Biomolecules. 2025 Dec 23. pii: 22. [Epub ahead of print]16(1):
The Xenopus oocyte has long served as a versatile and powerful model for dissecting the molecular underpinnings of reproductive and developmental processes. Its large size, manipulability, and well-characterized cell cycle states have enabled generations of researchers to illuminate key aspects of oocyte maturation, fertilization, and early embryogenesis. This review provides an integrated overview of the cellular and molecular events that define the Xenopus oocyte's transition from meiotic arrest to embryonic activation-or alternatively, to programmed demise if fertilization fails. We begin by exploring the architectural and biochemical landscape of the oocyte, including polarity, cytoskeletal organization, and nuclear dynamics. The regulatory networks governing meiotic resumption are then examined, with a focus on MPF (Cdk1/Cyclin B), MAPK cascades, and translational control via CPEB-mediated cytoplasmic polyadenylation. Fertilization is highlighted as a calcium-dependent trigger for oocyte activation. During fertilization in vertebrates, sperm-delivered phospholipase C zeta (PLCζ) is a key activator of Ca2+ signaling in mammals. In contrast, amphibian species such as Xenopus lack a PLCZ1 ortholog and instead appear to rely on alternative protease-mediated signaling mechanisms, including the uroplakin III-Src tyrosine kinase pathway and matrix metalloproteinase (MMP)-2 activity, to achieve egg activation. The review also addresses the molecular fate of unfertilized eggs, comparing apoptotic and necrotic mechanisms and their relevance to reproductive health. Finally, we discuss recent innovations in Xenopus-based technologies such as mRNA microinjection, genome editing, and in vitro ovulation systems, which are opening new avenues in developmental biology and translational medicine. By integrating classic findings with emerging frontiers, this review underscores the continued value of the Xenopus model in elucidating the fundamental processes of life's origin. We conclude with perspectives on unresolved questions and future directions in oocyte and early embryonic research.
Keywords: MAPK signaling; MPF (maturation-promoting factor); Xenopus oocyte; calcium wave; cytoplasmic determinants; developmental competence; fertilization and egg activation; oocyte atresia