bioRxiv. 2024 Mar 27. pii: 2024.03.26.582525. [Epub ahead of print]
Moloy T Goswami,
Eric Weh,
Shubha Subramanya,
Katherine M Weh,
Hima Bindu Durumutla,
Heather Hager,
Nicholas Miller,
Sraboni Chaudhury,
Anthony Andren,
Peter Sajjakulnukit,
Cagri G Besirli,
Costas A Lyssiotis,
Thomas J Wubben.
The bioenergetic demand of photoreceptors rivals that of cancer cells, and numerous metabolic similarities exist between these cells. Glutamine (Gln) anaplerosis via the tricarboxylic acid (TCA) cycle provides biosynthetic intermediates and is a hallmark of cancer metabolism. In this process, Gln is first converted to glutamate via glutaminase (GLS), which is a crucial pathway in many cancer cells. To date, no study has been undertaken to examine the role of Gln metabolism in vivo in photoreceptors. Here, mice lacking GLS in rod photoreceptors were generated. Animals lacking GLS experienced rapid photoreceptor degeneration with concomitant functional loss. Gln has multiple roles in metabolism including redox balance, biosynthesis of nucleotides and amino acids, and supplementing the TCA cycle. Few alterations were noted in redox balance. Unlabeled targeted metabolomics demonstrated few changes in glycolytic and TCA cycle intermediates, which corresponded with a lack of significant changes in mitochondrial function. GLS deficiency in rod photoreceptors did decrease the fractional labelling of TCA cycle intermediates when provided uniformly labeled 13 C-Gln in vivo . However, supplementation with alpha-ketoglutarate provided only marginal rescue of photoreceptor degeneration. Nonessential amino acids, glutamate and aspartate, were decreased in the retina of mice lacking GLS in rod photoreceptors. In accordance with this amino acid deprivation, the integrated stress response (ISR) was found to be activated with decreased global protein synthesis. Importantly, supplementation with asparagine delayed photoreceptor degeneration to a greater degree than alpha-ketoglutarate. These data show that GLS-mediated Gln catabolism is essential for rod photoreceptor amino acid biosynthesis, function, and survival.Significance Statement: Glucose has been central in the study of photoreceptor cell metabolism. Recently, it was shown that fuel sources besides glucose can meet the metabolic needs of photoreceptors. Glutamine (Gln) is the most abundant circulating amino acid and has many biosynthetic and bioenergetic roles in cells. Glutaminolysis is the process by which Gln is metabolized into tricarboxylic acid cycle intermediates to provide biosynthetic precursors. Here, Gln is first converted to glutamate via the enzyme glutaminase (GLS). This research demonstrates that deletion of GLS in rod photoreceptors alters retinal metabolism, activates the integrated stress response (ISR), and results in rapid photoreceptor degeneration. As such, Gln is a critical fuel source that supports photoreceptor cell biomass, redox balance, and survival.