bims-celmim Biomed News
on Cellular and mitochondrial metabolism
Issue of 2023‒12‒31
thirteen papers selected by
Marc Segarra Mondejar, University of Cologne



  1. Front Mol Biosci. 2023 ;10 1336416
      Ca2+ ions serve as pleiotropic second messengers in the cell, regulating several cellular processes. Mitochondria play a fundamental role in Ca2+ homeostasis since mitochondrial Ca2+ (mitCa2+) is a key regulator of oxidative metabolism and cell death. MitCa2+ uptake is mediated by the mitochondrial Ca2+ uniporter complex (MCUc) localized in the inner mitochondrial membrane (IMM). MitCa2+ uptake stimulates the activity of three key enzymes of the Krebs cycle, thereby modulating ATP production and promoting oxidative metabolism. As Paracelsus stated, "Dosis sola facit venenum,"in pathological conditions, mitCa2+ overload triggers the opening of the mitochondrial permeability transition pore (mPTP), enabling the release of apoptotic factors and ultimately leading to cell death. Excessive mitCa2+ accumulation is also associated with a pathological increase of reactive oxygen species (ROS). In this article, we review the precise regulation and the effectors of mitCa2+ in physiopathological processes.
    Keywords:  calcium; cell death; metabolism; mitochondria; mitochondrial calcium uniporter (MCU)
    DOI:  https://doi.org/10.3389/fmolb.2023.1336416
  2. Mol Nutr Food Res. 2023 Dec 27. e2300577
      SCOPE: Branched chain amino acids (BCAAs) are essential amino acids and important nutrient signals for energy and protein supplementation. The study uses muscle-specific branched-chain α-keto acid dehydrogenase kinase (Bckdk) conditional knockout (cKO) mice to reveal the contribution of BCAA metabolic dysfunction to muscle wasting.METHOD AND RESULTS: Muscle-specific Bckdk-cKO mice are generated through crossbreeding of Bckdkf/f mice with Myf5Cre mice. Lewis lung cancer (LLC) tumor transplantation is used to establish the cancer cachexia model. The occurrence of cancer cachexia is accelerated in the muscle-specific Bckdk-cKO mice after bearing LLC tumor. Wasting skeletal muscle is characterized by increased protein ubiquitination degradation and impaired protein synthesis. The wasting muscle gastrocnemius is mechanized as a distinct BCAA metabolic dysfunction. Based on the atrophy phenotype resulting from BCAA metabolism dysfunction, the optimized BCAA supplementation improves the survival of cancer cachexia in muscle-specific Bckdk-cKO mice bearing LLC tumors, and improves the occurrence of cancer cachexia. The mechanism of BCAA supplementation on muscle mass preservation is based on the promotion of protein synthesis and the inhibition of protein ubiquitination degradation.
    CONCLUSIONS: Dysfunctional BCAA metabolism contributes to the inhibition of protein synthesis and increases protein degradation in the cancer cachexia model of muscle-specific Bckdk-cKO mice bearing LLC tumors. The reprogramming of BCAA catabolism exerts therapeutic effects by stimulating protein synthesis and inhibiting protein degradation in skeletal muscle.
    Keywords:  Bckdk; branch chain amino acid; cancer cachexia; metabolism; skeletal muscle
    DOI:  https://doi.org/10.1002/mnfr.202300577
  3. Mol Cell Proteomics. 2023 Dec 26. pii: S1535-9476(23)00220-7. [Epub ahead of print] 100709
      Understanding the molecular functions of less-studied proteins is an important task of life science research. Despite reports of BZW2 (Basic leucine zipper and W2 domain-containing protein 2) promoting cancer progression first emerging in 2017, little is known about its molecular function. Using a quantitative proteomic approach to identify its interacting proteins, we found that BZW2 interacts with both endoplasmic reticulum (ER) and mitochondrial proteins. We thus hypothesized that BZW2 localizes to and promotes the formation of ER-mitochondrial contact sites, and that such localization would promote calcium transport from ER to the mitochondria and promote ATP production. Indeed, we found that BZW2 localized to ER-mitochondria contact sites and that BZW2 knockdown decreased ER-mitochondrial contact, mitochondrial calcium levels, and ATP production. These findings provide key insights into molecular functions of BZW2, the potential role of BZW2 in cancer progression, and highlight the utility of interactome data in understanding the function of less-studied proteins.
    DOI:  https://doi.org/10.1016/j.mcpro.2023.100709
  4. Biochem Biophys Res Commun. 2023 Dec 20. pii: S0006-291X(23)01510-3. [Epub ahead of print]694 149416
      The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.
    Keywords:  Cori cycle; Hepatocytes; L6 cells; Lactate metabolism; Live cell imaging
    DOI:  https://doi.org/10.1016/j.bbrc.2023.149416
  5. J Biol Chem. 2023 Dec;pii: S0021-9258(23)02435-3. [Epub ahead of print]299(12): 105407
      Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.
    Keywords:  BAY 2402234; aldolase; anaerobic glycolysis; cell cycle; cyclin D1; glyceraldehyde-3-phosphate dehydrogenase (GAPDH); liver regeneration; palbociclib; pentose phosphate pathway (PPP); purine; pyrimidine
    DOI:  https://doi.org/10.1016/j.jbc.2023.105407
  6. iScience. 2023 Dec 15. 26(12): 108566
      In pancreatic ductal adenocarcinomas (PDAC), the KRASG12D-NRF2 axis controls cellular functions such as redox homeostasis and metabolism. Disruption of this axis through suppression of NRF2 leads to profound reprogramming of metabolism. Unbiased transcriptome and metabolome analyses showed that PDAC cells with disrupted KRASG12D-NRF2 signaling (NRF2-/- cells) shift from aerobic glycolysis to metabolic pathways fed by amino acids. Metabolome, RNA-seq and qRT-PCR analyses revealed a blockade of the urea cycle, making NRF2-/- cells dependent on exogenous arginine for survival. Arginine is channeled into anabolic pathways, including the synthesis of phosphocreatine, which generates an energy buffer essential for cell growth. A similar switch was observed in tumor clones that had survived FOLFIRINOX therapy or blockade of KRAS signaling. Inhibition of the creatine pathway with cyclocreatine reduced both ATP and invasion rate in 3D spheroids from NRF2-deficient PDAC cells. Our study provides basis for the rational development of combination therapies for pancreatic cancer.
    Keywords:  Cancer; Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2023.108566
  7. Med Res Rev. 2023 Dec 26.
      Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
    Keywords:  cancer metabolism; glucose; immunotherapy; metabolic interventions; spatial biology
    DOI:  https://doi.org/10.1002/med.22010
  8. Sci Rep. 2023 12 27. 13(1): 22991
      The present study examined human N-myristoylated proteins that specifically localize to mitochondria among the 1,705 human genes listed in MitoProteome, a mitochondrial protein database. We herein employed a strategy utilizing cellular metabolic labeling with a bioorthogonal myristic acid analog in transfected COS-1 cells established in our previous studies. Four proteins, DMAC1, HCCS, NDUFB7, and PLGRKT, were identified as N-myristoylated proteins that specifically localize to mitochondria. Among these proteins, DMAC1 and NDUFB7 play critical roles in the assembly of complex I of the mitochondrial respiratory chain. DMAC1 functions as an assembly factor, and NDUFB7 is an accessory subunit of complex I. An analysis of the intracellular localization of non-myristoylatable G2A mutants revealed that protein N-myristoylation occurring on NDUFB7 was important for the mitochondrial localization of this protein. Furthermore, an analysis of the role of the CHCH domain in NDUFB7 using Cys to Ser mutants revealed that it was essential for the mitochondrial localization of NDUFB7. Therefore, the present results showed that NDUFB7, a vital component of human mitochondrial complex I, was N-myristoylated, and protein N-myrisotylation and the CHCH domain were both indispensable for the specific targeting and localization of NDUFB7 to mitochondria.
    DOI:  https://doi.org/10.1038/s41598-023-50390-z
  9. J Med Chem. 2023 Dec 26.
      Subcellular organelle mitochondria are becoming a key player and a driver of cancer. Mitochondrial targeting phototheranostics has attracted increasing attention for precise cancer therapy. However, those phototheranostic systems still face great challenges, including complex and multiple components, light scattering, and insufficient therapeutic efficacy. Herein, a molecular fluorophore IR-TPP-1100 was tactfully designed by molecular engineering for mitochondria-targeted fluorescence imaging-guided phototherapy in the second near-infrared window (NIR-II). IR-TPP-1100 not only exhibited prominent photophysical properties and high photothermal conversion efficiency but also achieved excellent mitochondria-targeting ability. The mitochondria-targeting IR-TPP-1100 enabled NIR-II fluorescence and photoacoustic dual-modality imaging of mitochondria at the organism level. Moreover, it integrated photothermal and photodynamic therapy, obtaining remarkable tumor therapeutic efficacy by inducing mitochondrial apoptosis. These results indicate that IR-TPP-1100 has great potential for precise cancer therapy and provides a promising strategy for developing mitochondria-targeting NIR-II phototheranostic agents.
    DOI:  https://doi.org/10.1021/acs.jmedchem.3c01677
  10. Int J Biochem Cell Biol. 2023 Dec;pii: S1357-2725(23)00130-9. [Epub ahead of print]165 106491
      Cancer cells prefer to utilizing aerobic glycolysis to generate energy and anabolic metabolic intermediates for cell growth. However, whether the activities of glycolytic enzymes can be regulated by specific posttranslational modifications, such as SUMOylation, in response to oncogenic signallings, thereby promoting the Warburg effect, remain largely unclear. Here, we demonstrate that phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key glycolytic enzyme, interacts with SUMO-conjugating enzyme UBC9 and is SUMOylated at K302 in glioblastoma cells. Expression of UBC9, which competitively prevents the binding of ubiquitin E3 ligase APC/C to PFKFB3 and subsequent PFKFB3 polyubiquitination, increases PFKFB3 stability and expression. Importantly, EGFR activation increases the interaction between UBC9 and PFKFB3, leading to increased SUMOylation and expression of PFKFB3. This increase is blocked by inhibition of EGFR-induced AKT activation whereas expression of activate AKT by itself was sufficient to recapitulate EGF-induced effect. Knockout of PFKFB3 expression decreases EGF-enhanced lactate production and GBM cell proliferation and this decrease was fully rescued by reconstituted expression of WT PFKFB3 whereas PFKFB3 K302R mutant expression abrogates EGF- and UBC9-regulated lactate production and GBM cell proliferation. These findings reveal a previously unknown mechanism underlying the regulation of the Warburg effect through the EGFR activation-induced and UBC9-mediated SUMOylation and stabilization of PFKFB3.
    Keywords:  Glioma; Glycolysis; PFKFB3; SUMOylation; UBC9
    DOI:  https://doi.org/10.1016/j.biocel.2023.106491
  11. Elife. 2023 Dec 27. pii: RP87340. [Epub ahead of print]12
      Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Previously we showed that deficiency of coenzyme Q (CoQ) is necessary and sufficient for IR in adipocytes and skeletal muscle (Fazakerley et al., 2018). Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, CoQ deficiency, mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells result in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (mice, C57BL/6J) (under chow and high-fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.
    Keywords:  biochemistry; cell biology; ceramides; chemical biology; coenzyme Q; human; insulin resistance; mitochondria; mouse; muscle; rat
    DOI:  https://doi.org/10.7554/eLife.87340
  12. Cell Rep. 2023 Dec 22. pii: S2211-1247(23)01624-8. [Epub ahead of print]43(1): 113612
      Malignancy is enabled by pro-growth mutations and adequate energy provision. However, global metabolic activation would be self-terminating if it depleted tumor resources. Cancer cells could avoid this by rationing resources, e.g., dynamically switching between "baseline" and "activated" metabolic states. Using single-cell metabolic phenotyping of pancreatic ductal adenocarcinoma cells, we identify MIA-PaCa-2 as having broad heterogeneity of fermentative metabolism. Sorting by a readout of lactic acid permeability separates cells by fermentative and respiratory rates. Contrasting phenotypes persist for 4 days and are unrelated to cell cycling or glycolytic/respiratory gene expression; however, transcriptomics links metabolically active cells with interleukin-6 receptor (IL-6R)-STAT3 signaling. We verify this by IL-6R/STAT3 knockdowns and sorting by IL-6R status. IL-6R/STAT3 activates fermentation and transcription of its inhibitor, SOCS3, resulting in delayed negative feedback that underpins transitions between metabolic states. Among cells manifesting wide metabolic heterogeneity, dynamic IL-6R/STAT3 signaling may allow cell cohorts to take turns in progressing energy-intense processes without depleting shared resources.
    Keywords:  CP: Cancer; CP: Metabolism; PDAC; SOCS; feedback; fermentation; glycolysis; heterogeneity; homeostasis; interleukin-6; microenvironment; rationing; variation
    DOI:  https://doi.org/10.1016/j.celrep.2023.113612
  13. ACS Appl Bio Mater. 2023 Dec 27.
      Conditionally activated molecule release in live cells would provide spatiotemporal control for the study and intervention of biological processes, e.g., bioactive molecule monitoring and controlled drug release. Mitochondria are the main sites of reactive oxygen species (ROS) production in cells. Here, we report an ROS-triggered molecule release strategy in mitochondria. A molecule IRTO with dual targeting groups was designed by covalently linking IR-780 (a mitochondrial targeted heptamethine cyanine) and 4-aminobutyl-thiazole orange (NH2-TO, a nuclear dye). IRTO diffused into live cells and first accumulated in mitochondria. As the cyanine moiety reacted with mitochondrial ROS directly or with the help of mitochondrial cytochromes, NH2-TO was released, escaped from mitochondria, and finally located in the nucleus. This process could be visualized by fluorescent imaging, i.e., red fluorescence (from the cyanine moiety of IRTO) first located in mitochondria, and green fluorescence (from NH2-TO) appeared and gradually enhanced in the nucleus with the increase of incubation time. The addition of H2O2 or lipopolysaccharide (LPS, an ROS accelerator) could accelerate the release of NH2-TO, whereas N-acetyl-l-cysteine (NAC, an ROS inhibitor) and mitoquinone mesylate (MitoQ, a mitochondrial ROS scavenger) could obviously decrease the release of NH2-TO. These results suggest that IRTO could serve as a fluorescent probe for monitoring ROS in mitochondria and that IR-780 might be a promising endogenous ROS-triggered molecule release platform.
    Keywords:  heptamethine cyanine; mitochondrial ROS; molecular probe; molecule release; thiazole orange
    DOI:  https://doi.org/10.1021/acsabm.3c00955