Cancer Biother Radiopharm. 2025 Jun 12.
Recently, exosomes, or "natural nanoparticles," have been considered as potential drug delivery methods. Due to exosome carriers' natural properties, exosome-mediated drug delivery systems (DDSs) are efficient cancer treatments. Exosomes, small membrane vesicles from many cell types, can transfer phytoconstituents, proteins, nucleic acids, and small molecule medicines across biological boundaries. Recent DDS advances have improved this potential using plant-derived exosomes (PDEs), which are biocompatible and low toxic. PDEs have anticancer effects, especially in the context of conventional treatment resistance, untargeted toxicity, and response variability. This review fills a gap by discussing the latest findings and offering new perspectives on exosome drug delivery in cancer. The study summarizes isolation and loading approaches such as ultracentrifugation and immunological isolation and the characterization parameters for the formulation of exosomes. The exosome-based DDSs are discussed in depth, along with the emphasis on PDEs. The article highlights emerging trends and challenges, including molecular targets and ongoing clinical trials, during the past decade that are critically relevant to the current scenario. Nanotechnology and personalized medicine could improve and lower the cost of exosome-mediated cancer treatment. While the preclinical data have been encouraging, clinical applications of exosome-based therapies are continuing to evolve in its early stages, and some of the problems include scalability, purification, and regulatory compliance.
Keywords: bioavailability; cancer; cargo loading; extracellular vesicles; nano drug delivery; plant-derived exosomes