation, both in vitro and in a PCa mouse model. Finally, in human patients, levels of mitochondrial KMT9 and DLAT K596me1 correlate with Gleason grade. Together, we present a mechanism of PDC regulation and an example of a histone methyltransferase with nuclear and mitochondrial functions. The dependency of PCa cells on mitochondrial KMT9 allows to develop therapeutic strategies to selectively fight PCa.
    DOI:  https://doi.org/10.1038/s41467-025-56492-8
  10. Nat Commun. 2025 Jan 24. 16(1): 978
      Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown. In this study, we used a genome-wide CRISPR interference screen in erythroleukemia cells and organellar metabolomics to identify the mitochondrial inner membrane protein SLC25A38 as a regulator of mitochondrial pyridoxal 5'-phosphate. Loss of SLC25A38 causes depletion of mitochondrial, but not cellular, pyridoxal 5'-phosphate, and impairs cellular proliferation under both physiological and low vitamin B6 conditions. Metabolic changes associated with SLC25A38 loss suggest impaired mitochondrial pyridoxal 5'-phosphate-dependent enzymatic reactions, including serine to glycine conversion catalyzed by serine hydroxymethyltransferase-2 as well as ornithine aminotransferase. The proliferation defect of SLC25A38-null K562 cells in physiological and low vitamin B6 media can be explained by the loss of serine hydroxymethyltransferase-2-dependent production of one-carbon units and downstream de novo nucleotide synthesis. Our work points to a role for SLC25A38 in mitochondrial pyridoxal 5'-phosphate accumulation and provides insights into the pathology of congenital sideroblastic anemia.
    DOI:  https://doi.org/10.1038/s41467-025-56130-3
  11. Cell Metab. 2025 Jan 24. pii: S1550-4131(24)00489-3. [Epub ahead of print]
      Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo. We used dichloroacetate (DCA) to modulate glycolytic metabolism during expansion, resulting in elevated mitochondrial capacity, stemness, and improved antitumor efficacy in murine T cell receptor (TCR)-Tg and human CAR-T cells. DCA-conditioned T cells surprisingly show no elevated intratumoral effector function but rather have improved engraftment. DCA conditioning decreases reliance on glucose, promoting usage of serum-prevalent physiologic carbon sources. Further, DCA conditioning promotes metabolic flux from mitochondria to chromatin, resulting in increased histone acetylation at key longevity genes. Thus, hyperglycemic culture conditions promote expansion at the expense of metabolic flexibility and suggest pharmacologic metabolic rewiring as a beneficial strategy for improvement of cellular immunotherapies.
    Keywords:  CAR-T; Immunometabolism; T cell; cell therapy; epigenetics; glucose; immunotherapy; longevity; metabolism; mitochondria
    DOI:  https://doi.org/10.1016/j.cmet.2024.12.007
  12. bioRxiv. 2025 Jan 13. pii: 2025.01.08.632009. [Epub ahead of print]
      Myc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state. We identify Myc-dependent hyperactivation of the phosphoribosyl pyrophosphate synthetase (PRPS) enzyme as a primary regulator of redox status in lymphoma cells. Mechanistically, we show that genetic inactivation of the PRPS2 isozyme, but not PRPS1, in Myc-driven lymphoma cells leads to elevated NADPH levels and reductive stress-mediated death. Employing a pharmacological screen, we demonstrate how targeting PRPS1 or PRPS2 elicits opposing sensitivity or resistance, respectively, to chemotherapeutic agents affecting the thioredoxin and glutathione network, thus providing a therapeutic blueprint for treating Myc-driven lymphomas.
    DOI:  https://doi.org/10.1101/2025.01.08.632009
  13. Cell Death Dis. 2025 Jan 28. 16(1): 52
      Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia. It has been demonstrated that hypoxia-induced Seven in absentia Homolog 2 (Siah2) E3-ligase activation influences mitochondrial dynamics promoting the degradation of mitochondrial proteins. Therefore, in the present study, we investigated the role of Siah2 in the IPC-induced neuroprotection in in vitro and in vivo models of IPC. To this aim, cortical neurons were exposed to 30-min oxygen and glucose deprivation (OGD, sublethal insult) followed by 3 h OGD plus reoxygenation (lethal insult). Our results revealed that the mitochondrial depolarization induced by hypoxia activates Siah2 at the mitochondrial level and increases LC3-II protein expression, a marker of mitophagy, an effect counteracted by the reoxygenation phase. By contrast, hypoxia reduced the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a marker of mitochondrial biogenesis, whereas its expression was increased after reoxygenation thus improving mitochondrial membrane potential, mitochondrial calcium content, and mitochondrial morphology, hence leading to neuroprotection in IPC. Furthermore, Siah2 silencing confirmed these results. Collectively, these findings indicate that the balance between mitophagy and mitochondrial biogenesis, due to the activation of the Siah2-E3-ligase, might play a role in IPC-induced neuroprotection.
    DOI:  https://doi.org/10.1038/s41419-025-07339-z
  14. Biochim Biophys Acta Bioenerg. 2025 Jan 27. pii: S0005-2728(25)00008-8. [Epub ahead of print] 149542
      Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression. However, studies on mitochondrial DNA (mtDNA) gene expression remain incomplete. Using a well-established in vitro synchronization protocol, we investigated the time-resolved expression of mtDNA genes coding for respiratory chain complex subunits, revealing a rhythmic profile dependent on BMAL1, the master circadian clock transcription factor. Additionally, the expression of genes coding for key mitochondrial biogenesis transcription factors, PGC1a, NRF1, and TFAM, showed BMAL1-dependent circadian oscillations. Notably, LC3-II, involved in mitophagy, displayed a similar in-phase circadian expression, thereby maintaining stable respiratory chain complex levels. Moreover, we found that simultaneous mitochondrial biogenesis and degradation occur in a coordinated manner with cycles in organelle dynamics, leading to rhythmic changes in mitochondrial fission and fusion. This study provides new insights into circadian clock regulation of mitochondrial turnover, emphasizing the importance of temporal regulation in cellular metabolism. Understanding these mechanisms opens potential therapeutic avenues for targeting mitochondrial dysfunctions and related metabolic disorders.
    Keywords:  Circadian clock genes; Mitochondrial DNA; Mitochondrial biogenesis; Mitochondrial dynamics; Mitophagy
    DOI:  https://doi.org/10.1016/j.bbabio.2025.149542
  15. Nat Commun. 2025 Jan 25. 16(1): 1021
      The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
    DOI:  https://doi.org/10.1038/s41467-025-56346-3
  16. Nat Commun. 2025 Jan 29. 16(1): 1160
      Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis. However, the mechanisms of VDAC1 oligomerization in regulating ferroptosis are not well elucidated. Here, we identify that a VDAC1 binding protein V-Set and Transmembrane Domain Containing 2 Like (VSTM2L), mainly localized to mitochondria, is positively associated with prostate cancer (PCa) progression, and a key regulator of ferroptosis. Moreover, VSTM2L knockdown in PCa cells enhances the sensitivity of RSL3-induced ferroptosis. Mechanistically, VSTM2L forms complex with VDAC1 and hexokinase 2 (HK2), enhancing their binding affinity and preventing VDAC1 oligomerization, thereby inhibiting ferroptosis and maintaining mitochondria homeostasis in vitro and in vivo. Collectively, our findings reveal a pivotal role for mitochondria-localized VSTM2L in driving ferroptosis resistance and highlight its potential as a ferroptosis-inducing therapeutic target for the treatment of PCa.
    DOI:  https://doi.org/10.1038/s41467-025-56494-6
  17. Sci Adv. 2025 Jan 31. 11(5): eads0535
      Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based 13C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism. Unexpectedly, mouse liver and primary hepatocytes consumed ketone bodies to support fatty acid biosynthesis via both de novo lipogenesis (DNL) and polyunsaturated fatty acid (PUFA) elongation. While an acetoacetate intermediate was not absolutely required for ketone bodies to source DNL, PUFA elongation required activation of acetoacetate by cytosolic acetoacetyl-coenzyme A synthetase (AACS). Moreover, AACS deficiency diminished free and esterified PUFAs in hepatocytes, while ketogenic insufficiency depleted PUFAs and increased liver triacylglycerols. These findings suggest that hepatic ketogenesis influences PUFA metabolism, representing a molecular mechanism through which ketone bodies could influence systemic physiology and chronic diseases.
    DOI:  https://doi.org/10.1126/sciadv.ads0535
  18. BMC Bioinformatics. 2025 Jan 28. 26(1): 31
       BACKGROUND: MetaDAG is a web-based tool developed to address challenges posed by big data from omics technologies, particularly in metabolic network reconstruction and analysis. The tool is capable of constructing metabolic networks for specific organisms, sets of organisms, reactions, enzymes, or KEGG Orthology (KO) identifiers. By retrieving data from the KEGG database, MetaDAG helps users visualize and analyze complex metabolic interactions efficiently.
    RESULTS: MetaDAG computes two models: a reaction graph and a metabolic directed acyclic graph (m-DAG). The reaction graph represents reactions as nodes and metabolite flow between them as edges. The m-DAG simplifies the reaction graph by collapsing strongly connected components, significantly reducing the number of nodes while maintaining connectivity. MetaDAG can generate metabolic networks from various inputs, including KEGG organisms or custom data (e.g., reactions, enzymes, KOs). The tool displays these models on an interactive web page and provides downloadable files, including network visualizations. MetaDAG was tested using two datasets. In an eukaryotic analysis, it successfully classified organisms from the KEGG database at the kingdom and phylum levels. In a microbiome study, MetaDAG accurately distinguished between Western and Korean diets and categorized individuals by weight loss outcomes based on dietary interventions.
    CONCLUSION: MetaDAG offers an effective and versatile solution for metabolic network reconstruction from diverse data sources, enabling large-scale biological comparisons. Its ability to generate synthetic metabolisms and its broad application, from taxonomy classification to diet analysis, make it a valuable tool for biological research. MetaDAG is available online, with user support provided via a comprehensive guide. MetaDAG: https://bioinfo.uib.es/metadag/ User guide: https://biocom-uib.github.io/MetaDag/.
    Keywords:  Analysis of metabolic networks; Comparison of metabolic networks; Metabolic networks construction
    DOI:  https://doi.org/10.1186/s12859-025-06048-w
  19. J Cell Biol. 2025 Mar 03. pii: e202311082. [Epub ahead of print]224(3):
      Mitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood. We found that mtDNA-depleted IMR90 cells can sustain OXPHOS for a significant amount of time, providing a robust model system to interrogate human intergenomic signaling. We identified FAM43A, a largely uncharacterized protein, as a CHK2-dependent early responder to mtDNA depletion. Depletion of FAM43A activates a mitochondrial biogenesis program, resulting in an increase in mitochondrial mass and mtDNA copy number via CHK2-mediated upregulation of the p53R2 form of ribonucleotide reductase. We propose that FAM43A performs a checkpoint-like function to limit mitochondrial biogenesis and turnover under conditions of mtDNA depletion or replication stress.
    DOI:  https://doi.org/10.1083/jcb.202311082