Cancer Res. 2024 Apr 01. 84(7): 950-952
Acute myeloid leukemia (AML) is one of the most prevalent blood cancers, characterized by a dismal survival rate. This poor outcome is largely attributed to AML cells that persist despite treatment and eventually result in relapse. Relapse-initiating cells exhibit diverse resistance mechanisms, encompassing genetic factors and, more recently discovered, nongenetic factors such as metabolic adaptations. Leukemic stem cells (LSC) rely on mitochondrial metabolism for their survival, whereas hematopoietic stem cells primarily depend on glycolysis. Furthermore, following treatments such as cytarabine, a standard in AML treatment for over four decades, drug-persisting leukemic cells exhibit an enhanced reliance on mitochondrial metabolism. In this issue of Cancer Research, two studies investigated dependencies of AML cells on two respiratory substrates, α-ketoglutarate and lactate-derived pyruvate, that support mitochondrial oxidative phosphorylation (OXPHOS) following treatment with the imipridone ONC-213 and the BET inhibitor INCB054329, respectively. Targeting lactate utilization by interfering with monocarboxylate transporter 1 (MCT1 or SLC16A1) or lactate dehydrogenase effectively sensitized cells to BET inhibition in vitro and in vivo. In addition, ONC-213 affected αKGDH, a pivotal NADH-producing enzyme of the TCA cycle, to induce a mitochondrial stress response through ATF4 activation that diminished the expression of the antiapoptotic protein MCL1, consequently promoting apoptosis of AML cells. In summary, targeting these mitochondrial dependencies might be a promising strategy to kill therapy-naïve and treatment-resistant OXPHOS-reliant LSCs and to delay or prevent relapse. See related articles by Monteith et al., p. 1101 and Su et al., p. 1084.