bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2025–06–08
forty-six papers selected by
Christian Frezza, Universität zu Köln



  1. Nat Metab. 2025 Jun 03.
      Caloric restriction and methionine restriction-driven enhanced lifespan and healthspan induces 'browning' of white adipose tissue, a metabolic response that increases heat production to defend core body temperature. However, how specific dietary amino acids control adipose thermogenesis is unknown. Here, we identified that weight loss induced by caloric restriction in humans reduces thiol-containing sulfur amino acid cysteine in white adipose tissue. Systemic cysteine depletion in mice causes lethal weight loss with increased fat utilization and browning of adipocytes that is rescued upon restoration of cysteine in diet. Mechanistically, cysteine-restriction-induced adipose browning and weight loss requires sympathetic nervous system-derived noradrenaline signalling via β3-adrenergic-receptors that is independent of FGF21 and UCP1. In obese mice, cysteine deprivation induced rapid adipose browning, increased energy expenditure leading to 30% weight loss and reversed metabolic inflammation. These findings establish that cysteine is essential for organismal metabolism as removal of cysteine in the host triggers adipose browning and rapid weight loss.
    DOI:  https://doi.org/10.1038/s42255-025-01297-8
  2. bioRxiv. 2025 May 27. pii: 2025.05.13.653903. [Epub ahead of print]
      Human mitochondrial genome encodes essential genes for the oxidative phosphorylation (OXPHOS) complexes. These genes must be transcribed and translated in coordination with nuclear-encoded OXPHOS components to ensure correct stoichiometry during OXPHOS complex assembly in the mitochondria. While much is known about nuclear gene regulation during metabolic stresses like glucose deprivation, little is known about the accompanying transcriptional response in mitochondria. Using microscopy, roadblocking qPCR, and transcriptomics, we studied mitochondrial transcription in cells subjected to glucose deprivation, which is known to cause nuclear transcription downregulation and to activate the integrated stress response (ISR). We found that glucose deprivation stabilizes mitochondrial RNAs and slows mitochondrial transcription, effects that are quickly reversed with glucose reintroduction. Although transcriptomics revealed strong upregulation of the ISR, mitochondrial RNA stabilization was not upregulated by pharmacological activation of the ISR, but was promoted by inhibition of glycolysis, unveiling a direct connection between metabolism and regulation of mitochondrial gene expression.
    DOI:  https://doi.org/10.1101/2025.05.13.653903
  3. Cell Metab. 2025 Jun 03. pii: S1550-4131(25)00255-4. [Epub ahead of print]37(6): 1252-1254
      The death of mammalian cells is generally regulated by a complex interplay amongst distinct molecular machineries that ultimately determines the kinetic and immunological consequences of the process. Recent data from Song et al. delineate a new metabolic circuitry through which apoptotic signals may actively suppress cell death via ferroptosis.
    DOI:  https://doi.org/10.1016/j.cmet.2025.04.017
  4. Nat Commun. 2025 Jun 03. 16(1): 5133
      Reactive thiols of proteinaceous cysteines are vital to cell biology by serving as sensor, effector and buffer of environmental redox fluctuations. Being the major source, as well as the prime target, of reactive oxygen species (ROS), mitochondria confront great challenges in preserving their thiol pool. Here we show that ROS modulator 1 (ROMO1), a small inner mitochondrial membrane protein, plays a role in protecting the mitochondrial cysteinome. ROMO1 is redox sensitive and reactive and overexpression can prevent deleterious oxidation of proteinaceous thiols. ROMO1 upregulation leads to a reductive shift of the mitochondrial cysteinome, exerting beneficial effects on mitochondria, such as promoting energy metabolism and Ca2+ uniport while inhibiting vicious membrane permeability transition. Importantly, ROMO1 overexpression reverses mitochondrial cysteinome oxidations in multiple organs and slows functional decline in aged male mice. These findings unravel a redox regulatory mechanism of the mitochondrial cysteinome and mark ROMO1 as a potential target for combating oxidative stress and improving healthspan.
    DOI:  https://doi.org/10.1038/s41467-025-60503-z
  5. bioRxiv. 2025 May 19. pii: 2025.05.16.654477. [Epub ahead of print]
      Lysosomal damage is an endogenous danger signal to the cell, but its significance for innate immunity and how specific signaling pathways are engaged by this stressor remain unclear. Here, we uncover an immune-inducible pathway that connects lysosomal damage to mitochondrial DNA (mtDNA) efflux and type I IFN production. Lysosomal damage elicits mitochondrial outer membrane permeabilization (MOMP) via BAK/BAX macropores; however, the inner mitochondrial membrane (IMM) prevents wholesale mtDNA release in resting cells. Priming with type II IFN (IFN-γ) induced the antibacterial effector apolipoprotein L-3 (APOL3), which upon transient lysosomal damage, targets mitochondria undergoing MOMP and selectively permeabilizes the IMM to enhance mtDNA release and activate cGAS/STING signaling. Biochemical and cellular reconstitution revealed that analogous to its bactericidal detergent-like mechanism, APOL3 solubilizes cardiolipin to permeabilize the IMM. Our findings illustrate how cells use an antibacterial protein to expedite the breakdown of endosymbiosis and facilitate a heightened response to injury and infection.
    DOI:  https://doi.org/10.1101/2025.05.16.654477
  6. Proc Natl Acad Sci U S A. 2025 Jun 10. 122(23): e2425347122
      Metabolism fuels cell growth and functions. While it is well established that cellular growth rate scales with cell size, how cells alter their metabolism as they change size remains largely unexplored. Here, we conducted a systematic analysis of cell size-dependent metabolism across the NCI60 cancer cell line panel comprising a diverse range of cell sizes. We demonstrate that cellular metabolism and growth rate display 2/3 allometric scaling due to differential scaling of overall nutrient uptake and waste metabolite release with respect to cell size, with waste elimination decreasing less rapidly than nutrient uptake rate as cells grow larger. This results in cell size-dependent growth rate and predicts a maximum cell size where net nutrient uptake equals zero and cell enlargement ceases despite active metabolism. We experimentally confirm this prediction and identify that electron acceptor demand constrains cell enlargement as evidenced by depletion of intracellular aspartate and scaling of aspartate uptake, which is more than proportional to cell volume. Overall, these findings may have implications for understanding cell size homeostasis, developmental biology, and the design principles of living organisms.
    Keywords:  allometry; cell size; growth rate; metabolism; scaling
    DOI:  https://doi.org/10.1073/pnas.2425347122
  7. Cancer Res. 2025 Jun 06.
      Normal tissues actively employ a phenomenon called cell competition to drive the elimination and replacement of less fit loser cells by fitter winner cells. This quality control mechanism promotes tissues health, by favouring the selective expansion of fitter cells. Indeed, through cell competition, many mutant cells are eliminated from tissues by fitter normal cells. However, some oncogenic mutations can turn cells into super-competitors that outcompete normal cells, promoting tumorigenic growth and metastasis. Several cellular stresses have been associated with the loser status such as oxidative stress, DNA damage responses, unfolded protein response and mitochondrial dysfunction. By affecting these pathways, metabolism and dietary choices can regulate cellular fitness and cell competition. However, how these pathways affect competitive interactions in vivo, during the early establishment of mutant clones, is relatively little understood. Recent work from Hemalatha and colleagues introduces real-time fluorescence ratio metric imaging of NAD(P)H and FAD, to investigate cellular redox status - live and over time, at single cell level - as cells compete in the mouse epidermis. Their work demonstrates that redox status changes dynamically during competition between cell carrying oncogenic mutations. It further shows that drugs that modulate mitochondrial metabolism and cellular redox are strong modulators of cell competition. The introduction of live redox imaging will prove a powerful tool to further dissect how metabolic states affect cell competition in normal physiology and in tumorigenesis.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-25-2374
  8. bioRxiv. 2025 May 20. pii: 2025.05.15.654370. [Epub ahead of print]
      Cancer cachexia is an involuntary weight loss condition characterized by systemic metabolic disorder. A comprehensive flux characterization of this condition however is lacking. Here, we systematically isotope traced eight major circulating nutrients in mice bearing cachectic C26 tumors (cxC26) and food intake-matched mice bearing non-cachectic C26 tumors (ncxC26). We found no difference in whole-body lipolysis and proteolysis, ketogenesis, or fatty acid and ketone oxidation by tissues between the two groups. In contrast, compared to ncxC26 mice ad libitum, glucose turnover flux decreased in food intake-controlled ncxC26 mice but not in cxC26 mice. Similarly, sustained glucose turnover flux was observed in two autochthonous cancer cachexia models despite reduced food intake. We identified glutamine and alanine as responsible for sustained glucose production and tissues with altered use of glucose and lactate in cxC26 mice. We provide a comprehensive view of metabolic alterations in cancer cachexia revealing those distinct from decreased nutrient intake.
    Highlights: Quantitative fluxomics of cancer cachexia under matched food intake and body weightIntact lipolysis, proteolysis, ketogenesis, and lipid oxidation in cachectic miceSustained glucose consumption in cachectic mice despite reduced food intakeIncreased glucose production from glutamine and alanine in cachectic mice.
    DOI:  https://doi.org/10.1101/2025.05.15.654370
  9. bioRxiv. 2025 May 13. pii: 2025.05.12.653532. [Epub ahead of print]
      Proper regulation of inflammatory responses is essential for organismal health. Dysregulation can lead to accelerated development of the diseases of aging and the aging process itself. Here, we identify a novel enzymatic activity of the mitochondrial sirtuin SIRT4 as a lysine deitaconylase that regulates macrophage inflammatory responses. Itaconate is a metabolite abundantly produced in activated macrophages. We find it forms a protein modification called lysine itaconylation. Using biochemical and proteomics approaches, we demonstrate that SIRT4 efficiently removes this modification from target proteins both in vitro and in vivo . In macrophages, elevated protein itaconylation increases upon LPS stimulation, coinciding with elevated SIRT4 expression. SIRT4-deficient macrophages exhibit significantly increased IL-1β production in response to LPS stimulation. This phenotype is intrinsic to macrophages, as demonstrated by both lentiviral over-expression and acute SIRT4 knockdown models. Mechanistically, we identify key enzymes in branched-chain amino acid (BCAA) metabolism as targets of hyperitaconylation in SIRT4-deficient macrophages. The BCKDH complex component dihydrolipoamide branched chain transacylase E2 (DBT) is hyperitaconylated and has reduced BCKDH activity in SIRT4KO macrophages. Physiologically, SIRT4-deficient mice exhibit significantly delayed wound healing, demonstrating a consequence of dysregulated macrophage function. Our data reveal a novel protein modification pathway in immune cells and establish SIRT4 as a critical regulator at the intersection of metabolism and inflammation. These findings have implications for understanding immune dysregulation in aging and metabolic disease.
    DOI:  https://doi.org/10.1101/2025.05.12.653532
  10. bioRxiv. 2025 May 23. pii: 2025.05.19.650489. [Epub ahead of print]
      Mitochondrial metabolic flux alterations are critical drivers of acute ischemia-reperfusion (IR) brain injury. Reverse electron transfer (RET), defined as the upstream flow of electrons from the quinone pool to complex I, is a major source of pathological reactive oxygen species (ROS) under stress conditions. Using an in vivo model of brain IR, we show that RET-supporting substrates - succinate and glycerol 3-phosphate - accumulate during oxygen deprivation. Rapid oxidation of these substrates by brain mitochondria upon reoxygenation drives massive ROS production, while also leading to over-reduction and dissociation of the complex I flavin mononucleotide (FMN) cofactor. The resulting FMN-deficient complex I becomes catalytically impaired, unable to oxidize NADH or to produce ROS. To mitigate RET and preserve complex I function, we used transgenic mice xenotopically expressing alternative oxidase (AOX). This enzyme bypasses complexes III and IV by directly oxidizing the reduced quinone pool and passing electrons onto molecular oxygen. AOX expression did not alter complex I abundance, supercomplexes assembly, or basal respiration rates, but effectively diverted electrons from the quinone pool, decreasing RET flux via complex I and limiting ROS generation during IR. This attenuation of RET preserved complex I FMN binding, suppressed oxidative stress, and conferred neuroprotection in vivo . Our findings reveal a novel strategy for rewiring mitochondrial electron flux to mitigate initial IR brain injury, highlighting modulation of the quinone pool by AOX as a potential therapeutic strategy for IR.
    DOI:  https://doi.org/10.1101/2025.05.19.650489
  11. Cancer Lett. 2025 May 31. pii: S0304-3835(25)00409-4. [Epub ahead of print] 217842
      Alterations of metabolic pathways that sustain cancer cell survival often offer promising therapeutic avenues. Here, we show that enhanced de novo cholesterol biosynthesis is crucial for the survival of head and neck squamous cell carcinoma (HNSCC). Transcriptomic analysis of HNSCC tissues identified profound dysregulation in steroid and cholesterol metabolism compared to normal tissues. Inhibition of two key enzymes, DHCR7 and DHCR24, which mediate cholesterol biosynthesis, induced apoptosis in HNSCC cells, even when cholesterol levels were restored. Metabolomic profiling revealed the accumulation of 7-dehydrocholesterol (7-DHC) upon DHCR7 or DHCR24 inhibition, triggering endoplasmic reticulum (ER) stress and promoting further cell death. These findings suggest that HNSCC cells adapt to ER stress by modulating 7-DHC levels through enhancing DHCR7 and DHCR24 levels, highlighting a metabolic vulnerability in HNSCC and demonstrating a direct link between cholesterol metabolism and ER stress in cancer cell viability.
    Keywords:  7-dehydrocholesterol; Cholesterol metabolism; DHCR24; DHCR7; ER stress; head and neck cancer
    DOI:  https://doi.org/10.1016/j.canlet.2025.217842
  12. bioRxiv. 2025 May 12. pii: 2025.05.08.652142. [Epub ahead of print]
      The role of cell-specific ANGPTL4 is not well known in the context of ECs, specifically in pathological angiogenesis and its relation to diabetic kidney disease. Here, we demonstrate that endothelial ANGPTL4 is required to induce a metabolic phenotype that favors mesenchymal activation in ECs and tubules in diabetic conditions. Diabetes accelerates mesenchymal activation and fibrogenesis in control mice however, the same effects were not observed in endothelial-cell specific knock out mice. This mesenchymal activation in diabetes is directly linked with pathological neovascularization, endothelial leakage, lipid and glycolysis metabolite load, de novo lipogenesis (DNL) and related mitochondrial damage, activation of the immune system, c-GAS-STING activation and transcription of pro-inflammatory cytokines. However, endothelial ANGPTL4-depleted mice had stable vessels, improved levels of lipid and glucose metabolism, suppressed levels of DNL, restored mitochondrial function, and mitigated levels of c-GAS-STING-mediated inflammation. Moreover, Inhibition of DNL, and STING via small molecule inhibitors suppressed pathological neovascularization and endothelial leakage, normalized fatty acid oxidation and reduced pathological glycolysis and de novo lipogenesis (DNL). These data demonstrate the crucial roles of endothelial ANGPTL4 in regulating pathogenic angiogenesis in the renal vasculature during diabetes.
    DOI:  https://doi.org/10.1101/2025.05.08.652142
  13. bioRxiv. 2025 May 24. pii: 2025.05.21.655274. [Epub ahead of print]
      Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to meet their increased biosynthetic and energetic demands. While cells possess the capacity for de novo serine biosynthesis, most transformed cancer cells heavily depend on exogenous serine uptake to sustain their growth, yet the regulatory mechanisms driving this metabolic dependency remain poorly understood. Here, we uncover a novel mechanism by which Polo-like kinase 1 (PLK1), often overexpressed in prostate cancer, orchestrates a metabolic shift in serine and lipid metabolism through the phosphorylation of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme of the serine synthesis pathway (SSP). We demonstrate that PLK1 phosphorylates PHGDH at three specific sites (S512, S513, S517), leading to a marked reduction in its protein level and enzymatic activity. This downregulation of SSP forces cancer cells to increase their reliance on exogenous serine uptake via the ASCT2 transporter, which, in turn, fuels the biosynthesis of lipids, including sphingolipids essential for tumor growth and survival. Targeting the SSP, serine uptake, or downstream lipid biosynthetic pathways may offer promising therapeutic avenues in PLK1-high advanced cancers.
    DOI:  https://doi.org/10.1101/2025.05.21.655274
  14. Cell Metab. 2025 Jun 03. pii: S1550-4131(25)00262-1. [Epub ahead of print]37(6): 1243-1246
      This year, Cell Metabolism is celebrating its 20th anniversary! We are taking this opportunity to highlight authors that have published with us as they developed, and keep developing, their research careers. In 2005, Cell Metabolism was just starting an exciting journey to become a reference forum for interdisciplinary, high-quality metabolism studies. Throughout these years, it has been an honor to feature in our issues articles from these investigators and their labs that have contributed to both consolidating and expanding the metabolism field.
    DOI:  https://doi.org/10.1016/j.cmet.2025.05.006
  15. bioRxiv. 2025 May 24. pii: 2025.05.20.655097. [Epub ahead of print]
       Background: The 1p/19q co-deletion is a hallmark of oligodendrogliomas. The goal of this study was to exploit metabolic vulnerabilities induced by the 1p/19q co-deletion for oligodendroglioma therapy and non-invasive imaging.
    Methods: We used stable isotope tracing, mass spectrometry, and genetic and pharmacological approaches to interrogate [U- 13 C]-glucose metabolism in patient-derived oligodendroglioma models (SF10417, BT88, BT54, TS603, NCH612). We examined whether tracing [6,6'- 2 H]-glucose metabolism using deuterium metabolic imaging (DMI) provided an early readout of treatment response.
    Results: The expression of the glycolytic enzyme enolase 1 (ENO1; chromosome 1p36.23) was reduced in patient-derived oligodendroglioma cells and patient biopsies due to the 1p/19q co-deletion and histone hypermethylation. Conversely, ENO2 was upregulated, an effect that was driven by mitogen-activated protein kinase (MAPK) signaling and ERK1-mediated phosphorylation and inactivation of the CIC transcriptional repressor in oligodendrogliomas. Genetic ablation of ENO2 or pharmacological inhibition using POMHEX inhibited proliferation with nanomolar potency but was not cytotoxic to oligodendroglioma cells or tumor xenografts. Mechanistically, ENO2 loss abrogated [U- 13 C]-glucose metabolism to lactate but shunted glucose towards biosynthesis of serine and purine nucleotides, an effect that was driven by phosphoglycerate dehydrogenase (PHGDH). Importantly, the PHGDH inhibitor D8 was synthetically lethal in combination with POMHEX, and the combination induced tumor regression in vivo. Furthermore, DMI of lactate production from [6,6'- 2 H]-glucose provided an early readout of response to combination therapy that preceded MRI-detectable alterations and reflected extended survival.
    Conclusions: We have identified ENO2 and PHGDH as 1p/19q co-deletion-induced metabolic vulnerabilities in oligodendrogliomas and demonstrated that DMI reports on early response to therapy.
    KEY POINTS: The 1p/19q co-deletion upregulates ENO2 in oligodendrogliomas.ENO2 inhibition inhibits glycolysis but upregulates serine and nucleotide biosynthesis via PHGDH.Combined inhibition of ENO2 and PHGDH is lethal, an effect that can be visualized by DMI.
    IMPORTANCE OF THE STUDY: Oligodendrogliomas are devastating primary brain tumors with long-lasting and life-altering effects on physical and cognitive function. The presence of a 1p/19q co-deletion defines oligodendrogliomas. Here, using clinically relevant patient-derived models and patient tissue, we show that the 1p/19q co-deletion leads to loss of the glycolytic enzyme ENO1 and upregulation of ENO2 in oligodendrogliomas. This provides a unique therapeutic opportunity since most cells rely on ENO1 for glycolysis. Targeting ENO2 using the brain-penetrant inhibitor POMHEX abrogates glycolysis but redirects glucose toward serine and nucleotide biosynthesis, an effect that is driven by PHGDH, the rate-limiting enzyme for serine biosynthesis. Importantly, combined treatment with POMHEX and the PHGDH inhibitor D8 is synthetically lethal in vitro and in vivo. Furthermore, visualizing glucose metabolism using DMI provides an early readout of response to therapy that predicts extended survival in vivo . In summary, we have developed a unique integrated metabolic therapy and imaging approach for oligodendrogliomas.
    DOI:  https://doi.org/10.1101/2025.05.20.655097
  16. Sci Adv. 2025 Jun 06. 11(23): eadt3552
      Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, exhibits notable metabolic reprogramming. We previously reported elevated HDAC7, a class II histone deacetylase, in ccRCC. Here, we demonstrate that HDAC7 promotes aggressive phenotypes and in vivo tumor progression in RCC. HDAC7 suppresses the expression of genes mediating branched-chain amino acid (BCAA) catabolism. Notably, lower expression of BCAA catabolism genes is strongly associated with worsened survival in ccRCC. Suppression of BCAA catabolism promotes expression of SNAIL1, a central mediator of aggressive phenotypes including migration and invasion. HDAC7-mediated suppression of the BCAA catabolic program promotes SNAI1 messenger RNA transcription via NOTCH signaling activation. Collectively, our findings provide innovative insights into the role of metabolic remodeling in ccRCC tumor progression.
    DOI:  https://doi.org/10.1126/sciadv.adt3552
  17. bioRxiv. 2025 May 16. pii: 2025.05.13.653579. [Epub ahead of print]
      The NF-κB family of transcription factor complexes are central regulators of inflammation, and their dysregulation contributes to the pathology of multiple inflammatory disease conditions. Accordingly, identifying pharmacological mechanisms that restrain NF-κB overactivation remains an area of key importance. Here, we demonstrate that inhibition of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) with the small molecule inhibitor CBR-470-2 results in attenuated NF-κB signaling, decreasing transcriptional output in response to several canonical NF-κB activating stimuli. Mechanistically, PGK1 inhibition promotes the accumulation of the glycolytic metabolite methylglyoxal, which crosslinks and inactivates NF-κB proteins, limiting the phosphorylation and nuclear translocation of these transcription factor complexes. This work establishes a key connection between central carbon metabolism and immune signaling and further supports the notion that PGK1 inhibition may be a viable strategy to increase cellular survival and dampen inflammation in disease.
    DOI:  https://doi.org/10.1101/2025.05.13.653579
  18. Nat Commun. 2025 May 31. 16(1): 5059
      Metabolic reactions play important roles in organisms such as providing energy, transmitting signals, and synthesizing biomacromolecules. Charting unknown metabolic reactions in cells is hindered by limited technologies, restricting the holistic understanding of cellular metabolism. Using mass spectrometry-resolved stable-isotope tracing metabolomics, we develop an isotopologue similarity networking strategy, namely IsoNet, to effectively deduce previously unknown metabolic reactions. The strategy uncovers ~300 previously unknown metabolic reactions in living cells and mice. Specifically, we elaborately chart the metabolic reaction network related to glutathione, unveiling three previously unreported reactions nestled within glutathione metabolism. Among these, a transsulfuration reaction, synthesizing γ-glutamyl-seryl-glycine directly from glutathione, underscores the role of glutathione as a sulfur donor. Functional metabolomics studies systematically characterize biochemical effects of previously unknown reactions in glutathione metabolism, showcasing their diverse functions in regulating cellular metabolism. Overall, these newly uncovered metabolic reactions fill gaps in the metabolic network maps, facilitating exploration of uncharted territories in cellular biochemistry.
    DOI:  https://doi.org/10.1038/s41467-025-60258-7
  19. Nat Med. 2025 Jun 05.
    IO-GEM Consortium
      Response to immune checkpoint inhibitors (ICIs) in metastatic melanoma (MM) varies among patients, and current baseline biomarkers predicting treatment outcomes are limited. As mitochondrial (MT) metabolism has emerged as an important regulator of host immune function, we explored the association of host MT genetics (MT haplogroups) with ICI efficacy in 1,225 ICI-treated patients with MM from the clinical trial CheckMate-067 and the International Germline Immuno-Oncology Melanoma Consortium. We discovered and validated significant associations of MT haplogroup T (HG-T) with resistance to anti-programmed cell death protein-1-based ICI (both single-agent and combination) and have shown that HG-T is independent from established tumor predictors. We also found that patients belonging to HG-T exhibit a unique nivolumab-resistant baseline peripheral CD8+ T cell repertoire compared to other MT haplogroups, providing, to our knowledge, the first link between MT inheritance, host immunity and ICI resistance. The study proposes a host blood-based biomarker with stand-alone clinical value predicting ICI efficacy and points to an ICI-resistance mechanism associated with MT metabolism, with clinical relevance in immuno-oncology.
    DOI:  https://doi.org/10.1038/s41591-025-03699-3
  20. Int J Mol Med. 2025 Aug;pii: 118. [Epub ahead of print]56(2):
      Mitochondria and mitochondrial DNA (mtDNA) are crucial for cellular energy metabolism and the adaptive response to environmental changes. mtDNA collaborates with the nuclear genome to regulate mitochondrial function. Dysfunctional mitochondria and mutations in mtDNA are implicated in a wide range of diseases, including mitochondrial disorders, neurodegenerative conditions, age‑associated pathologies and cancer. While the nuclear genome has been extensively studied for its role in driving the clonal expansion of oncogenes and other aging‑related genetic alterations, knowledge regarding mtDNA remains comparatively limited. However, advances in quantitative analysis have provided information regarding the complex patterns of mtDNA mutations. The present review offers a detailed examination of mtDNA mutations and their classifications in the contexts of aging and cancer, and elucidates the role of mtDNA mutations in these processes. Mutations in mtDNA can be detected as early as the neonatal stage, yet most transition mutations retain a normal cellular phenotype. In contrast to mutations in oncogenes and tumor suppressor genes within the nuclear genome, mtDNA exhibits conserved mutational signatures, irrespective of cancer tissue origin. To adapt to the aging process, mitochondria undergo clonal expansion of advantageous mtDNA mutations, maintaining a dynamic equilibrium among various mitochondrial clones. Over time, however, the loss of strand bias can disrupt this equilibrium, diminishing the pool of adaptive clones. This breakdown in mitochondrial homeostasis may contribute to tumorigenesis. In conclusion, the heterogeneity of mtDNA mutations and the collapse of its homeostasis are pivotal in the progression of age‑related diseases, including cancer, underscoring the importance of mtDNA mutations in health and disease.
    Keywords:  aging; carcinogenesis; clonal expansion; mitochondrial DNA; transition mutations
    DOI:  https://doi.org/10.3892/ijmm.2025.5559
  21. Mol Syst Biol. 2025 Jun 05.
      Large-scale metabolomic analyses of pan-cancer cell line panels have provided significant insights into the relationships between metabolism and cancer cell biology. Here, we took a pathway-centric approach by transforming targeted metabolomic data into ratios to study associations between reactant and product metabolites in a panel of cancer and non-cancer cell lines. We identified five clusters of cells from various tissue origins. Of these, cells in Cluster 4 had high ratios of TCA cycle metabolites relative to pyruvate, produced more lactate yet consumed less glucose and glutamine, and greater OXPHOS activity compared to Cluster 3 cells with low TCA cycle metabolite ratios. This was due to more glutamine cataplerotic efflux and not glycolysis in cells of Cluster 4. In silico analyses of loss-of-function and drug sensitivity screens showed that Cluster 4 cells were more susceptible to gene deletion and drug targeting of glutamine metabolism and OXPHOS than cells in Cluster 3. Our results highlight the potential of pathway-centric approaches to reveal new aspects of cellular metabolism from metabolomic data.
    Keywords:  Cancer Cell Lines; Glucose Metabolism; Glutamine Metabolism; Metabolic Pathways; Metabolomics
    DOI:  https://doi.org/10.1038/s44320-025-00099-0
  22. J Biol Chem. 2025 Jun 03. pii: S0021-9258(25)02187-8. [Epub ahead of print] 110337
      KRAS is a prominent oncogene mutated in a large number of human malignancies, particularly in pancreatic, colorectal, and lung tumors. We demonstrate here that KRAS, including its various activating mutants, is subjected to ubiquitin-mediated proteasomal degradation in cancer cells. Through a siRNA-based screening of deubiquitinases, we identified USP25 as a deubiquitinase for KRAS. Depleting USP25 expression increases ubiquitination and proteasomal degradation of KRAS, leading to the suppression of its oncogenic activity. We further show that USP25 inhibitors we have discovered are capable of destabilizing KRAS in cancer cells and are efficacious in blocking tumor xenograft growth in mice. These findings provide evidence supporting the notion that targeting the deubiquitinase USP25 can effectively, albeit indirectly, suppress KRAS and potentially aid in the treatment of tumors driven by KRAS activating mutations.
    DOI:  https://doi.org/10.1016/j.jbc.2025.110337
  23. Oncogene. 2025 Jun 04.
      Regulatory T (Treg) cells play critical roles in maintaining immune tolerance and tissue homeostasis, but impede anti-tumor immunity. Recent work has established how Treg cells metabolically adapt within the tumor microenvironment (TME), and these adaptations frequently provide a functional advantage over effector T cells. Further, enhanced Treg cell function in the TME may contribute to the limited efficacy of current immunotherapies, especially immune checkpoint blockade (ICB). Here, we review recent progress in understanding mechanisms of Treg cell heterogeneity and function in tumors, with a particular focus on cellular metabolism as an underlying factor by which Treg cells are uniquely poised to thrive in the TME and contribute to tumorigenesis. We describe how cellular metabolism and nutrient or metabolic communication shape Treg cell lineage identity and function in the TME. We also discuss the interplay between ICB and Treg cell metabolism and function, and highlight current strategies targeting Treg cell metabolism specifically in the TME. Understanding metabolic control of intratumoral Treg cells provides excellent opportunities to uncover new or combination therapies for cancer.
    DOI:  https://doi.org/10.1038/s41388-025-03458-1
  24. Nat Cell Biol. 2025 Jun 03.
      The aberrant accumulation of intracellular disulfides promotes cancer cell disulfidptosis; however, how disulfide stress influences tumour-infiltrating CD8+ T cell function remains unknown. Here we demonstrate that lactate dehydrogenase B (LDHB) facilitates intratumoural CD8+ T cell disulfidptosis and exhaustion, leading to impaired antitumour immunity. SLC7A11-mediated cystine uptake by CD8+ T cells induces disulfidptosis, which plays critical roles in the development of exhausted CD8+ T cells. LDHB restricts glucose-6-phosphate dehydrogenase (G6PD) activity in exhausted CD8+ T cells by interacting with G6PD, causing NADPH depletion and consequently triggering disulfidptosis. Accordingly, the loss of LDHB in T cells prevents disulfidptosis-dependent CD8+ T cell exhaustion and improves antitumour immunity. Mechanistically, STAT3 directs LDHB expression to limit G6PD activity and mediate disulfidptosis in exhausted CD8+ T cells. Our results highlight the distinct roles of disulfidptosis and ferroptosis in driving CD8+ T cell exhaustion and suggest a potential therapeutic strategy to target LDHB in cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41556-025-01673-2
  25. Nucleic Acids Res. 2025 Jun 06. pii: gkaf475. [Epub ahead of print]53(11):
      The incorporation of ribonucleotides (rNMPs) into the nuclear genome leads to severe genomic instability, including strand breaks and short 2-5 bp deletions at repetitive sequences. Curiously, the detrimental effects of rNMPs are not observed for the human mitochondrial genome (mtDNA) that typically contains several rNMPs per molecule. Given that the nuclear genome instability phenotype is dependent on the activity of the nuclear topoisomerase 1 enzyme (hTOP1), and mammalian mitochondria contain a distinct topoisomerase 1 paralog (hTOP1MT), we hypothesized that the differential effects of rNMPs on the two genomes may reflect divergent properties of the two cellular topoisomerase 1 enzymes. Here, we characterized the endoribonuclease activity of hTOP1MT and found it to be less efficient than that of its nuclear counterpart, a finding that was partly explained by its weaker affinity for its DNA substrate. Moreover, while hTOP1 and yeast TOP1 were able to cleave at an rNMP located even outside of the consensus cleavage site, hTOP1MT showed no such preference for rNMPs. As a consequence, hTOP1MT was inefficient at producing the short rNMP-dependent deletions that are characteristic of TOP1-driven genome instability. These findings help explain the tolerance of rNMPs in the mitochondrial genome.
    DOI:  https://doi.org/10.1093/nar/gkaf475
  26. Am J Physiol Gastrointest Liver Physiol. 2025 Jun 05.
      Homeostasis of the mammalian intestinal epithelium is tightly regulated by multiple factors including cellular polyamines, but the exact mechanism underlying polyamines in this process remains largely unknown. Mitochondria are the powerhouse of cells and can also function as signaling organelles by releasing metabolic by-products. Here we determined whether polyamines regulate intestinal epithelial renewal and wound healing by altering mitochondrial activity. Depletion of cellular polyamines by inhibiting ornithine decarboxylase with α-difluoromethylornithine (DFMO) resulted in mitochondrial dysfunction as evidenced by decreases in basal and maximal respiration levels, ATP production, and spare respiration capacity. Polyamines depletion by DFMO also decreased the levels of mitochondria-associated proteins prohibitin 1 and COX-IV. Mitochondrial dysfunction induced by DFMO was associated with an inhibition of intestinal organoid growth and epithelial repair after wounding and this inhibition was ameliorated by administration of the mitochondrial activator Mito-Tempo or exogenous polyamine putrescine. These results indicate that polyamines are necessary for mitochondrial metabolism, in turn controlling constant intestinal mucosal growth and epithelial repair after acute injury.
    Keywords:  Mito-Tempo; intestinal epithelial integrity; mitochondral proteins; ornithine decarboxylase
    DOI:  https://doi.org/10.1152/ajpgi.00023.2025
  27. bioRxiv. 2025 May 14. pii: 2025.05.12.653625. [Epub ahead of print]
      Cell growth checkpoints require coordination between multiple sensing and signaling systems to ensure that cells only proceed with growth and division when conditions are favorable and adequate resources are available. This coordination between nutrient sensing and growth signaling is fundamental to understanding how nutrient supply regulates the cellular metabolic economy. Much of our current understanding is driven by studies that examine the cellular response to nutrient deprivation. For example, TORC1 activity promotes cell growth when amino acids are available, but amino acid deprivation decreases TORC1 activity resulting in activation of catabolic activities. In this study, we examine how cells respond to stimulation with excess amino acids. We report that stimulation with excess Ile, Phe and Met slows cell growth and triggers a G1 cell cycle arrest. Similar to a starvation response, surplus Ile, Phe and Met induce autophagy and trigger decreased TORC1 activity. In the case of stimulation with excess Met, the Gcn2 pathway is required for growth arrest, autophagy induction, and TORC1 dampening. Unexpectedly, Gcn2 is activated by stimulation with excess Met, and this activation requires endocytosis of the methionine transporter Mup1. These results indicate that endocytosis of an amino acid transporter is required to activate the Gcn2 pathway, providing an example for how nutrient transporter trafficking may function as a sensor contributing to cell growth control.
    DOI:  https://doi.org/10.1101/2025.05.12.653625
  28. Cell Rep. 2025 May 30. pii: S2211-1247(25)00520-0. [Epub ahead of print]44(6): 115749
      Functional decline of the central nervous system (CNS) is driven by the breakdown of the blood-brain barrier (BBB) and attendant inflammation, all hallmarks of age-related neurodegeneration. Despite intense interest in how the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway impacts neurodegenerative processes in aging, its role in shaping these features of CNS fate during physiological aging remains unclear. Here, using physiologically aged mice, we uncovered an unexpected but vital role for STING in preserving CNS function. We find that STING deficiency exacerbates neurological decline through BBB breakdown, microhemorrhages, and neuromotor deficits. Furthermore, STING deficiency leads to an accrual of neuronal DNA damage and alters CNS proinflammatory, type I interferon, and senescence signatures. Cumulatively, these changes lead to a transformation in microglia phenotypes and transcriptomes. Finally, microglial-STING expression is sufficient to elicit protection against age-associated changes in the CNS and highlights the mechanistic basis for STING-dependent protective mechanisms within the aging brain.
    Keywords:  CNS; CP: Immunology; CP: Neuroscience; DNA damage; STING; aging; blood-brain barrier; inflammation; innate immunity; microglia; neuro-motor dysfunction; senescence; type 1 interferons
    DOI:  https://doi.org/10.1016/j.celrep.2025.115749
  29. bioRxiv. 2025 May 14. pii: 2025.05.09.653038. [Epub ahead of print]
      Metabolism supplies energy, building blocks, and signaling molecules vital for cell function and communication, but methods to directly measure it at single-cell and/or spatial resolutions remain technically challenging and inaccessible for most researchers. Single-cell and spatial transcriptomics offer high-throughput data alternatives with a rich ecosystem of computational tools. Here, we present scCellFie, a computational framework to infer metabolic activities from human and mouse transcriptomic data at single-cell and spatial resolution. Applied to ~30 million cell profiles, we generated a comprehensive metabolic atlas across human organs, identifying organ- and cell-type-specific activities. In the endometrium, scCellFie reveals metabolic programs contributing to healthy tissue remodeling during the menstrual cycle, with temporal patterns replicated in data from in vitro cultures. We also uncover disease-associated metabolic alterations in endometriosis and endometrial carcinoma, linked to proinflammatory macrophages, and metabolite-mediated epithelial cell communication, respectively. Ultimately, scCellFie provides a scalable toolbox for extracting interpretable metabolic functionalities from transcriptomic data.
    DOI:  https://doi.org/10.1101/2025.05.09.653038
  30. Res Sq. 2025 May 13. pii: rs.3.rs-5073364. [Epub ahead of print]
      Mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-responsive master regulator of metabolism. Amino acids control the recruitment and activation of mTORC1 at the lysosome via the nucleotide loading state of the heterodimeric Rag GTPases. Under low nutrients, including arginine (Arg), the GTPase activating protein (GAP) complex, GATOR1, promotes GTP hydrolysis on RagA/B, inactivating mTORC1. GATOR1 is regulated by the cage-like GATOR2 complex and cytosolic amino acid sensors. To understand how the Arg-sensor CASTOR1 binds to GATOR2 to disinhibit GATOR1 under low cytosolic Arg, we determined the cryo-EM structure of GATOR2 bound to apo-CASTOR1. Two MIOS WD40 domain β-propellers of the GATOR2 cage engage with both subunits of a single CASTOR1 homodimer. Each propeller binds to a negatively charged MIOS-binding interface (MBI) on CASTOR1 that is distal to the Arg pocket. The structure shows how Arg-triggered loop ordering in CASTOR1 blocks the MBI, switches off its binding to GATOR2, and so activates mTORC1.
    DOI:  https://doi.org/10.21203/rs.3.rs-5073364/v1
  31. Elife. 2025 Jun 05. pii: RP94586. [Epub ahead of print]13
      A classic problem in metabolism is that fast-proliferating cells use seemingly wasteful fermentation for energy biogenesis in the presence of sufficient oxygen. This counterintuitive phenomenon, known as overflow metabolism or the Warburg effect, is universal across various organisms. Despite extensive research, its origin and function remain unclear. Here, we show that overflow metabolism can be understood through growth optimization combined with cell heterogeneity. A model of optimal protein allocation, coupled with heterogeneity in enzyme catalytic rates among cells, quantitatively explains why and how cells choose between respiration and fermentation under different nutrient conditions. Our model quantitatively illustrates the growth rate dependence of fermentation flux and enzyme allocation under various perturbations and is fully validated by experimental results in Escherichia coli. Our work provides a quantitative explanation for the Crabtree effect in yeast and the Warburg effect in cancer cells and can be broadly used to address heterogeneity-related challenges in metabolism.
    Keywords:  E. coli; I. orientalis; S. cerevisiae; aerobic glycolysis; cell heterogeneity; computational biology; metabolic strategy; mouse; overflow metabolism; physics of living systems; systems biology; warburg effect
    DOI:  https://doi.org/10.7554/eLife.94586
  32. Biochem J. 2025 May 30. pii: BCJ20253033. [Epub ahead of print]
      Arginine is a conditionally essential amino acid with known roles in protein production, nitric oxide synthesis, biosynthesis of proline and polyamines, and regulation of intracellular signaling pathways. Arginine biosynthesis and catabolism have been linked to TGF-β-induced activation of fibroblasts in the context of pulmonary fibrosis; however, a thorough study on the metabolic and signaling roles of arginine in the process of fibroblast activation has not been conducted. Here, we examined the regulation and role of arginine metabolism in lung fibroblasts activated with TGF-β. We found that TGF-β increases the expression of arginine metabolic biosynthetic and catabolic enzymes in lung fibroblasts. Surprisingly, using metabolic tracers of arginine and its precursors, we found little evidence of arginine synthesis or catabolism in lung fibroblasts treated with TGF-β. Despite this, arginine remained crucial for TGF-β-induced expression of collagen and α-smooth muscle actin. We found that arginine limitation leads to activation of GCN2 while inhibiting TGF-β-induced mTORC1 activation and collagen protein production. Extracellular citrulline could rescue the effect of arginine deprivation in an ASS1-dependent manner. Our findings suggest that the major role of arginine in lung fibroblasts is for charging of arginyl-tRNAs and promotion signaling events which are required for fibroblast activation.
    Keywords:  Arginine; Fibroblast; Metabolism; Pulmonary Fibrosis; Transforming Growth Factor-β
    DOI:  https://doi.org/10.1042/BCJ20253033
  33. Nat Commun. 2025 Jun 03. 16(1): 5161
      The human kidney maintains homeostasis through a complex network of up to a million nephrons, its fundamental tissue units. Using innovative tissue processing and light sheet fluorescence microscopy, we mapped the 3D neurovascular connectivity of nephrons to understand how their structural organization enables coordinated functions like filtration, absorption, and blood pressure regulation. Our analysis revealed developmental changes in glomerular orientation, density, volume, and innervation from birth through aging. We discovered an extensive nerve network connecting different nephron segments and organizing glomeruli into distinct communities. These communities are linked through "mother glomeruli" that serve as control centers, creating a repeating pattern throughout the cortex. This sophisticated neural organization, which is underdeveloped in newborn kidneys and disrupted in conditions like diabetes and hydronephrosis, appears to facilitate synchronized responses to maintain fluid balance. The findings provide insights into how the kidney's structural architecture enables coordinated function across its numerous nephrons.
    DOI:  https://doi.org/10.1038/s41467-025-60435-8
  34. Nat Commun. 2025 Jun 03. 16(1): 5157
      Reactive oxygen species can oxidatively modify enzymes to reroute metabolism according to tumor needs, rendering identification of oxidized proteins important for understanding neoplastic survival mechanisms. Thiol groups are most susceptible to oxidative modifications but challenging to analyze in clinical settings. We here describe the protein and small-molecular thiol oxidation landscape of 70 human lung tumors (and their paired healthy counter parts) and demonstrate that cancer adapts metabolism to increase glutathione synthesis to counteract oxidative stress. Glyoxalases, the key enzymes in the detoxification of methylglyoxal, a byproduct of glycolysis and precursor of advanced glycation end-products, are compromised by oxidation and downregulation. Despite decreased methylglyoxal detoxification capacity, cancers do not accumulate advanced glycation end-products. Since in vitro downregulation or inhibition of GAPDH upregulates glyoxalases, we propose that tumors reduce methylglyoxal by activating GAPDH.
    DOI:  https://doi.org/10.1038/s41467-025-60326-y
  35. Neoplasia. 2025 Jun 04. pii: S1476-5586(25)00067-3. [Epub ahead of print]66 101188
      Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer in adults. We generated TRAnsgenic of Cancer of the Kidney (TRACK) mice that express a triple-mutant (P402A, P564A, and N803A) human HIF1α construct specifically in their proximal tubule (PT) cells. We demonstrated that the elevated lipid content found in human ccRCCs is mimicked in these TRACK PT cells. Additionally, we reported that ATF4 (activating transcription factor 4), a transcription factor, and its target genes were highly expressed both in human ccRCCs and in TRACK PT cells. To delineate the functions of ATF4 in ccRCC we have now generated TRACK mice in which the ATF4 gene is specifically deleted in PT cells (GCREA∆T). Our genome-wide transcriptomics and proteomics studies show that expression of ∼20 % of mRNAs and proteins is significantly altered in GCREA∆T compared to TRACK kidney cortices. Gene set enrichment analyses (GSEAs) of mRNAs demonstrate that the fatty acid metabolism pathway is upregulated in TRACK vs WT and that, conversely, ATF4 deletion reduces mRNAs in the fatty acid metabolism pathway (e.g., ATP citrate lyase). Moreover, some transcripts elevated in human ccRCC are reduced in GCREA∆T vs. TRACK kidney cortices and cystic, pre-cancerous lesions are also reduced. Thus, ATF4 actions increase both lipid droplet accumulation in this ccRCC model and oncogenesis-related gene expression. These data suggest that ATF4 contributes to the formation of ccRCC tumors and may be a potential therapeutic target.
    Keywords:  ATP citrate lyase; Activating transcription factor 4; Clear cell renal cell carcinoma; Fatty acids; Proteomics; Transcriptomics
    DOI:  https://doi.org/10.1016/j.neo.2025.101188
  36. bioRxiv. 2025 May 24. pii: 2025.05.20.655200. [Epub ahead of print]
      Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor outcomes. Obesity is a risk factor for several cancers including PDAC due to metabolic dysregulation and inflammation. The ketogenic diet (KD) can alter metabolism and has been evaluated for its effects on tumor progression in non-obese but not obese PDAC using genetically engineered mouse models (GEMMs). We hypothesized that ketone bodies and a KD alter cell and tumor metabolism. We show that ketone treatments altered pyrimidine metabolism in PDAC cells. Moreover, in an obese PDAC GEMM, KD prevented tumor progression independent of weight loss but promoted PDAC in a non-obese PDAC GEMM. The KD-specific delay of obesity-associated PDAC was associated with pancreatic metabolic shifts in pyrimidine, cysteine and methionine, and arginine and proline pathways. These findings suggest potential benefits of a KD in preventing obesity-associated PDAC, but highlights some risks in non-obese settings.
    DOI:  https://doi.org/10.1101/2025.05.20.655200
  37. J Biol Chem. 2025 Jun 03. pii: S0021-9258(25)02184-2. [Epub ahead of print] 110334
      Mitochondrial tRNA processing defects have been associated with some clinical presentations including deafness. Especially, a deafness-linked m.7516delA mutation impaired the 5' end processing of RNA precursors and mitochondrial translation. In this study, we investigated the mechanism by m.7516delA mutation induced-deficiencies mitigate organellular and cellular integrity. The m.7516delA mutation downregulated the expression of nucleus encoding subunits and upregulated assemble factors of complex IV and altered the assembly and activities of oxidative phosphorylation (OXPHOS) complexes. The impairment of OXPHOS alleviated mitochondrial quality control processes, including the imbalanced mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology. The m.7516delA mutation upregulated both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, BNIP3, NIX and MFN2-ubiquitination and altering interaction between MFN2 and MUL1 or Parkin, to facilitate the degradation of severely damaged mitochondria. Strikingly, the m.7516delA mutation activated integrated stress response (ISR) pathway, evidenced by upregulation of GCN2, P-GCN2, p-eIF2α, CHOP, ATF4 and elevating the nucleus-location of ATF5 to minimizes the damages in defective mitochondria. Both activation of ISR and PINK1/Parkin mitophagy pathways ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into underlying aberrant RNA processing-induced dysfunctions reprogrammed organelles and cellular integrity.
    DOI:  https://doi.org/10.1016/j.jbc.2025.110334
  38. Nat Commun. 2025 Jun 02. 16(1): 5118
      The folate and methionine cycles (Met-C) are regulated by vitamin B12 (B12), obtained exclusively from diet and microbiota. Met-C supports amino acid, nucleotide, and lipid biosynthesis and provides one-carbon moieties for methylation reactions. While B12 deficiency and polymorphisms in Met-C genes are clinically attributed to neurological and metabolic disorders, less is known about their cell-non-autonomous regulation of systemic physiological processes. Using a B12-sensitive Caenorhabditis elegans mutant, we show that the neuronal Met-C responds to differential B12 content in diet to regulate p38-MAPK activation in the intestine, thereby modulating cytoprotective gene expression, osmotic stress tolerance, behaviour and longevity. Mechanistically, our data suggest that B12-driven changes in the metabolic flux through the Met-C in the mutant's serotonergic neurons increase serotonin biosynthesis. Serotonin activates its receptor, MOD-1, in the post-synaptic interneurons, which then secretes the neuropeptide FLR-2. FLR-2 binding to its intestinal receptor, FSHR-1, induces the phase transition of the SARM domain protein TIR-1, thereby activating the p38-MAPK pathway. Together, we reveal a dynamic neuron-gut signalling axis that helps an organism modulate life history traits based on the status of neuronal Met-C, determined by B12 availability in its diet.
    DOI:  https://doi.org/10.1038/s41467-025-60475-0
  39. Nature. 2025 Jun 04.
      Cancer cell plasticity enables the acquisition of new phenotypic features and is implicated as a major driver of metastatic progression1,2. Metastasis occurs mostly in the absence of additional genetic alterations3-5, which suggests that epigenetic mechanisms are important6. However, they remain poorly defined. Here we identify the chromatin-remodelling enzyme ATRX as a key regulator of colonic lineage fidelity and metastasis in colorectal cancer. Atrx loss promotes tumour invasion and metastasis, concomitant with a loss of colonic epithelial identity and the emergence of highly plastic mesenchymal and squamous-like cell states. Combined analysis of chromatin accessibility and enhancer mapping identified impairment of activity of the colonic lineage-specifying transcription factor HNF4A as a key mediator of these observed phenotypes. We identify squamous-like cells in human patient samples and a squamous-like expression signature that correlates with aggressive disease and poor patient prognosis. Collectively, our study defines the epigenetic maintenance of colonic epithelial identity by ATRX and HNF4A as suppressors of lineage plasticity and metastasis in colorectal cancer.
    DOI:  https://doi.org/10.1038/s41586-025-09125-5
  40. Nat Commun. 2025 Jun 05. 16(1): 5209
      The proper function of lysosomes depends on their ability to store and release calcium. While several lysosomal calcium release channels have been described, how lysosomes replenish their calcium stores in placental mammals has not been determined. Using genetic depletion and overexpression techniques combined with electrophysiology and visualization of subcellular ion concentrations and their fluxes across the lysosomal membrane, we show here that TMEM165 imports calcium to the lysosomal lumen and mediates calcium-induced lysosomal proton leakage. Accordingly, TMEM165 accelerates the recovery of cells from cytosolic calcium overload thereby enhancing cell survival while causing a significant acidification of the cytosol. These data indicate that in addition to its previously identified role in the glycosylation of proteins and lipids in the Golgi, a fraction of TMEM165 localizes on the lysosomal limiting membrane, where its putative calcium/proton antiporter activity plays an essential role in the regulation of intracellular ion homeostasis and cell survival.
    DOI:  https://doi.org/10.1038/s41467-025-60349-5
  41. bioRxiv. 2025 May 14. pii: 2025.05.13.651470. [Epub ahead of print]
      Serine metabolism is of growing biologic and therapeutic interest in cancer. Upregulation of the serine synthesis pathway (SSP) can fuel tumor growth, and cancers with this phenotype are often sensitive to SSP inhibitors. In parallel, dietary restriction of serine and glycine (SG) can suppress some cancers, but the determinants of sensitivity to this approach are poorly understood. This is especially true in acute myeloid leukemia (AML), where serine metabolism has been less explored. We report that a subset of human AML cell lines and primary samples are completely dependent on external serine, known as serine auxotrophy. These leukemias consistently suppressed the SSP enzyme PSAT1, failed to synthesize serine, responded to SG restriction in vivo , and were rescued by restoring PSAT1. We also found that AML with an SF3B1 K700E mutation showed additional dependence on the SSP enzyme PHGDH, that SG restriction synergized with venetoclax in serine auxotrophic AML, and that MECOM rearrangement was strongly associated with PSAT1 suppression and serine auxotrophy. These findings define a metabolically distinct AML subtype and nominate it for targeting by SG restriction.
    DOI:  https://doi.org/10.1101/2025.05.13.651470
  42. Nat Neurosci. 2025 Jun 02.
      Aging is one of the most prominent risk factors for neurodegeneration, yet the molecular mechanisms underlying the deterioration of old neurons are mostly unknown. To efficiently study neurodegeneration in the context of aging, we transdifferentiated primary human fibroblasts from aged healthy donors directly into neurons, which retained their aging hallmarks, and we verified key findings in aged human and mouse brain tissue. Here we show that aged neurons are broadly depleted of RNA-binding proteins, especially spliceosome components. Intriguingly, splicing proteins-like the dementia- and ALS-associated protein TDP-43-mislocalize to the cytoplasm in aged neurons, which leads to widespread alternative splicing. Cytoplasmic spliceosome components are typically recruited to stress granules, but aged neurons suffer from chronic cellular stress that prevents this sequestration. We link chronic stress to the malfunctioning ubiquitylation machinery, poor HSP90α chaperone activity and the failure to respond to new stress events. Together, our data demonstrate that aging-linked deterioration of RNA biology is a key driver of poor resiliency in aged neurons.
    DOI:  https://doi.org/10.1038/s41593-025-01952-z
  43. Nat Commun. 2025 Jun 02. 16(1): 5120
      Inflammatory bowel diseases (IBDs) are chronic disorders involving dysregulated immune responses. Despite the role of disrupted host-microbial interaction in the pathophysiology of IBD, the underlying metabolic principles are not fully understood. We densely profiled microbiome, transcriptome and metabolome signatures from longitudinal IBD cohorts before and after advanced drug therapy initiation and reconstructed metabolic models of the gut microbiome and the host intestine to study host-microbiome metabolic cross-talk in the context of inflammation. Here, we identified concomitant changes in metabolic activity across data layers involving NAD, amino acid, one-carbon and phospholipid metabolism. In particular on the host level, elevated tryptophan catabolism depleted circulating tryptophan, thereby impairing NAD biosynthesis. Reduced host transamination reactions disrupted nitrogen homeostasis and polyamine/glutathione metabolism. The suppressed one-carbon cycle in patient tissues altered phospholipid profiles due to limited choline availability. Simultaneously, microbiome metabolic shifts in NAD, amino acid and polyamine metabolism exacerbated these host metabolic imbalances. Leveraging host and microbe metabolic models, we predicted dietary interventions remodeling the microbiome to restore metabolic homeostasis, suggesting novel therapeutic strategies for IBD.
    DOI:  https://doi.org/10.1038/s41467-025-60233-2