Proc Natl Acad Sci U S A. 2024 Oct 08. 121(41): e2403033121
Mammalian cell culture processes are widely utilized for biotherapeutics production, disease diagnostics, and biosensors, and hence, should be optimized to support robust cell growth and viability. However, toxic by-products accumulate in cultures due to inefficiencies in metabolic activities and nutrient utilization. In this study, we applied comprehensive 13C stable-isotope tracing of amino acids and glucose to two Immunoglobulin G (IgG) producing Chinese Hamster Ovary (CHO) cell lines to identify secreted by-products and trace their origins. CHO cells were cultured in media formulations missing a single amino acid or glucose supplemented with a 13C-tracer of the missing substrate, followed by gas chromatography-mass spectrometry (GC-MS) analysis to track labeled carbon flows and identify by-products. We tracked the sources of all secreted by-products and verified the identity of 45 by-products, majority of which were derived from glucose, leucine, isoleucine, valine, tyrosine, tryptophan, methionine, and phenylalanine. In addition to by-products identified previously, we identified several metabolites including 2-hydroxyisovaleric acid, 2-aminobutyric acid, L-alloisoleucine, ketoisoleucine, 2-hydroxy-3-methylvaleric acid, desmeninol, and 2-aminobutyric acid. When added to CHO cell cultures at different concentrations, certain metabolites inhibited cell growth while others including 2-hydroxy acids, surprisingly, reduced lactate accumulation. In vitro enzymatic analysis indicated that 2-hydroxy acids were metabolized by lactate dehydrogenase suggesting a possible mechanism for lowered lactate accumulation, e.g., competitive substrate inhibition. The 13C-labeling assisted metabolomics pipeline developed and the metabolites identified will serve as a springboard to reduce undesirable by-products accumulation and alleviate inefficient substrate utilization in mammalian cultures used for biomanufacturing and other applications through altered media formulations and pathway engineering strategies.
Keywords: amino acid catabolism; mammalian cell culture; mass spectrometry; metabolic by-products; stable isotope labeling