bims-celmim Biomed News
on Cellular and mitochondrial metabolism
Issue of 2023‒12‒03
33 papers selected by
Marc Segarra Mondejar, University of Cologne

  1. Eur J Clin Invest. 2023 Dec 01. e14138
      Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
    Keywords:  AMPK; NAD; acetyl-CoA; ageing; ageing-related disease; metabolism; mitophagy; spermidine
  2. Methods Mol Biol. 2024 ;2728 137-147
      Physiological processes utilize variable amounts of energy required for optimal growth, development, and survival. This energy is supplied by total intracellular adenosine triphosphate (ATP) and is mainly generated by mitochondrial oxidative phosphorylation and to a lesser extent via glycolysis. Here, we provide a detailed protocol for obtaining measurements of energy metabolism using the Seahorse XFe24 Extracellular Flux Analyzer. Specifically, this assay measures mitochondrial oxidative phosphorylation based on oxygen consumption rate (OCR) and glycolysis by analyzing the extracellular acidification rate (ECAR) via real-time live cell analysis. Using trophoblast cell lines, this protocol focuses on analyzing mitochondrial respiration for both cytotrophoblasts and syncytiotrophoblasts.
    Keywords:  Mitochondria; OCR; Oxidative phosphorylation; Seahorse XF24 Extracellular Flux Analyzer; Trophoblasts
  3. Glia. 2023 Nov 27.
      Proteostasis mechanisms mediated by macroautophagy/autophagy are altered in neurodegenerative diseases such as Alzheimer disease (AD) and their recovery/enhancement has been proposed as a therapeutic approach. From the two central nodes in the anabolism-catabolism balance, it is generally accepted that mechanistic target of rapamycin kinase complex 1 (MTORC1)_ activation leads to the inhibition of autophagy, whereas adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) has the opposite role. In AD, amyloid beta (Aβ) production disturbs the optimal neuronal/glial proteostasis. As astrocytes are essential for brain homeostasis, the purpose of this work was to analyze if the upregulation of autophagy in this cell type, either by MTORC1 inhibition or AMPK activation, could modulate the generation/degradation of β-amyloid. By using primary astrocytes from amyloid beta precursor protein (APP)/Presenilin 1 (PSEN1) mouse model of AD, we confirmed that MTORC1 inhibition reduced Aβ secretion through moderate autophagy induction. Surprisingly, pharmacologically increased activity of AMPK did not enhance autophagy but had different effects on Aβ secretion. Conversely, AMPK inhibition did not affect autophagy but reduced Aβ secretion. These puzzling data were confirmed through the overexpression of different mutant AMPK isoforms: while only the constitutively active AMPK increased autophagy, all versions augmented Aβ secretion. We conclude that AMPK has a significantly different role in primary astrocytes than in other reported cells, similar to our previous findings in neurons. Our data support that perhaps only a basal AMPK activity is needed to maintain autophagy whereas the increased activity, either physiologically or pharmacologically, has no direct effect on autophagy-dependent amyloidosis. These results shed light on the controversy about the therapeutic effect of AMPK activation on autophagy induction.
    Keywords:  AICAR; Alzheimer; amyloid accumulation; autophagy; cultured astrocytes; metformin; rapamycin
  4. Nat Immunol. 2023 Dec;24(12): 2008-2020
      Our increased understanding of how key metabolic pathways are activated and regulated in malignant cells has identified metabolic vulnerabilities of cancers. Translating this insight to the clinics, however, has proved challenging. Roadblocks limiting efficacy of drugs targeting cancer metabolism may lie in the nature of the metabolic ecosystem of tumors. The exchange of metabolites and growth factors between cancer cells and nonmalignant tumor-resident cells is essential for tumor growth and evolution, as well as the development of an immunosuppressive microenvironment. In this Review, we will examine the metabolic interplay between tumor-resident cells and how targeted inhibition of specific metabolic enzymes in malignant cells could elicit pro-tumorigenic effects in non-transformed tumor-resident cells and inhibit the function of tumor-specific T cells. To improve the efficacy of metabolism-targeted anticancer strategies, a holistic approach that considers the effect of metabolic inhibitors on major tumor-resident cell populations is needed.
  5. Annu Rev Physiol. 2023 Nov 27.
      The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases. Expected final online publication date for the Annual Review of Physiology, Volume 86 is February 2024. Please see for revised estimates.
  6. Annu Rev Physiol. 2023 Nov 27.
      Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption. Expected final online publication date for the Annual Review of Physiology, Volume 86 is February 2024. Please see for revised estimates.
  7. J Physiol. 2023 Nov 28.
      Mitochondrial calcium concentration ([Ca2+ ]m ) plays an essential role in bioenergetics, and loss of [Ca2+ ]m homeostasis can trigger diseases and cell death in numerous cell types. Ca2+ uptake into mitochondria occurs via the mitochondrial Ca2+ uniporter (MCU), which is regulated by three mitochondrial Ca2+ uptake (MICU) proteins localized in the intermembrane space, MICU1, 2, and 3. We generated a mouse model of systemic MICU3 ablation and examined its physiological role in skeletal muscle. We found that loss of MICU3 led to impaired exercise capacity. When the muscles were directly stimulated there was a decrease in time to fatigue. MICU3 ablation significantly increased the maximal force of the KO muscle and altered fibre type composition with an increase in the ratio of type IIb (low oxidative capacity) to type IIa (high oxidative capacity) fibres. Furthermore, MICU3-KO mitochondria have reduced uptake of Ca2+ and increased phosphorylation of pyruvate dehydrogenase, indicating that KO animals contain less Ca2+ in their mitochondria. Skeletal muscle from MICU3-KO mice exhibited lower net oxidation of NADH during electrically stimulated muscle contraction compared with wild-type. These data demonstrate that MICU3 plays a role in skeletal muscle physiology by setting the proper threshold for mitochondrial Ca2+ uptake, which is important for matching energy demand and supply in muscle. KEY POINTS: Mitochondrial calcium uptake is an important regulator of bioenergetics and cell death and is regulated by the mitochondrial calcium uniporter (MCU) and three calcium sensitive regulatory proteins (MICU1, 2 and 3). Loss of MICU3 leads to impaired exercise capacity and decreased time to skeletal muscle fatigue. Skeletal muscle from MICU3-KO mice exhibits a net oxidation of NADH during electrically stimulated muscle contractions, suggesting that MICU3 plays a role in skeletal muscle physiology by matching energy demand and supply.
    Keywords:  MICU3; calcium uptake; skeletal muscle
  8. STAR Protoc. 2023 Nov 29. pii: S2666-1667(23)00712-8. [Epub ahead of print]4(4): 102745
      Mitochondrial morphology is an indicator of cellular health and function; however, its quantification and categorization into different subclasses is a complicated process. Here, we present a protocol for mitochondrial morphology quantification in the presence and absence of carbonyl cyanide m-chlorophenyl hydrazone stress. We describe steps for the preparation of cells for immunofluorescence microscopy, staining, and morphology quantification. The quantification protocol generates an aspect ratio that helps to categorize mitochondria into two clear subclasses. For complete details on the use and execution of this protocol, please refer to Nag et al.1.
    Keywords:  Cell Biology; Cell culture; Metabolism; Microscopy; Molecular/Chemical Probes
  9. bioRxiv. 2023 Nov 16. pii: 2023.11.15.567241. [Epub ahead of print]
      Mitochondrial ion channels are essential for energy production and cell survival. To avoid depleting the electrochemical gradient used for ATP synthesis, channels so far described in the mitochondrial inner membrane open only briefly, are highly ion-selective, have restricted tissue distributions, or have small currents. Here, we identify a mitochondrial inner membrane conductance that has strikingly different behavior from previously described channels. It is expressed ubiquitously, and transports cations non-selectively, producing a large, up to nanoampere-level, current. The channel does not lead to inner membrane uncoupling during normal physiology because it only becomes active at depolarized voltages. It is inhibited by external Ca 2+ , corresponding to the intermembrane space, as well as amiloride. This large, ubiquitous, non-selective, amiloride-sensitive (LUNA) current appears most active when expression of the mitochondrial calcium uniporter is minimal, such as in the heart. In this organ, we find that LUNA current magnitude increases two- to threefold in multiple mouse models of injury, an effect also seen in cardiac mitochondria from human patients with heart failure with reduced ejection fraction. Taken together, these features lead us to speculate that LUNA current may arise from an essential protein that acts as a transporter under physiological conditions, but becomes a channel under conditions of mitochondrial stress and depolarization.
  10. Cell Death Dis. 2023 Nov 25. 14(11): 772
      Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death, that has been implicated in Alzheimer's disease and Parkinson's disease. Inhibition of cystine/glutamate antiporter could lead to mitochondrial fragmentation, mitochondrial calcium ([Ca2+]m) overload, increased mitochondrial ROS production, disruption of the mitochondrial membrane potential (ΔΨm), and ferroptotic cell death. The observation that mitochondrial dysfunction is a characteristic of ferroptosis makes preservation of mitochondrial function a potential therapeutic option for diseases associated with ferroptotic cell death. Mitochondrial calcium levels are controlled via the mitochondrial calcium uniporter (MCU), the main entry point of Ca2+ into the mitochondrial matrix. Therefore, we have hypothesized that negative modulation of MCU complex may confer protection against ferroptosis. Here we evaluated whether the known negative modulators of MCU complex, ruthenium red (RR), its derivative Ru265, mitoxantrone (MX), and MCU-i4 can prevent mitochondrial dysfunction and ferroptotic cell death. These compounds mediated protection in HT22 cells, in human dopaminergic neurons and mouse primary cortical neurons against ferroptotic cell death. Depletion of MICU1, a [Ca2+]m gatekeeper, demonstrated that MICU is protective against ferroptosis. Taken together, our results reveal that negative modulation of MCU complex represents a therapeutic option to prevent degenerative conditions, in which ferroptosis is central to the progression of these pathologies.
  11. Elife. 2023 Nov 28. pii: e86260. [Epub ahead of print]12
      Background: Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction underlying acute coronary syndrome. However, unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of ED dysfunction.Methods: We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterization, focused on central carbon metabolism.
    Results: AMI-derived endothelial cells (AMIECs), but not control healthy coronary endothelial cells, display impaired growth, migration and tubulogenesis. Metabolically, AMIECs displayed augmented reactive oxygen species (ROS) and glutathione intracellular content, along with a diminished glucose consumption coupled to high lactate production. Consistent with diminished glycolysis in AMIECs, the protein levels of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase type 3, PFKFB3, were downregulated. In contrast, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway (PPP), supported by upregulation in AMIECs of G6PD, the key enzyme in the oxidative branch of the PPP. Further, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing a mechanistic explanation for the observed increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggest a highly coupled mitochondrial activity in patient ECs.
    Conclusions: We suggest high mitochondrial proton coupling underlies the abnormally high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.
    Funding: European Commission Horizon 2020; CIBER- Carlos III National Institute of Health, Spain; Ministerio de Economia y Competitividad (MINECO) and Ministerio de Ciencia e Innovación, Spain; Generalitat de Catalunya-AGAUR, Catalonia; Plataforma Temática Interdisciplinar Salud Global (PTI-SG), Spain; British Heart Foundation, UK.
    Keywords:  human; medicine
  12. bioRxiv. 2023 Nov 13. pii: 2023.11.08.566310. [Epub ahead of print]
      Crosstalk between cellular metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to degenerative disease, including cancer. Here, we investigated whether maintenance of circadian rhythms depends upon specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to overall levels of a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function in an in vitro mouse model of pancreatic adenocarcinoma. Metabolic profiling of a library of congenic tumor cell clones revealed significant differences in levels of lactate, pyruvate, ATP, and other crucial metabolites that we used to identify candidate clones with which to generate circadian reporter lines. Despite the shared genetic background of the clones, we observed diverse circadian profiles among these lines that varied with their metabolic phenotype: the most hypometabolic line had the strongest circadian rhythms while the most hypermetabolic line had the weakest rhythms. Treatment of these tumor cell lines with bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist shown to increase OxPhos, decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, treatment with the Complex I antagonist rotenone enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function, and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.
  13. Proc Natl Acad Sci U S A. 2023 Dec 05. 120(49): e2311539120
      In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca2+ in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca2+-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca2+-influx (power, m: 4.3) when manipulating the [Ca2+] available for SV release by Zn2+-flicker-blocking of the single Ca2+-channel current. In contrast, a near linear Ca2+ dependence (m: 1.2 to 1.5) was observed when varying the number of open Ca2+-channels during deactivating Ca2+-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca2+-channels over the range of physiological depolarizations revealed m: 1.8. These findings indicate that SV release requires ~4 Ca2+-ions to bind to their Ca2+-sensor of fusion. We interpret the near linear Ca2+-dependence of release during manipulations that change the number of open Ca2+-channels to reflect control of SV release by the high [Ca2+] in the Ca2+-nanodomain of one or few nearby Ca2+-channels. We propose that a combination of Ca2+ nanodomain control and supralinear intrinsic Ca2+-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca2+-signals unrelated to afferent synaptic transmission.
    Keywords:  active zone; calcium channel; cochlea; paired recordings; sound encoding
  14. Biotechnol Bioeng. 2023 Dec 01.
      The rapidly expanding market for regenerative medicines and cell therapies highlights the need to advance the understanding of cellular metabolisms and improve the prediction of cultivation production process for human induced pluripotent stem cells (iPSCs). In this paper, a metabolic kinetic model was developed to characterize the underlying mechanisms of iPSC culture process, which can predict cell response to environmental perturbation and support process control. This model focuses on the central carbon metabolic network, including glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, and amino acid metabolism, which plays a crucial role to support iPSC proliferation. Heterogeneous measures of extracellular metabolites and multiple isotopic tracers collected under multiple conditions were used to learn metabolic regulatory mechanisms. Systematic cross-validation confirmed the model's performance in terms of providing reliable predictions on cellular metabolism and culture process dynamics under various culture conditions. Thus, the developed mechanistic kinetic model can support process control strategies to strategically select optimal cell culture conditions at different times, ensure cell product functionality, and facilitate large-scale manufacturing of regenerative medicines and cell therapies.
    Keywords:  cell therapy manufacturing; induced pluripotent stem cells (iPSCs); metabolic regulatory network; process dynamic model; stable isotope labeling
  15. FASEB J. 2023 Dec;37(12): e23319
      Glutamine synthetase (GS) is a crucial enzyme involved in de novo synthesis of glutamine and participates in several biological processes, including nitrogen metabolism, nucleotide synthesis, and amino acid synthesis. Post-translational modification makes GS more adaptable to the needs of cells, and acetylation modification of GS at double sites has attracted considerable attention. Despite very intensive research, how SUMOylation affects GS activity at a molecular level remains unclear. Here, we report that previously undiscovered GS SUMOylation which is deficient mutant K372R of GS exhibits more bluntness under glutamine starvation. Mechanistically, glutamine deprivation triggers the GS SUMOylation, and this SUMOylation impaired the protein stability of GS, within a concomitant decrease in enzymatic activity. In addition, we identified SAE1, Ubc9, and PIAS1 as the assembly enzymes of GS SUMOylation respectively. Furthermore, Senp1/2 functions as a SUMO-specific protease to reverse the SUMOylation of GS. This study provides the first evidence that SUMOylation serves as a regulatory mechanism for determining the GS enzymatic activity, contributing to understanding the GS regulation roles in various cellular and pathophysiological processes.
  16. Dis Model Mech. 2023 Nov 01. pii: dmm050404. [Epub ahead of print]16(11):
      By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
    Keywords:  Cancer Metabolism; Drug Uptake; Pharmacology; Transporters
  17. J Physiol. 2023 Nov 27.
      Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
    Keywords:  ALS; mitochondria calcium; motor neuron; skeletal muscle; therapeutic target
  18. Sci Rep. 2023 Nov 29. 13(1): 21038
      Glucose, a primary fuel source under homeostatic conditions, is transported into cells by membrane transporters such as glucose transporter 1 (GLUT1). Due to its essential role in maintaining energy homeostasis, dysregulation of GLUT1 expression and function can adversely affect many physiological processes in the body. This has implications in a wide range of disorders such as Alzheimer's disease (AD) and several types of cancers. However, the regulatory pathways that govern GLUT1 expression, which may be altered in these diseases, are poorly characterized. To gain insight into GLUT1 regulation, we performed an arrayed CRISPR knockout screen using Caco-2 cells as a model cell line. Using an automated high content immunostaining approach to quantify GLUT1 expression, we identified more than 300 genes whose removal led to GLUT1 downregulation. Many of these genes were enriched along signaling pathways associated with G-protein coupled receptors, particularly the rhodopsin-like family. Secondary hit validation confirmed that removal of select genes, or modulation of the activity of a corresponding protein, yielded changes in GLUT1 expression. Overall, this work provides a resource and framework for understanding GLUT1 regulation in health and disease.
  19. Cancer Cell Int. 2023 Dec 01. 23(1): 303
      OBJECTIVES: Glucose transporter 3 (GLUT3) plays a major role in glycolysis and glucose metabolism in cancer cells. We aimed to investigate the correlation between GLUT3 and histone lactylation modification in the occurrence and progression of gastric cancer.MATERIALS AND METHODS: We initially used single-cell sequencing data to determine the expression levels of GLUT3 and lactate dehydrogenase A (LDHA) in primary tumor, tumor-adjacent normal, and metastasis tumor tissues. Immunohistochemistry analysis was conducted to measure GLUT3, LDHA, and L-lactyl levels in gastric normal and cancer tissues. Transwell and scratch assays were performed to evaluate the metastatic and invasive capacity of gastric cancer cell lines. Western blotting was used to measure L-lactyl and histone lactylation levels in gastric cancer cell lines.
    RESULTS: Single-cell sequencing data showed that GLUT3 expression was significantly increased in primary tumor and metastasis tumor tissues. In addition, GLUT3 expression was positively correlated with that of LDHA expression and lactylation-related pathways. Western blotting and immunohistochemistry analyses revealed that GLUT3 was highly expressed in gastric cancer tissues and cell lines. GLUT3 knockdown in gastric cancer cell lines inhibited their metastatic and invasive capacity to various degrees. Additionally, the levels of LDHA, L-lactyl, H3K9, H3K18, and H3K56 significantly decreased after GLUT3 knockdown, indicating that GLUT3 affects lactylation in gastric cancer cells. Moreover, LDHA overexpression in a GLUT3 knockdown cell line reversed the levels of lactylation and EMT-related markers, and the EMT functional phenotype induced by GLUT3 knockdown. The in vivo results were consistent with the in vitro results.
    CONCLUSIONS: This study suggests the important role of histone lactylation in the occurrence and progression of gastric cancer, and GLUT3 may be a new diagnostic marker and therapeutic target for gastric cancer.
    Keywords:  Epithelial-mesenchymal transition; Gastric cancer; Glucose transporter 3; Lactate dehydrogenase A; Lactylation
  20. Brain Spine. 2023 ;3 102686
      Introduction: Complex metabolic disruption is a major aspect of the pathophysiology of traumatic brain injury (TBI). Pyruvate is an intermediate in glucose metabolism and considered one of the most clinically informative metabolites during neurocritical care of TBI patients, especially in deducing the lactate/pyruvate ratio (LPR) - a widely-used metric for probing the brain's metabolic redox state. LPR is conventionally measured offline on a bedside analyzer, on hourly accumulations of brain microdialysate. However, there is increasing interest within the field to quantify microdialysate pyruvate and LPR continuously in near-real-time within its pathophysiological range. We have previously measured pure standard pyruvate in-vitro using mid-infrared transmission, employing a commercially available external cavity-quantum cascade laser (EC-QCL) and a microfluidic flow cell and reported a limit of detection (LOD) of 0.1 mM.Research question: The present study was to test whether the current commercially available state-of-the-art mid-infrared transmission system, can detect pyruvate levels lower than previously reported.
    Materials and methods: We measured pyruvate in perfusion fluid on the mid-infrared transmission system also equipped with an EC-QCL and microfluidic flow cells, tested at three pathlengths.
    Results: We characterised the system to extract its relevant figures-of-merit and report the LOD of 0.07 mM.
    Discussion and conclusion: The reported LOD of 0.07 mM represents a clinically recognised threshold and is the lowest value reported in the field for a sensor that can be coupled to microdialysis. While work is ongoing for a definitive evaluation of the system to measuring pyruvate, these preliminary results set a good benchmark and reference against which future developments can be examined.
    Keywords:  Cerebral metabolism; Cerebral microdialysis; Mid-infrared spectroscopy; Pyruvate; Traumatic brain injury
  21. Exp Cell Res. 2023 Nov 25. pii: S0014-4827(23)00411-1. [Epub ahead of print] 113860
      Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
    Keywords:  Algorithm; Cell death; Classification
  22. Chem Sci. 2023 Nov 22. 14(45): 12961-12972
      The imbalance between oxidative stress and antioxidant capacity is strongly associated with the development of numerous degenerative diseases, including cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Therefore, monitoring oxidative stress and antioxidant capacity in vivo is crucial for maintaining cellular homeostasis and the stability of the organism's internal environment. Here, we present the findings of our study on DQ1, a dual-responsive indicator designed specifically for imaging H2O2 and NAD(P)H, which are critical indicators of oxidative stress and antioxidant capacity. DQ1 facilitated the colorimetric and fluorescence detection of H2O2 and NAD(P)H in two well-separated channels, exhibiting a detection limit of 1.0 μM for H2O2 and 0.21 nM for NAD(P)H, respectively. Experiments conducted on living cells and zebrafish demonstrated that DQ1 could effectively detect changes in H2O2 and NAD(P)H levels when exposed to exogenous hypoxic conditions and chemical stimuli. Furthermore, the effectiveness of the as-fabricated indicator was investigated in two distinct mouse models: evaluating H2O2 and NAD(P)H levels in myocardial cell dysfunction during acute myocardial infarction and liver tissue damage under trichloroethylene stress conditions. In vivo experiments demonstrated that the levels of the two cardiac biomarkers increase progressively with the development of myocardial infarction, eventually reaching a steady state after 7 days when the damaged cells in the infarcted region become depleted. Moreover, during 14 continuous days of exposure to trichloroethylene, the two biomarkers in liver tissue exhibited a sustained increase, indicating a significant enhancement in intracellular oxidative stress and antioxidant capacity attributed to the mouse liver's robust metabolic capacity. The aforementioned studies underscore the efficacy of DQ1 as a valuable tool for scrutinizing redox states at both the single-cell and biological tissue levels. It presents significant potential for investigating the dynamic alternations in oxidative stress and antioxidant capacity within disease models as the disease progresses, thereby facilitating a more profound comprehension of these processes across various disease models.
  23. PLoS One. 2023 ;18(12): e0295047
      Peroxisomes are membrane-enclosed organelles with important roles in fatty acid breakdown, bile acid synthesis and biosynthesis of sterols and ether lipids. Defects in peroxisomes result in severe genetic diseases, such as Zellweger syndrome and neonatal adrenoleukodystrophy. However, many aspects of peroxisomal biogenesis are not well understood. Here we investigated delivery of tail-anchored (TA) proteins to peroxisomes in mammalian cells. Using glycosylation assays we showed that peroxisomal TA proteins do not enter the endoplasmic reticulum (ER) in both wild type (WT) and peroxisome-lacking cells. We observed that in cells lacking the essential peroxisome biogenesis factor, PEX19, peroxisomal TA proteins localize mainly to mitochondria. Finally, to investigate peroxisomal TA protein targeting in cells with fully functional peroxisomes we used a proximity biotinylation approach. We showed that while ER-targeted TA construct was exclusively inserted into the ER, peroxisome-targeted TA construct was inserted to both peroxisomes and mitochondria. Thus, in contrast to previous studies, our data suggest that some peroxisomal TA proteins do not insert to the ER prior to their delivery to peroxisomes, instead, mitochondria can be involved.
  24. PLoS One. 2023 ;18(11): e0294909
      BACKGROUND: Retinal degenerative diseases such as diabetic retinopathy and diabetic macular edema are characterized by impaired retinal endothelial cells (RECs) functionality. While the role of glycolysis in glucose homeostasis is well-established, its contributions to REC barrier assembly and cell spreading remain poorly understood. This study aimed to investigate the importance of upper glycolytic components in regulating the behavior of human RECs (HRECs).METHODS: Electric cell-substrate impedance sensing (ECIS) technology was employed to analyze the real-time impact of various upper glycolytic components on maintaining barrier functionality and cell spreading of HRECs by measuring cell resistance and capacitance, respectively. Specific inhibitors were used: WZB117 to inhibit Glut1/3, lonidamine to inhibit hexokinases, PFK158 to inhibit the PFKFB3-PFK axis, and TDZD-8 to inhibit aldolases. Additionally, the viability of HRECs was evaluated using the lactate dehydrogenase (LDH) cytotoxicity assay.
    RESULTS: The most significant reduction in electrical resistance and increase in capacitance of HRECs resulted from the dose-dependent inhibition of PFKFB3/PFK using PFK158, followed by aldolase inhibition using TDZD-8. LDH level analysis at 24- and 48-hours post-treatment with PFK158 (1 μM) or TDZD-8 (1 and 10 μM) showed no significant difference compared to the control, indicating that the disruption of HRECs functionality was not attributed to cell death. Conversely, inhibiting Glut1/3 with WZB117 had minimal impact on HREC behavior, except at higher concentrations (10 μM) and prolonged exposure. Lastly, inhibiting hexokinase with lonidamine did not noticeably alter HREC cell behavior.
    CONCLUSION: This study illustrates the unique impacts of components within upper glycolysis on HREC functionality, emphasizing the crucial role of the PFKFB3/PFK axis in regulating HREC behavior. Understanding the specific contributions of each glycolytic component in preserving normal REC functionality will facilitate the development of targeted interventions for treating endothelial cell dysfunction in retinal disorders while minimizing effects on healthy cells.
  25. bioRxiv. 2023 Nov 16. pii: 2023.11.14.566937. [Epub ahead of print]
      Telomerase reverse transcriptase (TERT) is essential for glioblastoma (GBM) proliferation. Delineating metabolic vulnerabilities induced by TERT can lead to novel GBM therapies. We previously showed that TERT upregulates glutathione (GSH) pool size in GBMs. Here, we show that TERT acts via the FOXO1 transcription factor to upregulate expression of the catalytic subunit of glutamate-cysteine ligase (GCLC), the rate-limiting enzyme of de novo GSH synthesis. Inhibiting GCLC using siRNA or buthionine sulfoximine (BSO) reduces synthesis of 13 C-GSH from [U- 13 C]-glutamine and inhibits clonogenicity. However, GCLC inhibition does not induce cell death, an effect that is associated with elevated [U- 13 C]-glutamine metabolism to glutamate and pyrimidine nucleotide biosynthesis. Mechanistically, GCLC inhibition activates MYC and leads to compensatory upregulation of two key glutamine-utilizing enzymes i.e., glutaminase (GLS), which generates glutamate from glutamine, and CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotatase), the enzyme that converts glutamine to the pyrimidine nucleotide precursor dihydroorotate. We then examined the therapeutic potential of inhibiting GLS and CAD in combination with GCLC. 6-diazo-5-oxy-L-norleucin (DON) is a potent inhibitor of glutamine-utilizing enzymes including GLS and CAD. The combination of BSO and DON suppresses GSH and pyrimidine nucleotide biosynthesis and is synergistically lethal in GBM cells. Importantly, in vivo stable isotope tracing indicates that combined treatment with JHU-083 (a brain-penetrant prodrug of DON) and BSO abrogates synthesis of GSH and pyrimidine nucleotides from [U- 13 C]-glutamine and induces tumor shrinkage in mice bearing intracranial GBM xenografts. Collectively, our studies exploit a mechanistic understanding of TERT biology to identify synthetically lethal metabolic vulnerabilities in GBMs.SIGNIFICANCE: Using in vivo stable isotope tracing, metabolomics, and loss-of-function studies, we demonstrate that TERT expression is associated with metabolic alterations that can be synergistically targeted for therapy in glioblastomas.
  26. Cell Death Discov. 2023 Dec 01. 9(1): 432
      Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative diseases and accounts for the majority of dementia cases worldwide. Tremendous ongoing efforts of basic and clinical research have expanded our knowledge on AD and its complex multifactorial pathogenesis. For sporadic AD, it is widely assumed that silent and early symptomatic stages initiate decades before the irreversible decline in cognitive abilities that ultimately lead to debilitating conditions. In addition to amyloid plaques and tau-containing neurofibrillary tangles as the most prominent hallmarks of AD lesions within the affected brain areas, we now possess a broader collection of pathological signatures that are associated with AD development and progression. In this regard, there is a substantial body of evidence suggesting that hypometabolism occurs in the brains of individuals at the prodromal stage before dementia is diagnosed, which may reflect an early role of metabolic dysfunction in AD. This perspective surveys the vast literature and critically assesses the current evidence demonstrating a mitochondrial contribution to AD. Additionally, we discuss our interpretations of the reported mitochondrial signatures and consider how altered mitochondrial bioenergetics may be an additional risk factor for AD pathogenesis.
  27. Adv Sci (Weinh). 2023 Nov 30. e2307598
      Sphingosine (Sph) plays important roles in various complex biological processes. Abnormalities in Sph metabolism can result in various diseases, including neurodegenerative disorders. However, due to the lack of rapid and accurate detection methods, understanding sph metabolic in related diseases is limited. Herein, a series of near-infrared fluorogenic probes DMS-X (X = 2F, F, Cl, Br, and I) are designed and synthesized. The fast oxazolidinone ring formation enables the DMS-2F to detect Sph selectively and ultrasensitively, and the detection limit reaches 9.33 ± 0.41 nm. Moreover, it is demonstrated that DMS-2F exhibited a dose- and time-dependent response to Sph and can detect sph in living cells. Importantly, for the first time, the changes in Sph levels induced by Aβ42 oligomers and H2 O2 are assessed through a fluorescent imaging approach, and further validated the physiological processes by which Aβ42 oligomers and reactive oxygen species (ROS)-induce changes in intracellular Sph levels. Additionally, the distribution of Sph in living zebrafish is successfully mapped by in vivo imaging of a zebrafish model. This work provides a simple and efficient method for probing Sph in living cells and in vivo, which will facilitate investigation into the metabolic process of Sph and the connection between Sph and disease pathologies.
    Keywords:  endogenous sphingosine imaging; fluorogenic probe; low background interference; rapid, specific and ultrasensitive detection; sphingosine detection
  28. IUBMB Life. 2023 Nov 28.
      Mesenchymal stem cells (MSCs) are a therapeutically efficient type of stem cells validated by their ability to treat many inflammatory and chronic conditions. The biological and therapeutic characteristics of MSCs can be modified depending on the type of microenvironment at the site of transplantation. Diabetes mellitus (DM) is a commonly diagnosed metabolic disease characterized by hyperglycemia, which alters over time the cellular and molecular functions of many cells and causes their damage. Hyperglycemia can also impact the success rate of MSCs transplantation; therefore, it is extremely significant to investigate the effect of high glucose on the biological and therapeutic attributes of MSCs, particularly their immunomodulatory abilities. Thus, in this study, we explored the effect of high glucose on the immunosuppressive characteristics of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs). We found that hAD-MSCs cultured in high glucose lost their immunomodulatory abilities and became detectable by immune cells. The decline in the immunosuppressive capabilities of hAD-MSCs was mediated by significant decrease in the levels of IDO, IL-10, and complement factor H and substantial increase in the activity of immunoproteasome. The protein levels of AMP-activated protein kinase (AMPK) and phosphofructokinase-1 (PFK-1), which are integral regulators of glycolysis, revealed a marked decline in high glucose exposed MSCs. The findings of our study indicated the possibility of immunomodulatory shift in MSCs after being cultured in high glucose, which can be translationally employed to explain their poor survival and short-lived therapeutic outcomes in diabetic patients.
    Keywords:  glycolysis; high glucose; immunomodulation; mesenchymal stem cells; proteasome; survival
  29. Front Genet. 2023 ;14 1233669
      Branched-chain amino acid aminotransferases, widely present in natural organisms, catalyze bidirectional amino transfer between branched-chain amino acids and branched-chain α-ketoacids in cells. Branched-chain amino acid aminotransferases play an important role in the metabolism of branched-chain amino acids. In this paper, the interspecific evolution and biological characteristics of branched-chain amino acid aminotransferases are introduced, the related research of branched-chain amino acid aminotransferases in animals, plants, microorganisms and humans is summarized and the molecular mechanism of branched-chain amino acid aminotransferase is analyzed. It has been found that branched-chain amino acid metabolism disorders are closely related to various diseases in humans and animals and plants, such as diabetes, cardiovascular diseases, brain diseases, neurological diseases and cancer. In particular, branched-chain amino acid aminotransferases play an important role in the development of various tumors. Branched-chain amino acid aminotransferases have been used as potential targets for various cancers. This article reviews the research on branched-chain amino acid aminotransferases, aiming to provide a reference for clinical research on targeted therapy for various diseases and different cancers.
    Keywords:  branched-chain amino acid aminotransferases; branched-chain amino acids; evolutionary tree; human disease; metabolism
  30. bioRxiv. 2023 Nov 19. pii: 2023.11.19.567663. [Epub ahead of print]
      In triple-negative breast cancer (TNBC) that relies on catabolism of amino acid glutamine, glutaminase (GLS) converts glutamine to glutamate, which facilitates glutathione synthesis by mediating the enrichment of intracellular cystine via xCT antiporter activity. To overcome chemo resistant TNBC, we have tested a strategy of disrupting cellular redox balance by inhibition of GLS and xCT by CB839 and Erastin, respectively. Key findings of our study include: 1. Dual metabolic inhibition (CB839+Erastin) led to significant increases of cellular superoxide level in both parent and chemo resistant TNBC cells, but superoxide level was distinctly lower in resistant cells. 2. Dual metabolic inhibition combined with doxorubicin or cisplatin induced significant apoptosis in TNBC cells and is associated with high degrees of GSH depletion. In vivo , dual metabolic inhibition plus cisplatin led to significant growth delay of chemo resistant human TNBC xenografts. 3. Ferroptosis is induced by doxorubicin (DOX) but not by cisplatin or paclitaxel. Addition of dual metabolic inhibition to DOX chemotherapy significantly enhanced ferroptotic cell death. 4. Significant changes in cellular metabolites concentration preceded transcriptome changes revealed by single cell RNA sequencing, underscoring the potential of capturing early changes in metabolites as pharmacodynamic markers of metabolic inhibitors. Here we demonstrated that 4-(3-[ 18 F]fluoropropyl)-L-glutamic acid ([ 18 F]FSPG) PET detected xCT blockade by Erastin or its analog in mice bearing human TNBC xenografts. In summary, our study provides compelling evidence for the therapeutic benefit and feasibility of non-invasive monitoring of dual metabolic blockade as a translational strategy to sensitize chemo resistant TNBC to cytotoxic chemotherapy.
  31. Cancer Lett. 2023 Nov 24. pii: S0304-3835(23)00445-7. [Epub ahead of print]581 216494
      Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
    Keywords:  Apoptosis; Autophagy; Cancer therapy; HMGB1; Tumorigenesis
  32. Nat Commun. 2023 Nov 28. 14(1): 7814
      Chronic kidney disease can develop from kidney injury incident to chemotherapy with cisplatin, which complicates the prognosis of cancer patients. MicroRNAs regulate gene expression by pairing with specific sets of messenger RNAs. Therefore, elucidating direct physical interactions between microRNAs and their target messenger RNAs can help decipher crucial biological processes associated with cisplatin-induced kidney injury. Through intermolecular ligation and transcriptome-wide sequencing, we here identify direct pairs of microRNAs and their target messenger RNAs in the kidney of male mice injured by cisplatin. We find that a group of cisplatin-induced microRNAs can target select messenger RNAs that affect the mitochondrial metabolic pathways in the injured kidney. Specifically, a cisplatin-induced microRNA, miR-429-3p, suppresses the pathway that catabolizes branched-chain amino acids in the proximal tubule, leading to cell death dependent on lipid peroxidation, called ferroptosis. Identification of miRNA-429-3p-mediated ferroptosis stimulation suggests therapeutic potential for modulating the branched-chain amino acid pathway in ameliorating cisplatin-induced kidney injury.
  33. Nat Commun. 2023 Nov 25. 14(1): 7733
      Nephron endowment at birth impacts long-term renal and cardiovascular health, and it is contingent on the nephron progenitor cell (NPC) pool. Glycolysis modulation is essential for determining NPC fate, but the underlying mechanism is unclear. Combining RNA sequencing and quantitative proteomics we identify 267 genes commonly targeted by Wnt activation or glycolysis inhibition in NPCs. Several of the impacted pathways converge at Acetyl-CoA, a co-product of glucose metabolism. Notably, glycolysis inhibition downregulates key genes of the Mevalonate/cholesterol pathway and stimulates NPC differentiation. Sodium acetate supplementation rescues glycolysis inhibition effects and favors NPC maintenance without hindering nephrogenesis. Six2Cre-mediated removal of ATP-citrate lyase (Acly), an enzyme that converts citrate to acetyl-CoA, leads to NPC pool depletion, glomeruli count reduction, and increases Wnt4 expression at birth. Sodium acetate supplementation counters the effects of Acly deletion on cap-mesenchyme. Our findings show a pivotal role of acetyl-CoA metabolism in kidney development and uncover new avenues for manipulating nephrogenesis and preventing adult kidney disease.