bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2024‒09‒22
43 papers selected by
Christian Frezza, Universität zu Köln



  1. Cold Spring Harb Perspect Med. 2024 Sep 16. pii: a041553. [Epub ahead of print]
      It is increasingly appreciated that cancer cells adapt their metabolic pathways to support rapid growth and proliferation as well as survival, often even under the poor nutrient conditions that characterize some tumors. Cancer cells can also rewire their metabolism to circumvent chemotherapeutics that inhibit core metabolic pathways, such as nucleotide synthesis. A critical approach to the study of cancer metabolism is metabolite profiling (metabolomics), the set of technologies, usually based on mass spectrometry, that allow for the detection and quantification of metabolites in cancer cells and their environments. Metabolomics is a burgeoning field, driven by technological innovations in mass spectrometers, as well as novel approaches to isolate cells, subcellular compartments, and rare fluids, such as the interstitial fluid of tumors. Here, we discuss three emerging metabolomic technologies: spatial metabolomics, single-cell metabolomics, and organellar metabolomics. The use of these technologies along with more established profiling methods, like single-cell transcriptomics and proteomics, is likely to underlie new discoveries and questions in cancer research.
    DOI:  https://doi.org/10.1101/cshperspect.a041553
  2. EMBO J. 2024 Sep 19.
      Z-DNA-binding protein 1 (ZBP1) is an interferon-inducible sensor of Z-DNA and Z-RNA, which has emerged as a critical regulator of cell death and inflammation. ZBP1 binds Z-DNA and Z-RNA via its Zα domains, and signals by engaging RIPK3 and RIPK1 via its RIP homotypic interaction motifs (RHIMs). Here, we show that mice express an alternatively-spliced shorter ZBP1 isoform (ZBP1-S), which harbours the Zα domains but lacks the RHIMs, and acts as an endogenous inhibitor of the full-length protein (ZBP1-L). Mice and cells expressing only ZBP1-S are resistant to ZBP1-mediated cell death and inflammation. In contrast, cells lacking ZBP1-S show increased ZBP1-L-induced death compared to cells expressing both isoforms. Moreover, loss of the short isoform accelerates and exacerbates skin inflammation induced by ZBP1-mediated necroptosis of RIPK1-deficient keratinocytes, revealing an important physiological role of ZBP1-S. Mechanistically, ZBP1-S suppresses ZBP1-L-mediated cell death by binding to Z-nucleic acids via its Zα domains. Therefore, ZBP1-S acts as an endogenous inhibitor that competes with full-length ZBP1-L for binding Z-nucleic acid ligands to fine-tune ZBP1-mediated cell death and inflammation.
    Keywords:  Cell Death; Inflammation; Necroptosis; ZBP1
    DOI:  https://doi.org/10.1038/s44318-024-00238-7
  3. Dis Model Mech. 2024 Sep 01. pii: dmm050814. [Epub ahead of print]17(9):
      Cancer cells require a constant supply of lipids. Lipids are a diverse class of hydrophobic molecules that are essential for cellular homeostasis, growth and survival, and energy production. How tumors acquire lipids is under intensive investigation, as these mechanisms could provide attractive therapeutic targets for cancer. Cellular lipid metabolism is tightly regulated and responsive to environmental stimuli. Thus, lipid metabolism in cancer is heavily influenced by the tumor microenvironment. In this Review, we outline the mechanisms by which the tumor microenvironment determines the metabolic pathways used by tumors to acquire lipids. We also discuss emerging literature that reveals that lipid availability in the tumor microenvironment influences many metabolic pathways in cancers, including those not traditionally associated with lipid biology. Thus, metabolic changes instigated by the tumor microenvironment have 'ripple' effects throughout the densely interconnected metabolic network of cancer cells. Given the interconnectedness of tumor metabolism, we also discuss new tools and approaches to identify the lipid metabolic requirements of cancer cells in the tumor microenvironment and characterize how these requirements influence other aspects of tumor metabolism.
    Keywords:  Acidosis; Diet; Hypoxia; Lipid metabolism; Nutrient deprivation; Tumor microenvironment
    DOI:  https://doi.org/10.1242/dmm.050814
  4. Cold Spring Harb Perspect Med. 2024 Sep 16. pii: a041555. [Epub ahead of print]
      Fueled by technological and conceptual advancements over the past two decades, research in cancer metabolism has begun to answer questions dating back to the time of Otto Warburg. But, as with most fields, new discoveries lead to new questions. This review outlines the emerging challenges that we predict will drive the next few decades of cancer metabolism research. These include developing a more realistic understanding of how metabolic activities are compartmentalized within cells, tissues, and organs; how metabolic preferences in tumors evolve during cancer progression from nascent, premalignant lesions to advanced, metastatic disease; and, most importantly, how we can best translate basic observations from preclinical models into novel therapies that benefit patients with cancer. With modern tools and an incredible amount of talent focusing on these problems, the upcoming decades should bring transformative discoveries.
    DOI:  https://doi.org/10.1101/cshperspect.a041555
  5. Nat Cardiovasc Res. 2024 Sep 18.
      Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor in metabolic reactions and co-substrate for signaling enzymes. Failing human hearts display decreased expression of the major NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (Nampt) and lower NAD+ levels, and supplementation with NAD+ precursors is protective in preclinical models. Here we show that Nampt loss in adult cardiomyocytes caused depletion of NAD+ along with marked metabolic derangements, hypertrophic remodeling and sudden cardiac deaths, despite unchanged ejection fraction, endurance and mitochondrial respiratory capacity. These effects were directly attributable to NAD+ loss as all were ameliorated by restoring cardiac NAD+ levels with the NAD+ precursor nicotinamide riboside (NR). Electrocardiograms revealed that loss of myocardial Nampt caused a shortening of QT intervals with spontaneous lethal arrhythmias causing sudden cardiac death. Thus, changes in NAD+ concentration can have a profound influence on cardiac physiology even at levels sufficient to maintain energetics.
    DOI:  https://doi.org/10.1038/s44161-024-00542-9
  6. Cell Rep. 2024 Sep 13. pii: S2211-1247(24)01092-1. [Epub ahead of print]43(9): 114741
      Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
    Keywords:  CP: Immunology; CP: Metabolism; Fc receptor; IDO1; IL4I1; cholesterol; glycolysis; immunometabolism; interferon; macrophage; metabolomics; tryptophan metabolism
    DOI:  https://doi.org/10.1016/j.celrep.2024.114741
  7. EMBO J. 2024 Sep 16.
      While mechanisms controlling uncoupling protein-1 (UCP1) in thermogenic adipocytes play a pivotal role in non-shivering thermogenesis, it remains unclear whether F1Fo-ATP synthase function is also regulated in brown adipose tissue (BAT). Here, we show that inhibitory factor 1 (IF1, encoded by Atp5if1), an inhibitor of ATP synthase hydrolytic activity, is a critical negative regulator of brown adipocyte energy metabolism. In vivo, IF1 levels are diminished in BAT of cold-adapted mice compared to controls. Additionally, the capacity of ATP synthase to generate mitochondrial membrane potential (MMP) through ATP hydrolysis (the so-called "reverse mode" of ATP synthase) is increased in brown fat. In cultured brown adipocytes, IF1 overexpression results in an inability of mitochondria to sustain the MMP upon adrenergic stimulation, leading to a quiescent-like phenotype in brown adipocytes. In mice, adeno-associated virus-mediated IF1 overexpression in BAT suppresses adrenergic-stimulated thermogenesis and decreases mitochondrial respiration in BAT. Taken together, our work identifies downregulation of IF1 upon cold as a critical event for the facilitation of the reverse mode of ATP synthase as well as to enable energetic adaptation of BAT to effectively support non-shivering thermogenesis.
    Keywords:  Adipocytes; Metabolism; Mitochondria; Thermogenesis; UCP1
    DOI:  https://doi.org/10.1038/s44318-024-00215-0
  8. Cold Spring Harb Perspect Med. 2024 Sep 16. pii: a041532. [Epub ahead of print]
      Rapidly proliferating cells, including cancer cells, adapt metabolism to meet the increased energetic and biosynthetic demands of cell growth and division. Many rapidly proliferating cells exhibit increased glucose consumption and fermentation regardless of oxygen availability, a phenotype termed aerobic glycolysis or the Warburg effect in cancer. Several explanations for why cells engage in aerobic glycolysis and how it supports proliferation have been proposed, but none can fully explain all conditions and data where aerobic glycolysis is observed. Nevertheless, there is convincing evidence that the Warburg effect is important for the proliferation of many cancers, and that inhibiting either glucose uptake or fermentation can impair tumor growth. Here, we discuss what is known about metabolism associated with aerobic glycolysis and the evidence supporting various explanations for why aerobic glycolysis may be important in cancer and other contexts.
    DOI:  https://doi.org/10.1101/cshperspect.a041532
  9. Cancer Res. 2024 Sep 16. 84(18): 2947-2949
      It has been known that poor tumor perfusion and dysregulated cancer cell metabolism give rise to tumor microenvironments with unphysiologic nutrient levels, but the precise alterations in metabolite abundance are not well defined. In a 2015 study in Cancer Research, Kamphorst and colleagues published a detailed comparison of the metabolome from human pancreatic tumors and benign tissues. Tumors were depleted in glucose and various nonessential amino acids but, surprisingly, enriched in essential amino acids. The authors attributed these nutrient imbalances to macropinocytosis of extracellular proteins, a RAS-driven amino acid acquisition pathway that was found to be increased in human tumors and supports pancreatic cancer cell growth during amino acid starvation. These findings substantially contributed to the understanding of altered nutrient levels in tumors and extracellular proteins as noncanonical nutrients. Intratumoral nutrient levels in different cancer contexts and signaling pathways that regulate nutrient acquisition by cancer cells remain a focus of current research. See related article by Kamphorst and colleagues, Cancer Res 2015;75:544-53.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-24-2447
  10. bioRxiv. 2024 Sep 06. pii: 2024.09.03.610968. [Epub ahead of print]
      Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau ( VHL ) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL , and uncover that loss of Core Binding Factor β (CBF-β) causes cell death in VHL -null ccRCC cell lines and impairs tumour establishment and growth in vivo . This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL -null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-β. Mechanistically, CBF-β loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-β at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-β in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.
    DOI:  https://doi.org/10.1101/2024.09.03.610968
  11. Sci Adv. 2024 Sep 20. 10(38): eadp0719
      Aberrant activation of IL-18 signaling regulates tumor immune evasion and progression. However, the underlying mechanism remains unclear. Here, we report that long-chain acyl-CoA synthase 6 (ACSL6) is highly expressed in liver cancer and correlated with poor prognosis. ACSL6 promotes tumor growth, metastasis, and immune evasion mediated by IL-18, independent of its metabolic enzyme activity. Mechanistically, upon IL-18 stimulation, ACSL6 is phosphorylated by ERK2 at S674 and recruits IL-18RAP to interact with IL-18R1, thereby reinforcing the IL-18R1-IL-18RAP heterodimer and triggering NF-κB-dependent gene expression to facilitate tumor development. Furthermore, the up-regulation of CXCL1 and CXCL5 by ACSL6 promotes tumor-associated neutrophil and tumor-associated macrophage recruitment, thereby inhibiting cytotoxic CD8+ T cell infiltration. Ablation or S674A mutation of ACSL6 potentiated anti-PD-1 therapeutic efficacy by increasing the effector activity of intertumoral CD8+ T cells. We revealed that ACSL6 is a potential adaptor that activates IL-18-NF-κB axis-mediated tumor immune evasion and provides valuable insights for developing effective immunotherapy strategies for cancer.
    DOI:  https://doi.org/10.1126/sciadv.adp0719
  12. F1000Res. 2023 ;12 116
      In modern society, there is a growing population affected by circadian clock disruption through night shift work, artificial light-at-night exposure, and erratic eating patterns. Concurrently, the rate of cancer incidence in individuals under the age of 50 is increasing at an alarming rate, and though the precise risk factors remain undefined, the potential links between circadian clock deregulation and young-onset cancers is compelling. To explore the complex biological functions of the clock, this review will first provide a framework for the mammalian circadian clock in regulating critical cellular processes including cell cycle control, DNA damage response, DNA repair, and immunity under conditions of physiological homeostasis. Additionally, this review will deconvolute the role of the circadian clock in cancer, citing divergent evidence suggesting tissue-specific roles of the biological pacemaker in cancer types such as breast, lung, colorectal, and hepatocellular carcinoma. Recent evidence has emerged regarding the role of the clock in the intestinal epithelium, as well as new insights into how genetic and environmental disruption of the clock is linked with colorectal cancer, and the molecular underpinnings of these findings will be discussed. To place these findings within a context and framework that can be applied towards human health, a focus on how the circadian clock can be leveraged for cancer prevention and chronomedicine-based therapies will be outlined.
    Keywords:  Wnt signaling; cancer; chronomedicine; chronotherapy; circadian clock; colorectal cancer; early-onset cancer; night shift work
    DOI:  https://doi.org/10.12688/f1000research.128716.2
  13. Trends Cancer. 2024 Sep 13. pii: S2405-8033(24)00172-9. [Epub ahead of print]
      Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.
    Keywords:  cancer metabolism; epigenetics; histones; metabolites; novel therapeutics; post-translational modifications
    DOI:  https://doi.org/10.1016/j.trecan.2024.08.005
  14. Int J Cancer. 2024 Sep 18.
      The Epstein-Barr virus (EBV), the first identified human tumour virus, infects over 95% of the individuals globally and has the potential to induce different types of cancers. It is increasingly recognised that EBV infection not only alters cellular metabolism, contributing to neoplastic transformation, but also utilises several non-cell autonomous mechanisms to shape the metabolic milieu in the tumour microenvironment (TME) and its constituent stromal and immune cells. In this review, we explore how EBV modulates metabolism to shape the interactions between cancer cells, stromal cells, and immune cells within a hypoxic and acidic TME. We highlight how metabolites resulting from EBV infection act as paracrine factors to regulate the TME, and how targeting them can disrupt barriers to immunotherapy.
    Keywords:  EBV‐associated malignancies; Epstein–Barr virus; nasopharyngeal cancer; tumour metabolism; tumour microenvironment
    DOI:  https://doi.org/10.1002/ijc.35192
  15. PNAS Nexus. 2024 Sep;3(9): pgae357
      The matrix metalloproteinase MMP14 is a ubiquitously expressed, membrane-bound, secreted endopeptidase that proteolyzes substrates to regulate development, signaling, and metabolism. However, the spatial and contextual events inciting MMP14 activation and its metabolic sequelae are not fully understood. Here, we introduce an inducible, hepatocyte-specific MMP14-deficient model (MMP14LKO mice) to elucidate cell-intrinsic and systemic MMP14 function. We show that hepatocyte MMP14 mediates diet-induced body weight gain, peripheral adiposity, and impaired glucose homeostasis and drives diet-induced liver triglyceride accumulation and induction of hepatic inflammatory and fibrotic gene expression. Single-nucleus RNA sequencing revealed that hepatocyte MMP14 mediates Kupffer cell and T-cell accumulation and promotes diet-induced hepatocellular subpopulation shifts toward protection against lipid absorption. MMP14 co-immunoprecipitation and proteomic analyses revealed MMP14 substrate binding across both inflammatory and cytokine signaling, as well as metabolic pathways. Strikingly, hepatocyte MMP14 loss-of-function suppressed skeletal muscle and adipose inflammation in vivo, and in a reductionist adipose-hepatocyte co-culture model. Finally, we reveal that trehalose-type glucose transporter inhibitors decrease hepatocyte MMP14 gene expression and nominate these inhibitors as translatable therapeutic metabolic agents. We conclude that hepatocyte MMP14 drives liver and inter-organ inflammatory and metabolic sequelae of obesogenic dietary insult. Modulating MMP14 activation and blockade thus represents a targetable node in the pathogenesis of hepatic inflammation.
    Keywords:  MMP14; Major: Medical Science and Minor: Cell Biology; energy metabolism; insulin resistance; metabolic dysfunction-associated steatotic liver disease; obesity
    DOI:  https://doi.org/10.1093/pnasnexus/pgae357
  16. Cancer Res. 2024 Sep 16. 84(18): 2944-2946
      Published in Cancer Research in 2007, Clark and colleagues first introduced the concept that the immune microenvironment evolves in lockstep with the progression of pancreatic cancer. Leveraging genetically engineered mouse models of the disease that were described a few years earlier, Clark and colleagues used a combination of approaches to describe the dynamics of immune evolution in precursor lesions all the way to overt malignancy. They discovered that immunosuppression is established at the earliest stages of carcinogenesis. Here, we discuss their findings, how they led to a wealth of functional work, and how they have been expanded upon since the advent of -omics technologies. See related article by Clark and colleagues, Cancer Res 2007;67:9518-27.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-24-2732
  17. Nat Cell Biol. 2024 Sep 19.
      Chromatin architecture is a fundamental mediator of genome function. Fasting is a major environmental cue across the animal kingdom, yet how it impacts three-dimensional (3D) genome organization is unknown. Here we show that fasting induces an intestine-specific, reversible and large-scale spatial reorganization of chromatin in Caenorhabditis elegans. This fasting-induced 3D genome reorganization requires inhibition of the nutrient-sensing mTOR pathway, acting through the regulation of RNA Pol I, but not Pol II nor Pol III, and is accompanied by remodelling of the nucleolus. By uncoupling the 3D genome configuration from the animal's nutritional status, we find that the expression of metabolic and stress-related genes increases when the spatial reorganization of chromatin occurs, showing that the 3D genome might support the transcriptional response in fasted animals. Our work documents a large-scale chromatin reorganization triggered by fasting and reveals that mTOR and RNA Pol I shape genome architecture in response to nutrients.
    DOI:  https://doi.org/10.1038/s41556-024-01512-w
  18. Nat Commun. 2024 Sep 14. 15(1): 8066
      High mitochondrial DNA (mtDNA) amount has been reported to be beneficial for resistance and recovery of metabolic stress, while increased mtDNA synthesis activity can drive aging signs. The intriguing contrast of these two mtDNA boosting outcomes prompted us to jointly elevate mtDNA amount and frequency of replication in mice. We report that high activity of mtDNA synthesis inhibits perinatal metabolic maturation of the heart. The offspring of the asymptomatic parental lines are born healthy but manifest dilated cardiomyopathy and cardiac collapse during the first days of life. The pathogenesis, further enhanced by mtDNA mutagenesis, involves prenatal upregulation of mitochondrial integrated stress response and the ferroptosis-inducer MESH1, leading to cardiac fibrosis and cardiomyocyte death after birth. Our evidence indicates that the tight control of mtDNA replication is critical for early cardiac homeostasis. Importantly, ferroptosis sensitivity is a potential targetable mechanism for infantile-onset cardiomyopathy, a common manifestation of mitochondrial diseases.
    DOI:  https://doi.org/10.1038/s41467-024-52164-1
  19. Biochimie. 2024 Sep 17. pii: S0300-9084(24)00213-X. [Epub ahead of print]
      Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.
    Keywords:  SASP; Senescence; cell cycle; lipids
    DOI:  https://doi.org/10.1016/j.biochi.2024.09.003
  20. Brain. 2024 Aug 30. pii: awae268. [Epub ahead of print]
      Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism. Cardiolipin (CL), the signature PL of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesised and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to CL biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human CL-related PMDs are not fully characterised. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo CL biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy, and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy, and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterise the molecular defects associated with mutant PTPMT1 and confirm the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterise the functional role of PTPMT1 in CL homeostasis, we established a zebrafish ptpmt1 knockout model associated with abnormalities in body size, developmental alterations, decreased total CL levels, and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired CL metabolism, highlight the contribution of aberrant CL metabolism towards human disease, and emphasise the importance of normal CL homeostasis during neurodevelopment.
    Keywords:  cardiolipin; mitochondria; mitochondrial dynamics; neurodevelopmental syndrome; primary mitochondrial disease
    DOI:  https://doi.org/10.1093/brain/awae268
  21. BMC Biol. 2024 Sep 16. 22(1): 208
      BACKGROUND: The natural light environment is far more complex than that experienced by animals under laboratory conditions. As a burrowing species, wild mice are able to self-modulate their light exposure, a concept known as light environment sampling behaviour. By contrast, under laboratory conditions mice have little opportunity to exhibit this behaviour. To address this issue, here we introduce a simple nestbox paradigm to allow mice to self-modulate their light environment. Dark nestboxes fitted with passive infrared sensors were used to monitor locomotor activity, circadian entrainment, decision making and light environment sampling behaviour.RESULTS: Under these conditions, mice significantly reduce their light exposure to an average of just 0.8 h across a 24 h period. In addition, mice show a distinct pattern of light environment sampling behaviour, with peaks at dawn and dusk under a ramped light dark cycle. Furthermore, we show that the timing of light environment sampling behaviour depends upon endogenous circadian rhythms and is abolished in mice lacking a circadian clock, indicating a feedback loop between light, the circadian clock and behaviour.
    CONCLUSIONS: Our results highlight the important role of behaviour in modifying the light signals available for circadian entrainment under natural conditions.
    Keywords:  Behaviour; Circadian ecology; Circadian rhythm; Cryptochrome; Light sampling; Nestbox; Photoentrainment
    DOI:  https://doi.org/10.1186/s12915-024-01995-x
  22. Nat Commun. 2024 Sep 19. 15(1): 8237
      Cells possess multiple mitochondrial DNA (mtDNA) copies, which undergo semi-autonomous replication and stochastic inheritance. This enables mutant mtDNA variants to arise and selfishly compete with cooperative (wildtype) mtDNA. Selfish mitochondrial genomes are subject to selection at different levels: they compete against wildtype mtDNA directly within hosts and indirectly through organism-level selection. However, determining the relative contributions of selection at different levels has proven challenging. We overcome this challenge by combining mathematical modeling with experiments designed to isolate the levels of selection. Applying this approach to many selfish mitochondrial genotypes in Caenorhabditis elegans reveals an unexpected diversity of evolutionary mechanisms. Some mutant genomes persist at high frequency for many generations, despite a host fitness cost, by aggressively outcompeting cooperative genomes within hosts. Conversely, some mutant genomes persist by evading inter-organismal selection. Strikingly, the mutant genomes vary dramatically in their susceptibility to genetic drift. Although different mechanisms can cause high frequency of selfish mtDNA, we show how they give rise to characteristically different distributions of mutant frequency among individuals. Given that heteroplasmic frequency represents a key determinant of phenotypic severity, this work outlines an evolutionary theoretic framework for predicting the distribution of phenotypic consequences among individuals carrying a selfish mitochondrial genome.
    DOI:  https://doi.org/10.1038/s41467-024-52596-9
  23. Cell Rep. 2024 Sep 13. pii: S2211-1247(24)01088-X. [Epub ahead of print]43(9): 114737
      Itaconate serves as an immune-specific metabolite that regulates gene transcription and metabolism in both host and pathogens. S-itaconation is a post-translational modification that regulates immune response; however, its antimicrobial mechanism under the physiological condition remains unclear. Here, we apply a bioorthogonal itaconate probe to perform global profiling of S-itaconation in living pathogens, including S. Typhimurium, S. aureus, and P. aeruginosa. Some functional enzymes are covalently modified by itaconate, including those involved in the de novo purine biosynthesis pathway. Further biochemical studies demonstrate that itaconate suppresses this specific pathway to limit Salmonella growth by inhibiting the initiator purF to lower de novo purine biosynthesis and simultaneously targeting the guaABC cluster to block the salvage route. Our chemoproteomic study provides a global portrait of S-itaconation in multiple pathogens and offers a valuable resource for finding susceptible targets to combat drug-resistant pathogens in the future.
    Keywords:  CP: Microbiology; bioorthogonal probe; chemoproteomics; de novo purine biosynthesis; itaconate; pathogens
    DOI:  https://doi.org/10.1016/j.celrep.2024.114737
  24. Nat Commun. 2024 Sep 17. 15(1): 8134
      Cancer-associated inflammation is a double-edged sword possessing both pro- and anti-tumor properties through ill-defined tumor-immune dynamics. While we previously identified a carcinoma tumor-intrinsic resistance pathway, basal-to-squamous cell carcinoma transition, here, employing a multipronged single-cell and spatial-omics approach, we identify an inflammation and therapy-enriched tumor state we term basal-to-inflammatory transition. Basal-to-inflammatory transition signature correlates with poor overall patient survival in many epithelial tumors. Basal-to-squamous cell carcinoma transition and basal-to-inflammatory transition occur in adjacent but distinct regions of a single tumor: basal-to-squamous cell carcinoma transition arises within the core tumor nodule, while basal-to-inflammatory transition emerges from a specialized inflammatory environment defined by a tumor-associated TREM1 myeloid signature. TREM1 myeloid-derived cytokines IL1 and OSM induce basal-to-inflammatory transition in vitro and in vivo through NF-κB, lowering sensitivity of patient basal cell carcinoma explant tumors to Smoothened inhibitor treatment. This work deepens our knowledge of the heterogeneous local tumor microenvironment and nominates basal-to-inflammatory transition as a drug-resistant but targetable tumor state driven by a specialized inflammatory microenvironment.
    DOI:  https://doi.org/10.1038/s41467-024-52394-3
  25. Nat Aging. 2024 Sep 16.
    Biomarkers of Aging Consortium
      Biomarkers of aging (BOA) are quantitative parameters that predict biological age and ideally its changes in response to interventions. In recent years, many promising molecular and omic BOA have emerged with an enormous potential for translational geroscience and improving healthspan. However, clinical translation remains limited, in part due to the gap between preclinical research and the application of BOA in clinical research and other translational settings. We surveyed experts in these areas to better understand current challenges for the translation of aging biomarkers. We identified six key barriers to clinical translation and developed guidance for the field to overcome them. Core recommendations include linking BOA to clinically actionable insights, improving affordability and availability to broad populations and validation of biomarkers that are robust and responsive at the level of individuals. Our work provides key insights and practical recommendations to overcome barriers impeding clinical translation of BOA.
    DOI:  https://doi.org/10.1038/s43587-024-00683-3
  26. EMBO J. 2024 Sep 16.
      CD8 + T cells have critical roles in tumor control, but a range of factors in their microenvironment such as low pH can suppress their function. Here, we demonstrate that acidity restricts T-cell expansion mainly through impairing IL-2 responsiveness, lowers cytokine secretion upon re-activation, and reduces the cytolytic capacity of CD8 + T cells expressing low-affinity TCR. We further find decreased mTORC1 signaling activity and c-Myc levels at low pH. Mechanistically, nuclear/cytoplasmic acidification is linked to mTORC1 suppression in a Rheb-, Akt/TSC2/PRAS40-, GATOR1- and Lkb1/AMPK-independent manner, while c-Myc levels drop due to both decreased transcription and higher levels of proteasome-mediated degradation. In addition, lower intracellular levels of glutamine, glutamate, and aspartate, as well as elevated proline levels are observed with no apparent impact on mTORC1 signaling or c-Myc levels. Overall, we suggest that, due to the broad impact of acidity on CD8 + T cells, multiple interventions will be required to restore T-cell function unless intracellular pH is effectively controlled.
    Keywords:  Acidity; CD8+ T cell; IL-2; c-Myc; mTOR
    DOI:  https://doi.org/10.1038/s44318-024-00235-w
  27. J Clin Invest. 2024 Sep 17. pii: e170246. [Epub ahead of print]134(18):
      Fibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice. Functional in vivo KO studies in mice confirmed that Adamts12 was critical during fibrogenesis in both heart and kidney. Mechanistically, using a combination of spatial transcriptomics and expression of catalytically active or inactive ADAMTS12, we demonstrated that the active protease of ADAMTS12 shaped ECM composition and cleaved hemicentin 1 (HMCN1) to enable the activation and migration of a distinct injury-responsive fibroblast subset defined by aberrant high JAK/STAT signaling.
    Keywords:  Cardiology; Fibrosis; Nephrology
    DOI:  https://doi.org/10.1172/JCI170246
  28. Nat Cell Biol. 2024 Sep 17.
      Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, whereas the ubiquitously expressed extended synaptotagmin-2 does not show a preference for PM curvature. At the mechanistic level, we find that the low-complexity region (LCR) and membrane occupation and recognition nexus (MORN) motifs of junctophilins can bind independently to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins-Eps15 homology domain-containing proteins-that interact with the MORN_LCR motifs and facilitate the preferential tethering of junctophilins to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
    DOI:  https://doi.org/10.1038/s41556-024-01511-x
  29. Nat Methods. 2024 Sep 19.
      Single-cell data analysis can infer dynamic changes in cell populations, for example across time, space or in response to perturbation, thus deriving pseudotime trajectories. Current approaches comparing trajectories often use dynamic programming but are limited by assumptions such as the existence of a definitive match. Here we describe Genes2Genes, a Bayesian information-theoretic dynamic programming framework for aligning single-cell trajectories. It is able to capture sequential matches and mismatches of individual genes between a reference and query trajectory, highlighting distinct clusters of alignment patterns. Across both real world and simulated datasets, it accurately inferred alignments and demonstrated its utility in disease cell-state trajectory analysis. In a proof-of-concept application, Genes2Genes revealed that T cells differentiated in vitro match an immature in vivo state while lacking expression of genes associated with TNF signaling. This demonstrates that precise trajectory alignment can pinpoint divergence from the in vivo system, thus guiding the optimization of in vitro culture conditions.
    DOI:  https://doi.org/10.1038/s41592-024-02378-4
  30. NPJ Syst Biol Appl. 2024 Sep 17. 10(1): 104
      Biological systems are robust and redundant. The redundancy can manifest as alternative metabolic pathways. Synthetic double lethals are pairs of reactions that, when deleted simultaneously, abrogate cell growth. However, removing one reaction allows the rerouting of metabolites through alternative pathways. Little is known about these hidden linkages between pathways. Understanding them in the context of pathogens is useful for therapeutic innovations. We propose a constraint-based optimisation approach to identify inter-dependencies between metabolic pathways. It minimises rerouting between two reaction deletions, corresponding to a synthetic lethal pair, and outputs the set of reactions vital for metabolic rewiring, known as the synthetic lethal cluster. We depict the results for different pathogens and show that the reactions span across metabolic modules, illustrating the complexity of metabolism. Finally, we demonstrate how the two classes of synthetic lethals play a role in metabolic networks and influence the different properties of a synthetic lethal cluster.
    DOI:  https://doi.org/10.1038/s41540-024-00426-5
  31. Nat Commun. 2024 Sep 14. 15(1): 8070
      Recent advances in high-resolution mapping of spatial interactions among regulatory elements support the existence of complex topological assemblies of enhancers and promoters known as enhancer-promoter hubs or cliques. Yet, organization principles of these multi-interacting enhancer-promoter hubs and their potential role in regulating gene expression in cancer remain unclear. Here, we systematically identify enhancer-promoter hubs in breast cancer, lymphoma, and leukemia. We find that highly interacting enhancer-promoter hubs form at key oncogenes and lineage-associated transcription factors potentially promoting oncogenesis of these diverse cancer types. Genomic and optical mapping of interactions among enhancer and promoter elements further show that topological alterations in hubs coincide with transcriptional changes underlying acquired resistance to targeted therapy in T cell leukemia and B cell lymphoma. Together, our findings suggest that enhancer-promoter hubs are dynamic and heterogeneous topological assemblies with the potential to control gene expression circuits promoting oncogenesis and drug resistance.
    DOI:  https://doi.org/10.1038/s41467-024-52375-6
  32. Nat Commun. 2024 Sep 12. 15(1): 7989
      There is a growing interest in the creation of engineered condensates formed via liquid-liquid phase separation (LLPS) to exert precise cellular control in prokaryotes. However, de novo design of cellular condensates to control metabolic flux or protein translation remains a challenge. Here, we present a synthetic condensate platform, generated through the incorporation of artificial, disordered proteins to realize specific functions in Bacillus subtilis. To achieve this, the "stacking blocks" strategy is developed to rationally design a series of LLPS-promoting proteins for programming condensates. Through the targeted recruitment of biomolecules, our investigation demonstrates that cellular condensates effectively sequester biosynthetic pathways. We successfully harness this capability to enhance the biosynthesis of 2'-fucosyllactose by 123.3%. Furthermore, we find that condensates can enhance the translation specificity of tailored enzyme fourfold, and can increase N-acetylmannosamine titer by 75.0%. Collectively, these results lay the foundation for the design of engineered condensates endowed with multifunctional capacities.
    DOI:  https://doi.org/10.1038/s41467-024-52411-5
  33. Nat Rev Nephrol. 2024 Sep 17.
      Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.
    DOI:  https://doi.org/10.1038/s41581-024-00889-z
  34. EMBO Rep. 2024 Sep 18.
      Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.
    Keywords:  Adaptation; Aneuploidy; Chromosomal Instability; Inflammation
    DOI:  https://doi.org/10.1038/s44319-024-00252-0
  35. Nat Commun. 2024 Sep 18. 15(1): 8214
      CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.
    DOI:  https://doi.org/10.1038/s41467-024-52523-y
  36. Cell. 2024 Sep 12. pii: S0092-8674(24)00956-5. [Epub ahead of print]
      Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.
    Keywords:  CAR T therapy; CD8(+) T cells; TCR-T therapy; TIL therapy; Talin 2; bone marrow stromal cells; cancer immunotherapy; immune metabolism; mitochondrial transfer; nanotubes
    DOI:  https://doi.org/10.1016/j.cell.2024.08.029
  37. Genes Dev. 2024 Sep 18.
      Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
    Keywords:  aging; cellular plasticity; epigenetics; rejuvenation; reprogramming; stem cells
    DOI:  https://doi.org/10.1101/gad.351728.124
  38. Autophagy. 2024 Sep 18.
      The KEAP1-NFE2L2 axis is essential for the cellular response against metabolic and oxidative stress. KEAP1 is an adaptor protein of CUL3 (cullin 3) ubiquitin ligase that controls the cellular levels of NFE2L2, a critical transcription factor of several cytoprotective genes. Oxidative stress, defective autophagy and pathogenic infections activate NFE2L2 signaling through phosphorylation of the autophagy receptor protein SQSTM1, which competes with NFE2L2 for binding to KEAP1. Here we show that phosphoribosyl-linked serine ubiquitination of SQSTM1 catalyzed by SidE effectors of Legionella pneumophila controls NFE2L2 signaling and cell metabolism upon Legionella infection. Serine ubiquitination of SQSTM1 sterically blocks its binding to KEAP1, resulting in NFE2L2 ubiquitination and degradation. This reduces NFE2L2-dependent antioxidant synthesis in the early phase of infection. Levels of serine ubiquitinated SQSTM1 diminish in the later stage of infection allowing the expression of NFE2L2-target genes; causing a differential regulation of the host metabolome and proteome in a NFE2L2-dependent manner.
    Keywords:  Antioxidants; KEAP1; bacterial infection; legionella pneumophila; oxidative stress; reactive oxygen species
    DOI:  https://doi.org/10.1080/15548627.2024.2404375
  39. Nature. 2024 Sep 18.
      Tissue-selective chemoattractants direct lymphocytes to epithelial surfaces to establish local immune environments, regulate immune responses to food antigens and commensal organisms, and protect from pathogens. Homeostatic chemoattractants for small intestines, colon, and skin are known1 2, but chemotropic mechanisms selective for respiratory tract and other non-intestinal mucosal tissues (NIMT) remain poorly understood. Here we leveraged diverse omics datasets to identify GPR25 as a lymphocyte receptor for CXCL17, a chemoattractant cytokine whose expression by epithelial cells of airways, upper gastrointestinal and squamous mucosae unifies the NIMT and distinguishes them from intestinal mucosae. Single-cell transcriptomic analyses show that GPR25 is induced on innate lymphocytes prior to emigration to the periphery, and is imprinted in secondary lymphoid tissues on activated B and T cells responding to immune challenge. GPR25 characterizes B and T tissue resident memory and regulatory T lymphocytes in NIMT and lungs in humans and mediates lymphocyte homing to barrier epithelia of the airways, oral cavity, stomach, biliary and genitourinary tracts in mouse models. GPR25 is also expressed by T cells in cerebrospinal fluid and CXCL17 by neurons, suggesting a role in CNS immune regulation. We reveal widespread imprinting of GPR25 on regulatory T cells, suggesting a mechanistic link to population genetic evidence that GPR25 is protective in autoimmunity3,4. Our results define a GPR25-CXCL17 chemoaffinity axis with the potential to integrate immunity and tolerance at non-intestinal mucosae and the CNS.
    DOI:  https://doi.org/10.1038/s41586-024-08043-2
  40. Nat Methods. 2024 Sep 18.
      Spatial omics technologies characterize tissue molecular properties with spatial information, but integrating and comparing spatial data across different technologies and modalities is challenging. A comparative analysis tool that can search, match and visualize both similarities and differences of molecular features in space across multiple samples is lacking. To address this, we introduce CAST (cross-sample alignment of spatial omics), a deep graph neural network-based method enabling spatial-to-spatial searching and matching at the single-cell level. CAST aligns tissues based on intrinsic similarities of spatial molecular features and reconstructs spatially resolved single-cell multi-omic profiles. CAST further allows spatially resolved differential analysis (∆Analysis) to pinpoint and visualize disease-associated molecular pathways and cell-cell interactions and single-cell relative translational efficiency profiling to reveal variations in translational control across cell types and regions. CAST serves as an integrative framework for seamless single-cell spatial data searching and matching across technologies, modalities and sample conditions.
    DOI:  https://doi.org/10.1038/s41592-024-02410-7
  41. Trends Cancer. 2024 Sep 16. pii: S2405-8033(24)00169-9. [Epub ahead of print]
      Growing evidence highlights the importance of tumor endothelial cells (TECs) in the tumor microenvironment (TME) for promoting tumor growth and evading immune responses. Immunomodulatory endothelial cells (IMECs) represent a distinct plastic phenotype of ECs that exerts the ability to modulate immunity in health and disease. This review discusses our current understanding of IMECs in cancer biology, scrutinizing insights from single-cell reports to compare their characteristics and function dynamics across diverse tumor types, conditions, and species. We investigate possible implications of exploiting IMECs in the context of cancer treatment, particularly examining their influence on the efficacy of existing therapies and the potential to leverage them as targets in optimizing immunotherapeutic strategies.
    Keywords:  angiogenesis; cancer; endothelial cell; immunomodulation; immunotherapy; tumor
    DOI:  https://doi.org/10.1016/j.trecan.2024.08.002
  42. Cell Death Differ. 2024 Sep 18.
      Upregulation of mitochondrial respiration coupled with high ROS-scavenging capacity is a characteristic shared by drug-tolerant cells in several cancers. As translational fidelity is essential for cell fitness, protection of the mitochondrial and cytosolic ribosomes from oxidative damage is pivotal. While mechanisms for recognising and repairing such damage exist in the cytoplasm, the corresponding process in the mitochondria remains unclear.By performing Ascorbate PEroXidase (APEX)-proximity ligation assay directed to the mitochondrial matrix followed by isolation and sequencing of RNA associated to mitochondrial proteins, we identified the nuclear-encoded lncRNA ROSALIND as an interacting partner of ribosomes. ROSALIND is upregulated in recurrent tumours and its expression can discriminate between responders and non-responders to immune checkpoint blockade in a melanoma cohort of patients. Featuring an unusually high G content, ROSALIND serves as a substrate for oxidation. Consequently, inhibiting ROSALIND leads to an increase in ROS and protein oxidation, resulting in severe mitochondrial respiration defects. This, in turn, impairs melanoma cell viability and increases immunogenicity both in vitro and ex vivo in preclinical humanised cancer models. These findings underscore the role of ROSALIND as a novel ROS buffering system, safeguarding mitochondrial translation from oxidative stress, and shed light on potential therapeutic strategies for overcoming cancer therapy resistance.
    DOI:  https://doi.org/10.1038/s41418-024-01377-4