bims-cateng Biomed News
on Cell and tissue engineering
Issue of 2023‒10‒29
six papers selected by
Chance Bowman, Dartmouth College



  1. Nano Converg. 2023 Oct 21. 10(1): 48
      Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.
    Keywords:  Biomaterials; Nanomaterials; Skeletal muscle; Stem cells; Tissue engineering; Tissue regeneration
    DOI:  https://doi.org/10.1186/s40580-023-00398-y
  2. Bioengineering (Basel). 2023 Oct 21. pii: 1232. [Epub ahead of print]10(10):
      Skeletal muscle tissue engineering (TE) and adipose tissue engineering have undergone significant progress in recent years. This review focuses on the key findings in these areas, particularly highlighting the integration of 3D bioprinting techniques to overcome challenges and enhance tissue regeneration. In skeletal muscle TE, 3D bioprinting enables the precise replication of muscle architecture. This addresses the need for the parallel alignment of cells and proper innervation. Satellite cells (SCs) and mesenchymal stem cells (MSCs) have been utilized, along with co-cultivation strategies for vascularization and innervation. Therefore, various printing methods and materials, including decellularized extracellular matrix (dECM), have been explored. Similarly, in adipose tissue engineering, 3D bioprinting has been employed to overcome the challenge of vascularization; addressing this challenge is vital for graft survival. Decellularized adipose tissue and biomimetic scaffolds have been used as biological inks, along with adipose-derived stem cells (ADSCs), to enhance graft survival. The integration of dECM and alginate bioinks has demonstrated improved adipocyte maturation and differentiation. These findings highlight the potential of 3D bioprinting techniques in skeletal muscle and adipose tissue engineering. By integrating specific cell types, biomaterials, and printing methods, significant progress has been made in tissue regeneration. However, challenges such as fabricating larger constructs, translating findings to human models, and obtaining regulatory approvals for cellular therapies remain to be addressed. Nonetheless, these advancements underscore the transformative impact of 3D bioprinting in tissue engineering research and its potential for future clinical applications.
    Keywords:  3D bioprinting; adipose tissue; skeletal muscle tissue engineering; tissue engineering
    DOI:  https://doi.org/10.3390/bioengineering10101232
  3. Bioengineering (Basel). 2023 Sep 25. pii: 1122. [Epub ahead of print]10(10):
      The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.
    Keywords:  cell-tissue interactions; extracellular matrix; regenerative medicine; scaffolds; tissue engineering
    DOI:  https://doi.org/10.3390/bioengineering10101122
  4. J Funct Biomater. 2023 Oct 08. pii: 497. [Epub ahead of print]14(10):
      Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
    Keywords:  3D printing; artificial blood vessel; biocompatible; biofabrication; bioink; vascular diseases
    DOI:  https://doi.org/10.3390/jfb14100497
  5. Synth Syst Biotechnol. 2023 Dec;8(4): 654-672
      The ability to control mammalian cells such that they self-organize or enact therapeutic effects as desired has incredible implications. Not only would it further our understanding of native processes such as development and the immune response, but it would also have powerful applications in medical fields such as regenerative medicine and immunotherapy. This control is typically obtained by synthetic circuits that use synthetic receptors, but control remains incomplete. The synthetic juxtacrine receptors (SJRs) are widely used as they are fully modular and enable spatial control, but they have limited gene expression amplification and temporal control. As these are integral facets to cell control, I therefore designed transcription factor based amplifiers that amplify gene expression and enable unidirectional temporal control by prolonging duration of target gene expression. Using a validated in silico framework for SJR signaling, I combined these amplifiers with SJRs and show that these SJR amplifier circuits can direct spatiotemporal patterning and improve the quality of self-organization. I then show that these circuits can improve chimeric antigen receptor (CAR) T cell tumor killing against various heterogenous antigen expression tumors. These amplifiers are flexible tools that improve control over SJR based circuits with both basic and therapeutic applications.
    Keywords:  Amplifiers; CAR T cell; SNIPR; Self-organization; Spatiotemporal control; Synthetic biology; Synthetic development; Synthetic immunotherapy; Synthetic receptors; Temporal control; synNotch
    DOI:  https://doi.org/10.1016/j.synbio.2023.09.008
  6. Int J Mol Sci. 2023 Oct 18. pii: 15291. [Epub ahead of print]24(20):
      Over the past 20 years, the use of pluripotent stem cells to mimic the complexities of the human neuromuscular junction has received much attention. Deciphering the key mechanisms underlying the establishment and maturation of this complex synapse has been driven by the dual goals of addressing developmental questions and gaining insight into neuromuscular disorders. This review aims to summarise the evolution and sophistication of in vitro neuromuscular junction models developed from the first differentiation of human embryonic stem cells into motor neurons to recent neuromuscular organoids. We also discuss the potential offered by these models to decipher different neuromuscular diseases characterised by defects in the presynaptic compartment, the neuromuscular junction, and the postsynaptic compartment. Finally, we discuss the emerging field that considers the use of these techniques in drug screening assay and the challenges they will face in the future.
    Keywords:  human neuromuscular junction; in vitro models; microfluidics and organoids; pluripotent stem cells
    DOI:  https://doi.org/10.3390/ijms242015291