bims-celmim Biomed News
on Cellular and mitochondrial metabolism
Issue of 2024–04–14
27 papers selected by
Marc Segarra Mondejar, University of Cologne



  1. bioRxiv. 2024 Mar 27. pii: 2024.03.26.582525. [Epub ahead of print]
      The bioenergetic demand of photoreceptors rivals that of cancer cells, and numerous metabolic similarities exist between these cells. Glutamine (Gln) anaplerosis via the tricarboxylic acid (TCA) cycle provides biosynthetic intermediates and is a hallmark of cancer metabolism. In this process, Gln is first converted to glutamate via glutaminase (GLS), which is a crucial pathway in many cancer cells. To date, no study has been undertaken to examine the role of Gln metabolism in vivo in photoreceptors. Here, mice lacking GLS in rod photoreceptors were generated. Animals lacking GLS experienced rapid photoreceptor degeneration with concomitant functional loss. Gln has multiple roles in metabolism including redox balance, biosynthesis of nucleotides and amino acids, and supplementing the TCA cycle. Few alterations were noted in redox balance. Unlabeled targeted metabolomics demonstrated few changes in glycolytic and TCA cycle intermediates, which corresponded with a lack of significant changes in mitochondrial function. GLS deficiency in rod photoreceptors did decrease the fractional labelling of TCA cycle intermediates when provided uniformly labeled 13 C-Gln in vivo . However, supplementation with alpha-ketoglutarate provided only marginal rescue of photoreceptor degeneration. Nonessential amino acids, glutamate and aspartate, were decreased in the retina of mice lacking GLS in rod photoreceptors. In accordance with this amino acid deprivation, the integrated stress response (ISR) was found to be activated with decreased global protein synthesis. Importantly, supplementation with asparagine delayed photoreceptor degeneration to a greater degree than alpha-ketoglutarate. These data show that GLS-mediated Gln catabolism is essential for rod photoreceptor amino acid biosynthesis, function, and survival.
    Significance Statement: Glucose has been central in the study of photoreceptor cell metabolism. Recently, it was shown that fuel sources besides glucose can meet the metabolic needs of photoreceptors. Glutamine (Gln) is the most abundant circulating amino acid and has many biosynthetic and bioenergetic roles in cells. Glutaminolysis is the process by which Gln is metabolized into tricarboxylic acid cycle intermediates to provide biosynthetic precursors. Here, Gln is first converted to glutamate via the enzyme glutaminase (GLS). This research demonstrates that deletion of GLS in rod photoreceptors alters retinal metabolism, activates the integrated stress response (ISR), and results in rapid photoreceptor degeneration. As such, Gln is a critical fuel source that supports photoreceptor cell biomass, redox balance, and survival.
    DOI:  https://doi.org/10.1101/2024.03.26.582525
  2. Mitochondrion. 2024 Apr 08. pii: S1567-7249(24)00036-9. [Epub ahead of print]76 101878
      Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.
    Keywords:  Endothelium; Gliflozins; Proximal tubule; SGLT2; Sodium; Swelling
    DOI:  https://doi.org/10.1016/j.mito.2024.101878
  3. Glia. 2024 Apr 08.
      Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.
    Keywords:  2′,3′‐cyclic nucleotide phosphodiesterase (CNP); glycolysis; lactate, lactate dehydrogenase (LDH, LDHA, LDHB); metabolic support; myelin; oligodendrocyte; optic nerve; white matter
    DOI:  https://doi.org/10.1002/glia.24533
  4. Cell Rep. 2024 Apr 11. pii: S2211-1247(24)00431-5. [Epub ahead of print]43(4): 114103
      Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.
    Keywords:  CP: Cancer; CP: Metabolism; HIF1α; NADH; glycolysis; hypoxia; mitochondria; oxygen; renal cell carcinoma; tumor
    DOI:  https://doi.org/10.1016/j.celrep.2024.114103
  5. bioRxiv. 2024 Mar 27. pii: 2024.03.24.584499. [Epub ahead of print]
      Targeting cancer cell mitochondria holds great therapeutic promise, yet current strategies to specifically and effectively destroy cancer mitochondria in vivo are limited. Here, we introduce mLumiOpto, an innovative mitochondrial-targeted luminoptogenetics gene therapy designed to directly disrupt the inner mitochondrial membrane (IMM) potential and induce cancer cell death. We synthesize a blue light-gated channelrhodopsin (CoChR) in the IMM and co-express a blue bioluminescence-emitting Nanoluciferase (NLuc) in the cytosol of the same cells. The mLumiOpto genes are selectively delivered to cancer cells in vivo by using adeno-associated virus (AAV) carrying a cancer-specific promoter or cancer-targeted monoclonal antibody-tagged exosome-associated AAV. Induction with NLuc luciferin elicits robust endogenous bioluminescence, which activates mitochondrial CoChR, triggering cancer cell IMM permeability disruption, mitochondrial damage, and subsequent cell death. Importantly, mLumiOpto demonstrates remarkable efficacy in reducing tumor burden and killing tumor cells in glioblastoma or triple-negative breast cancer xenografted mouse models. These findings establish mLumiOpto as a novel and promising therapeutic strategy by targeting cancer cell mitochondria in vivo .
    DOI:  https://doi.org/10.1101/2024.03.24.584499
  6. Front Immunol. 2024 ;15 1375453
      The overconsumption of dietary fructose has been proposed as a major culprit for the rise of many metabolic diseases in recent years, yet the relationship between a high fructose diet and neurological dysfunction remains to be explored. Although fructose metabolism mainly takes place in the liver and intestine, recent studies have shown that a hyperglycemic condition could induce fructose metabolism in the brain. Notably, microglia, which are tissue-resident macrophages (Mφs) that confer innate immunity in the brain, also express fructose transporters (GLUT5) and are capable of utilizing fructose as a carbon fuel. Together, these studies suggest the possibility that a high fructose diet can regulate the activation and inflammatory response of microglia by metabolic reprogramming, thereby altering the susceptibility of developing neurological dysfunction. In this review, the recent advances in the understanding of microglia metabolism and how it supports its functions will be summarized. The results from both in vivo and in vitro studies that have investigated the mechanistic link between fructose-induced metabolic reprogramming of microglia and its function will then be reviewed. Finally, areas of controversies and their associated implications, as well as directions that warrant future research will be highlighted.
    Keywords:  GLUT5; fructose metabolism; glycolytic reprogramming; immunometabolism; inflammation; macrophages; microglia; neurological dysfunction
    DOI:  https://doi.org/10.3389/fimmu.2024.1375453
  7. Autophagy. 2024 Apr 10.
      Mutations in the PINK1 kinase cause Parkinson disease (PD) through physiological processes that are not yet fully elucidated. PINK1 kinase accumulates selectively on damaged mitochondria, where it recruits the E3 ubiquitin ligase PRKN/Parkin to mediate mitophagy. Upon mitochondrial import failure, PINK1 accumulates in association with the translocase of outer mitochondrial membrane (TOMM). However, the molecular basis of this PINK1 accumulation on the TOMM complex remain elusive. We recently demonstrated that TIMM23 (translocase of the inner mitochondrial membrane 23) is a component of the PINK1-supercomplex formed in response to mitochondrial stress. We also uncovered that PINK1 is required for the formation of this supercomplex and highlighted the biochemical regulation and significance of this supercomplex; expanding our understanding of mitochondrial quality control and PD pathogenesis.
    Keywords:  Mitochondrial import; PINK1; Parkinson’s disease; mitochondrial quality control; mitophagy
    DOI:  https://doi.org/10.1080/15548627.2024.2340399
  8. Methods Mol Biol. 2024 Apr 13.
      Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer characterized by its aggressive nature and high mortality rate, primarily due to late-stage diagnosis and metastatic spread. Recent studies underscore the pivotal role of mitophagy, a selective form of autophagy targeting damaged or superfluous mitochondria, in cancer biology, including NSCLC. Mitophagy regulation may influence cancer cell survival, proliferation, and metastasis by modulating mitochondrial quality and cellular energy homeostasis. Herein, we present a comprehensive methodology developed in our laboratory for the evaluation of mitophagy in NSCLC tumor cells. Utilizing a combination of immunoblotting, immunocytochemistry, and fluorescent microscopy, we detail the steps to quantify early and late mitophagy markers and mitochondrial dynamics. Our findings highlight the potential of targeting mitophagy pathways as a novel therapeutic strategy in NSCLC, offering insights into the complex interplay between mitochondrial dysfunction and tumor progression. This study not only sheds light on the significance of mitophagy in NSCLC but also establishes a foundational approach for its investigation, paving way for future research in this critical area of cancer biology.
    Keywords:  Autophagy; Cellular homeostasis; Mitochondrial dynamics; Mitophagy; Non-small cell adenocarcinoma
    DOI:  https://doi.org/10.1007/7651_2024_532
  9. bioRxiv. 2024 Mar 28. pii: 2024.03.26.586649. [Epub ahead of print]
      Alveolar epithelial type II (AT2) cell dysfunction is implicated in the pathogenesis of familial and sporadic idiopathic pulmonary fibrosis (IPF). We previously described that expression of an AT2 cell exclusive disease-associated protein isoform (SP-CI73T) in murine and patient-specific induced pluripotent stem cell (iPSC)-derived AT2 cells leads to a block in late macroautophagy and promotes time-dependent mitochondrial impairments; however, how a metabolically dysfunctional AT2 cell results in fibrosis remains elusive. Here using murine and human iPSC-derived AT2 cell models expressing SP-CI73T, we characterize the molecular mechanisms governing alterations in AT2 cell metabolism that lead to increased glycolysis, decreased mitochondrial biogenesis, disrupted fatty acid oxidation, accumulation of impaired mitochondria, and diminished AT2 cell progenitor capacity manifesting as reduced AT2 self-renewal and accumulation of transitional epithelial cells. We identify deficient AMP-kinase signaling as a key upstream signaling hub driving disease in these dysfunctional AT2 cells and augment this pathway to restore alveolar epithelial metabolic function, thus successfully alleviating lung fibrosis in vivo.
    DOI:  https://doi.org/10.1101/2024.03.26.586649
  10. bioRxiv. 2024 Mar 27. pii: 2024.03.23.586426. [Epub ahead of print]
      Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo . Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.
    DOI:  https://doi.org/10.1101/2024.03.23.586426
  11. Cell Rep. 2024 Apr 06. pii: S2211-1247(24)00395-4. [Epub ahead of print]43(4): 114067
      Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.
    Keywords:  ATP synthase; CP: Cell biology; CP: Metabolism; Leigh syndrome; PGN; ROS; antibiotic-induced microbiome depletion; electron transfer chain; energy metabolism; intestinal epithelial cells; intestinal homeostasis; mitochondrial diseases; oxidative phosphorylation; oxidative stress; peptidoglycan
    DOI:  https://doi.org/10.1016/j.celrep.2024.114067
  12. Cells. 2024 Apr 07. pii: 647. [Epub ahead of print]13(7):
      Miro GTPases are key components in the machinery responsible for transporting mitochondria and peroxisomes along microtubules, and also play important roles in regulating calcium homeostasis and organizing contact sites between mitochondria and the endoplasmic reticulum. Moreover, Miro GTPases have been shown to interact with proteins that actively regulate cytoskeletal organization and dynamics, suggesting that these GTPases participate in organizing cytoskeletal functions and organelle transport. Derailed mitochondrial transport is associated with neuropathological conditions such as Parkinson's and Alzheimer's diseases. This review explores our recent understanding of the diverse roles of Miro GTPases under cytoskeletal control, both under normal conditions and during the course of human diseases such as neuropathological disorders.
    Keywords:  Miro GTPases; Parkinson’s disease; microtubules; mitochondrial dynamics; neuropathology
    DOI:  https://doi.org/10.3390/cells13070647
  13. Commun Biol. 2024 Apr 09. 7(1): 428
      NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.
    DOI:  https://doi.org/10.1038/s42003-024-06123-7
  14. Cancer Discov. 2024 Mar 29. OF1-OF19
      Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis.
    SIGNIFICANCE: Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.
    DOI:  https://doi.org/10.1158/2159-8290.CD-24-0174
  15. Sci Rep. 2024 04 06. 14(1): 8094
      The mammalian target of rapamycin (mTOR), and specifically the mTOR complex 1 (mTORC1) is the central regulator of anabolism in skeletal muscle. Among the many functions of this kinase complex is the inhibition of the catabolic process of autophagy; however, less work has been done in investigating the role of autophagy in regulating mTORC1 signaling. Using an in vitro model to better understand the pathways involved, we activated mTORC1 by several different means (growth factors, leucine supplementation, or muscle contraction), alone or with the autophagy inhibitor NSC185058. We found that inhibiting autophagy with NSC185058 suppresses mTORC1 activity, preventing any increase in cellular protein anabolism. These decrements were the direct result of action on the mTORC1 kinase, which we demonstrate, for the first time, cannot function when autophagy is inhibited by NSC185058. Our results indicate that, far from being a matter of unidirectional action, the relationship between mTORC1 and the autophagic cascade is more nuanced, with autophagy serving as an mTORC1 input, and mTORC1 inhibition of autophagy as a form of homeostatic feedback to regulate anabolic signaling. Future studies of cellular metabolism will have to consider this fundamental intertwining of protein anabolism and catabolism, and how it ultimately serves to regulate muscle proteostasis.
    DOI:  https://doi.org/10.1038/s41598-024-58716-1
  16. Dev Cell. 2024 Apr 06. pii: S1534-5807(24)00195-3. [Epub ahead of print]
      Endoplasmic reticulum exit sites (ERESs) are tubular outgrowths of endoplasmic reticulum that serve as the earliest station for protein sorting and export into the secretory pathway. How these structures respond to different cellular conditions remains unclear. Here, we report that ERESs undergo lysosome-dependent microautophagy when Ca2+ is released by lysosomes in response to nutrient stressors such as mTOR inhibition or amino acid starvation in mammalian cells. Targeting and uptake of ERESs into lysosomes were observed by super-resolution live-cell imaging and focus ion beam scanning electron microscopy (FIB-SEM). The mechanism was ESCRT dependent and required ubiquitinated SEC31, ALG2, and ALIX, with a knockout of ALG2 or function-blocking mutations of ALIX preventing engulfment of ERESs by lysosomes. In vitro, reconstitution of the pathway was possible using lysosomal lipid-mimicking giant unilamellar vesicles and purified recombinant components. Together, these findings demonstrate a pathway of lysosome-dependent ERES microautophagy mediated by COPII, ALG2, and ESCRTS induced by nutrient stress.
    Keywords:  ALG2; COPII; ER exit sites; ESCRTs; FIB-SEM; autophagy; cellular stress; lysosome; mTOR
    DOI:  https://doi.org/10.1016/j.devcel.2024.03.027
  17. FEBS Lett. 2024 Apr 11.
      Lipid droplets (LDs) are intracellular organelles with a hydrophobic core formed by neutral lipids surrounded by a phospholipid monolayer harboring a variety of regulatory and enzymatically active proteins. Over the last few decades, our understanding of LD biology has evolved significantly. Nowadays, LDs are appreciated not just as passive energy storage units, but rather as active players in the regulation of lipid metabolism and quality control machineries. To fulfill their functions in controlling cellular metabolic states, LDs need to be highly dynamic and responsive organelles. A large body of evidence supports a dynamic nature of the LD proteome and its contact sites with other organelles. However, much less is known about the lipidome of LDs. Numerous examples clearly indicate the intrinsic link between LD lipids and proteins, calling for a deeper characterization of the LD lipidome in various physiological and pathological settings. Here, we reviewed the current state of knowledge in the field of the LD lipidome, providing a brief overview of the lipid classes and their molecular species present within the neutral core and phospholipid monolayer.
    Keywords:  lipid droplets; lipid molecular species; lipidome; neutral core; phospholipid monolayer
    DOI:  https://doi.org/10.1002/1873-3468.14874
  18. Cancer Lett. 2024 Apr 04. pii: S0304-3835(24)00255-6. [Epub ahead of print] 216862
      Glioblastoma, previously known as glioblastoma multiform (GBM), is a type of glioma with a high degree of malignancy and rapid growth rate. It is highly dependent on glutamine (Gln) metabolism during proliferation and lags in neoangiogenesis, leading to extensive Gln depletion in the core region of GBM. Gln-derived glutamate is used to synthesize the antioxidant Glutathione (GSH). We demonstrated that GSH levels are also reduced in Gln deficiency, leading to increased reactive oxygen species (ROS) levels. The ROS production induces endoplasmic reticulum (ER) stress, and the proteins in the ER are secreted into the extracellular medium. We collected GBM cell supernatants cultured with or without Gln medium; the core and peripheral regions of human GBM tumor tissues. Proteomic analysis was used to screen out the target-secreted protein CypB. We demonstrated that the extracellular CypB expression is associated with Gln deprivation. Then, we verified that GBM can promote the glycolytic pathway by activating HIF-1α to upregulate the expression of GLUT1 and LDHA expressions. Meanwhile, the DRP1 was activated, increasing mitochondrial fission, thus inhibiting mitochondrial function. To explore the specific mechanism of its regulation, we constructed a si-CD147 knockout model and added human recombinant CypB protein to verify that extracellular CypB influenced the expression of downstream p-AKT through its cell membrane receptor CD147 binding. Moreover, we confirmed that p-AKT could upregulate HIF-1α and DRP1. Finally, we observed that extracellular CypB can bind to the CD147 receptor, activate p-AKT, and upregulate HIF-1α and DRP1 in order to promote glycolysis while inhibiting mitochondrial function to adapt to the Gln-deprived microenvironment.
    Keywords:  CypB; Glioblastoma; Glutamine deprivation; Warburg effect
    DOI:  https://doi.org/10.1016/j.canlet.2024.216862
  19. Mol Oncol. 2024 Apr 08.
      Ferroptosis is a newly identified iron-dependent type of regulated cell death that can also be regarded as death caused by the specific collapse of the lipid antioxidant defence machinery. Ferroptosis has gained increasing attention as a potential therapeutic strategy for therapy-resistant cancer types. However, many ferroptosis-inducing small molecules do not reach the pharmacokinetic requirements for their effective clinical use yet. Nevertheless, their clinical optimization is under development. In this review, we summarize the current understanding of molecular pathways regulating ferroptosis, how cells protect themselves from the induction of ferroptotic cell death, and how a better understanding of cancer cell metabolism can represent vulnerabilities for ferroptosis-based therapies. Lastly, we discuss the context-dependent effect of ferroptosis on various cell types within the tumor microenvironment and address controversies on how tissue ferroptosis might impact systemic cancer immunity in a paracrine manner.
    Keywords:  cancer biology; cancer metabolism; cell death; ferroptosis; inflammation; iron
    DOI:  https://doi.org/10.1002/1878-0261.13649
  20. Cell Death Discov. 2024 Apr 09. 10(1): 170
      Exosomes are a subtype of extracellular vesicles composed of bioactive molecules, including nucleic acids, proteins, and lipids. Exosomes are generated by the fusion of intracellular multivesicular bodies (MVBs) with the cell membrane and subsequently released into the extracellular space to participate in intercellular communication and diverse biological processes within target cells. As a crucial mediator, exosomes have been implicated in regulating ferroptosis-an iron-dependent programmed cell death characterized by lipid peroxide accumulation induced by reactive oxygen species. The involvement of exosomes in iron, lipid, and amino acid metabolism contributes to their regulatory role in specific mechanisms underlying how exosomes modulate ferroptosis, which remains incompletely understood, and some related studies are still preliminary. Therefore, targeting the regulation of ferroptosis by exosomes holds promise for future clinical treatment strategies across various diseases. This review aims to provide insights into the pathophysiology and mechanisms governing the interaction between exosomes and ferroptosis and their implications in disease development and treatment to serve as a reference for further research.
    DOI:  https://doi.org/10.1038/s41420-024-01938-z
  21. Discov Oncol. 2024 Apr 07. 15(1): 107
      Ferroptosis is a novel form of programmed death, dependent on iron ions and oxidative stress, with a predominant intracellular form of lipid peroxidation. In recent years, ferroptosis has gained more and more interest of people in the treatment mechanism of targeted tumors. mTOR, always overexpressed in the tumor, and controlling cell growth and metabolic activities, has an important role in both autophagy and ferroptosis. Interestingly, the selective types of autophay plays an important role in promoting ferroptosis, which is related to mTOR and some metabolic pathways (especially in iron and amino acids). In this paper, we list the main mechanisms linking ferroptosis with mTOR signaling pathway and further summarize the current compounds targeting ferroptosis in these ways. There are growing experimental evidences that targeting mTOR and ferroptosis may have effective impact in many tumors, and understanding the mechanisms linking mTOR to ferroptosis could provide a potential therapeutic approach for tumor treatment.
    Keywords:  AMPK; Autophagy; Ferroptosis; GPX4; Tumors; mTOR
    DOI:  https://doi.org/10.1007/s12672-024-00954-w
  22. Int J Mol Sci. 2024 Apr 06. pii: 4073. [Epub ahead of print]25(7):
      Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
    Keywords:  calcium signaling; differentiation; neural stem/progenitor cells; proliferation; radial glial cells
    DOI:  https://doi.org/10.3390/ijms25074073
  23. Nat Cell Biol. 2024 Apr 09.
      Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51 knockdown effects on mitochondrial length and DRP1 recruitment. Furthermore, cellular treatment with BSA-bound oleic acid, which causes increased LCACA, promotes mitochondrial fission in an MiD49/51-dependent manner. These results suggest that LCACA is an endogenous ligand for MiDs, inducing mitochondrial fission and providing a potential mechanism for fatty-acid-induced mitochondrial division. Finally, MiD49 or MiD51 oligomers synergize with Mff, but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1 activation.
    DOI:  https://doi.org/10.1038/s41556-024-01400-3
  24. Sci Adv. 2024 Apr 12. 10(15): eadl0372
      Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.
    DOI:  https://doi.org/10.1126/sciadv.adl0372
  25. Nat Cell Biol. 2024 Apr 11.
      Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.
    DOI:  https://doi.org/10.1038/s41556-024-01402-1
  26. Cancer Metab. 2024 Apr 09. 12(1): 11
       BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain.
    METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT.
    RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo.
    CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.
    Keywords:  Diffuse midline glioma; H3K27M; Purine metabolism; Radiation therapy resistance
    DOI:  https://doi.org/10.1186/s40170-024-00341-7
  27. Sci Rep. 2024 Apr 11. 14(1): 8469
      Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.
    DOI:  https://doi.org/10.1038/s41598-024-55650-0