bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2022–04–10
74 papers selected by
Christian Frezza, , University of Cambridge, MRC Cancer Unit



  1. Nature. 2022 Apr 06.
      Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.
    DOI:  https://doi.org/10.1038/s41586-022-04557-9
  2. Cell Death Differ. 2022 Apr 07.
      Neurofibromin loss drives neoplastic growth and a rewiring of mitochondrial metabolism. Here we report that neurofibromin ablation dampens expression and activity of NADH dehydrogenase, the respiratory chain complex I, in an ERK-dependent fashion, decreasing both respiration and intracellular NAD+. Expression of the alternative NADH dehydrogenase NDI1 raises NAD+/NADH ratio, enhances the activity of the NAD+-dependent deacetylase SIRT3 and interferes with tumorigenicity in neurofibromin-deficient cells. The antineoplastic effect of NDI1 is mimicked by administration of NAD+ precursors or by rising expression of the NAD+ deacetylase SIRT3 and is synergistic with ablation of the mitochondrial chaperone TRAP1, which augments succinate dehydrogenase activity further contributing to block pro-neoplastic metabolic changes. These findings shed light on bioenergetic adaptations of tumors lacking neurofibromin, linking complex I inhibition to mitochondrial NAD+/NADH unbalance and SIRT3 inhibition, as well as to down-regulation of succinate dehydrogenase. This metabolic rewiring could unveil attractive therapeutic targets for neoplasms related to neurofibromin loss.
    DOI:  https://doi.org/10.1038/s41418-022-00991-4
  3. Sci Adv. 2022 Apr 08. 8(14): eabn7105
      The mitochondrial integrated stress response (mitoISR) has emerged as a major adaptive pathway to respiratory chain deficiency, but both the tissue specificity of its regulation, and how mitoISR adapts to different levels of mitochondrial dysfunction are largely unknown. Here, we report that diverse levels of mitochondrial cardiomyopathy activate mitoISR, including high production of FGF21, a cytokine with both paracrine and endocrine function, shown to be induced by respiratory chain dysfunction. Although being fully dispensable for the cell-autonomous and systemic responses to severe mitochondrial cardiomyopathy, in the conditions of mild-to-moderate cardiac OXPHOS dysfunction, FGF21 regulates a portion of mitoISR. In the absence of FGF21, a large part of the metabolic adaptation to mitochondrial dysfunction (one-carbon metabolism, transsulfuration, and serine and proline biosynthesis) is strongly blunted, independent of the primary mitoISR activator ATF4. Collectively, our work highlights the complexity of mitochondrial stress responses by revealing the importance of the tissue specificity and dose dependency of mitoISR.
    DOI:  https://doi.org/10.1126/sciadv.abn7105
  4. J Am Chem Soc. 2022 Apr 05.
      Respiratory complex I is an essential metabolic enzyme that uses the energy from NADH oxidation and ubiquinone reduction to translocate protons across an energy transducing membrane and generate the proton motive force for ATP synthesis. Under specific conditions, complex I can also catalyze the reverse reaction, Δp-linked oxidation of ubiquinol to reduce NAD+ (or O2), known as reverse electron transfer (RET). Oxidative damage by reactive oxygen species generated during RET underpins ischemia reperfusion injury, but as RET relies on several converging metabolic pathways, little is known about its mechanism or regulation. Here, we demonstrate Δp-linked RET through complex I in a synthetic proteoliposome system for the first time, enabling complete kinetic characterization of RET catalysis. We further establish the capability of our system by showing how RET in the mammalian enzyme is regulated by the active-deactive transition and by evaluating RET by complex I from several species in which direct assessment has not been otherwise possible. We thus provide new insights into the reversibility of complex I catalysis, an important but little understood mechanistic and physiological feature.
    DOI:  https://doi.org/10.1021/jacs.2c00274
  5. FASEB Bioadv. 2022 Mar;4(3): 197-210
      Classically, mitochondrial respiration responds to decreased membrane potential (ΔΨ) by increasing respiration. However, we found that for succinate-energized complex II respiration in skeletal muscle mitochondria (unencumbered by rotenone), low ΔΨ impairs respiration by a mechanism culminating in oxaloacetate (OAA) inhibition of succinate dehydrogenase (SDH). Here, we investigated whether this phenomenon extends to far different mitochondria of a tissue wherein ΔΨ is intrinsically low, i.e., interscapular brown adipose tissue (IBAT). Also, to advance our knowledge of the mechanism, we performed isotopomer studies of metabolite flux not done in our previous muscle studies. In additional novel work, we addressed possible ways ADP might affect the mechanism in IBAT mitochondria. UCP1 activity, and consequently ΔΨ, were perturbed both by GDP, a well-recognized potent inhibitor of UCP1 and by the chemical uncoupler carbonyl cyanide m-chlorophenyl hydrazone (FCCP). In succinate-energized mitochondria, GDP increased ΔΨ but also increased rather than decreased (as classically predicted under low ΔΨ) O2 flux. In GDP-treated mitochondria, FCCP reduced potential but also decreased respiration. Metabolite studies by NMR and flux analyses by LC-MS support a mechanism, wherein ΔΨ effects on the production of reactive oxygen alters the NADH/NAD+ ratio affecting OAA accumulation and, hence, OAA inhibition of SDH. We also found that ADP-altered complex II respiration in complex fashion probably involving decreased ΔΨ due to ATP synthesis, a GDP-like nucleotide inhibition of UCP1, and allosteric enzyme action. In summary, complex II respiration in IBAT mitochondria is regulated by UCP1-dependent ΔΨ altering substrate flow through OAA and OAA inhibition of SDH.
    Keywords:  bioenergetics; brown adipose tissue; metabolism; metabolomics; mitochondria; mitochondrial metabolism; reactive oxygen species (ROS); uncoupling protein
    DOI:  https://doi.org/10.1096/fba.2021-00137
  6. Semin Cancer Biol. 2022 Apr 04. pii: S1044-579X(22)00079-7. [Epub ahead of print]
      Cancer cells possess various biological processes to ensure survival and proliferation even under unfavorable conditions such as hypoxia, nutrient deprivation, and oxidative stress. One of the defining hallmarks of cancer cells is their ability to reprogram their metabolism to suit their needs. Building on over a decade of research in the field of cancer metabolism, numerous unique metabolic capabilities are still being discovered in the present day. One recent discovery in the field of cancer metabolism that was hitherto unexpected is the ability of cancer cells to store vital metabolites in forms that can be readily converted to glucose and glutamine for later use. We called these forms "metabolic reservoirs." While many studies have been conducted on storage molecules such as glycogen, triglyceride, and phosphocreatine (PCr), few have explored the concept of "metabolic reservoirs" for cancer as a whole. In this review, we will provide an overview of this concept, the previously known reservoirs including glycogen, triglyceride, and PCr, and the new discoveries made including the newly discovered reservoirs such as N-acetyl-aspartyl-glutamate (NAAG), lactate, and γ- aminobutyric acid (GABA). We will also discuss whether disrupting these reservoir cycles may be a new avenue for cancer treatment.
    Keywords:  Metabolic reservoir; N-acetyl-aspartyl-glutamate (NAAG); cancer metabolism; gamma aminobutyric acid (GABA); lactate
    DOI:  https://doi.org/10.1016/j.semcancer.2022.03.023
  7. Nat Commun. 2022 Apr 04. 13(1): 1789
      The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity.
    DOI:  https://doi.org/10.1038/s41467-022-29426-x
  8. Nat Commun. 2022 Apr 06. 13(1): 1875
      Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes.
    DOI:  https://doi.org/10.1038/s41467-022-29481-4
  9. Subcell Biochem. 2022 ;98 15-40
      Macropinocytosis is an evolutionarily conserved endocytic pathway that mediates the nonselective acquisition of extracellular material via large endocytic vesicles known as macropinosomes. In addition to other functions, this uptake pathway supports cancer cell metabolism through the uptake of nutrients. Cells harboring oncogene or tumor suppressor mutations are known to display heightened macropinocytosis, which confers to the cancer cells the ability to survive and proliferate despite the nutrient-scarce conditions of the tumor microenvironment. Thus, macropinocytosis is associated with cancer malignancy. Macropinocytic uptake can be induced in cancer cells by different stress stimuli, acting as an adaptive mechanism for the cells to resist stresses in the tumor milieu. Here, we review the cellular stresses that are known to promote macropinocytosis, as well as the underlying molecular mechanisms that drive this process.
    Keywords:  Cancer malignancy; Cell metabolism; Macropinocytosis; Nutrient scarcity; Nutrient uptake; Stress stimuli
    DOI:  https://doi.org/10.1007/978-3-030-94004-1_2
  10. Trends Pharmacol Sci. 2022 Apr 02. pii: S0165-6147(22)00057-8. [Epub ahead of print]
      Targeting metabolic reprogramming has proven successful in oncology, but this field requires better identification of drugs that inhibit mitochondrial metabolism in cancer cells. Recent work from Dr Wolf's group reveals that the primary target of the antitumor compound SMIP004-7 is mitochondrial complex I (NDUFS2 subunit), inhibition of which promotes anticancer immune surveillance.
    Keywords:  anticancer therapies; cancer metabolism; complex I; mitochondria; oxidative phosphorylation system; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.tips.2022.03.007
  11. Cell Metab. 2022 Apr 05. pii: S1550-4131(22)00091-2. [Epub ahead of print]34(4): 506-507
      Immunotherapy has limited success in triple-negative breast cancer (TNBC). In this issue of Cell Metabolism, Wang et al. found that microbial metabolite TMAO boosts CD8+ T cell-mediated antitumor immunity by inducing pyroptosis in tumor cells, enhancing the efficacy of immunotherapy in TNBC (Wang et al., 2022).
    DOI:  https://doi.org/10.1016/j.cmet.2022.03.003
  12. Cell Rep. 2022 Apr 05. pii: S2211-1247(22)00367-9. [Epub ahead of print]39(1): 110619
      The presequence translocase (TIM23 complex) imports precursor proteins into the mitochondrial inner membrane and matrix. The presequence translocase-associated motor (PAM) provides a driving force for transport into the matrix. The J-protein Pam18 stimulates the ATPase activity of the mitochondrial Hsp70 (mtHsp70). Pam16 recruits Pam18 to the TIM23 complex to ensure protein import. The Pam16-Pam18 module also associates with components of the respiratory chain, but the function of the dual localization of Pam16-Pam18 is largely unknown. Here, we show that disruption of the Pam16-Pam18 heterodimer causes redistribution of Pam18 to the respiratory chain supercomplexes, where it forms a homodimer. Redistribution of Pam18 decreases protein import into mitochondria but stimulates mtHsp70-dependent assembly of respiratory chain complexes. We conclude that coupling to Pam16 differentially controls the dual function of Pam18. It recruits Pam18 to the TIM23 complex to promote protein import but attenuates the Pam18 function in the assembly of respiratory chain complexes.
    Keywords:  CP: Cell biology; CP: Metabolism; Pam18; TIM23 complex; cytochrome c oxidase; mitochondria; mtHsp70; protein sorting; respiratory chain
    DOI:  https://doi.org/10.1016/j.celrep.2022.110619
  13. Mol Metab. 2022 Mar 30. pii: S2212-8778(22)00047-3. [Epub ahead of print] 101478
       OBJECTIVE: Profound metabolic alterations characterize cancer development and, beyond glucose addiction, amino acid (AA) dependency is now recognized as a hallmark of tumour growth. Therefore, targeting the metabolic addiction of tumours by reprogramming their substrate utilization is an attractive therapeutic strategy. We hypothesized that a dietary approach targeted to stimulate oxidative metabolism could reverse the metabolic inflexibility of tumours and represent a proper adjuvant therapy.
    METHODS: We measured tumour development in xenografted mice fed with a designer, casein-deprived diet enriched in free essential amino acids (EAAs; SFA-EAA diet), or two control isocaloric, isolipidic, and isonitrogenous diets, identical to the SFA-EAA diet except for casein presence (SFA diet), or casein replacement by the free AA mixture designed on the AA profile of casein (SFA-CAA diet). Moreover, we investigated the metabolic, biochemical, and molecular effects of two mixtures that reproduce the AA composition of the SFA-EAA diet (i.e., EAAm) and SFA-CAA diet (i.e., CAAm) in diverse cancer and non-cancer cells.
    RESULTS: The SFA-EAA diet reduced tumour growth in vivo, promoted endoplasmic reticulum (ER) stress, and inhibited mechanistic/mammalian target of rapamycin (mTOR) activity in the tumours. Accordingly, in culture, the EAAm, but not the CAAm, activated apoptotic cell death in cancer cells without affecting the survival and proliferation of non-cancer cells. The EAAm increased branched-chain amino acid (BCAA) oxidation and decreased glycolysis, ATP levels, redox potential, and intracellular content of selective non-essential amino acids (NEAA) in cancer cells. The EAAm-induced NEAA starvation activated the GCN2-ATF4 stress pathway, leading to ER stress, mTOR inactivation, and apoptosis in cancer cells, unlike non-cancer cells.
    CONCLUSION: Together, these results confirm the efficacy of specific EAA mixtures in promoting cancer cells' death and suggest that manipulation of dietary EAA content and profile could be a valuable support to the standard chemotherapy for specific cancers.
    Keywords:  Branched-chain amino acids; Cancer metabolism; Essential amino acids; Glycolysis; Mechanistic/mammalian target of rapamycin; Mitochondria
    DOI:  https://doi.org/10.1016/j.molmet.2022.101478
  14. Subcell Biochem. 2022 ;98 205-221
      Macropinocytosis is a critical route of nutrient acquisition in pancreatic cancer cells. Constitutive macropinocytosis is promoted by mutant KRAS, which activates the PI3Kα lipid kinase and RAC1, to drive membrane ruffling, macropinosome uptake and processing. However, our recent study on the KRASG12R mutant indicated the presence of a KRAS-independent mode of macropinocytosis in pancreatic cancer cell lines, thereby increasing the complexity of this process. We found that KRASG12R-mutant cell lines promote macropinocytosis independent of KRAS activity using PI3Kγ and RAC1, highlighting the convergence of regulation on RAC signaling. While macropinocytosis has been proposed to be a therapeutic target for the treatment of pancreatic cancer, our studies have underscored how little we understand about the activation and regulation of this metabolic process. Therefore, this review seeks to highlight the differences in macropinocytosis regulation in the two cellular subtypes while also highlighting the features that make the KRASG12R mutant atypical.
    Keywords:  KRAS; Macropinocytosis; Metabolism; Mutant-specific signaling; PI3K; Pancreatic cancer
    DOI:  https://doi.org/10.1007/978-3-030-94004-1_11
  15. Curr Med Chem. 2022 Apr 01.
      Mitochondria are the main energy factory in living cells. To rapidly proliferate and metastasize, neoplastic cells increase their energy requirements. Thus, mitochondria become one of the most important organelles for them. Indeed, much research shows the interplay between cancer chemoresistance and altered mitochondrial function. In this review we focus on the differences in energy metabolism between cancer and normal cells, to better understand their resistance and how to develop drugs targeting energy metabolism and nucleotide synthesis. One of the differences between cancer and normal cells is the higher nicotinamide adenine dinucleotide (NAD+) level, a cofactor for the tricarboxylic acid cycle (TCA), which enhances their proliferation and helps cancer cells survive under hypoxic conditions. An important change is a metabolic switch, called the Warburg effect. This effect is based on the change of energy harvesting from oxygen-dependent transformation to oxidative phosphorylation (OXPHOS), adapt them to the tumor environment. Another mechanism is the high expression of one carbon (1C) metabolism enzymes. Again, this allows cancer cells to increase proliferation by producing precursors for the synthesis of nucleotides and amino acids. We reviewed drugs in clinical practice and in development targeting NAD+, OXPHOS, and 1C metabolism. Combinations of novel drugs with conventional antineoplastic agents may prove to be a promising new way of anticancer treatment.
    Keywords:  1C Metabolism; Cancer; Mitochondria; NAD+; Oxidative Phosphorylation (OXPHOS); Resistance
    DOI:  https://doi.org/10.2174/0929867329666220401110418
  16. Front Oncol. 2022 ;12 857686
      The ability of cancer cells to adjust their metabolism in response to environmental changes is a well-recognized hallmark of cancer. Diverse cancer and non-cancer cells within tumors compete for metabolic resources. Metabolic demands change frequently during tumor initiation, progression and metastasis, challenging our quest to better understand tumor biology and develop novel therapeutics. Vascularization, physical constraints, immune responses and genetic instability promote tumor evolution resulting in immune evasion, opportunities to breach basement membrane barriers and spread through the circulation and lymphatics. In addition, the unfolded protein response linked to the ubiquitin proteasome system is a key player in addressing stoichiometric imbalances between nuclear and mitochondrially-encoded protein subunits of respiratory complexes, and nuclear-encoded mitochondrial ribosomal protein subunits. While progressive genetic changes, some of which affect metabolic adaptability, contribute to tumorigenesis and metastasis through clonal expansion, epigenetic changes are also important and more dynamic in nature. Understanding the role of stromal and immune cells in the tumor microenvironment in remodeling cancer cell energy metabolism has become an increasingly important area of research. In this perspective, we discuss the adaptations made by cancer cells to balance mitochondrial and glycolytic energy metabolism. We discuss how hypoxia and nutrient limitations affect reductive and oxidative stress through changes in mitochondrial electron transport activity. We propose that integrated responses to cellular stress in cancer cells are central to metabolic flexibility in general and bioenergetic adaptability in particular and are paramount in tumor progression and metastasis.
    Keywords:  bioenergetic flexibility; glycolysis-OXPHOS continuum; mito-nuclear gene expression; tumor microenvironment (TME); tumor progression and metastasis
    DOI:  https://doi.org/10.3389/fonc.2022.857686
  17. Curr Protoc. 2022 Apr;2(4): e413
      Ferroptosis is iron-dependent, lipid peroxidation-driven, regulated cell death that is triggered when cellular glutathione peroxidase 4 (GPX4)-mediated cellular defense is insufficient to prevent pathologic accumulation of toxic lipid peroxides. Ferroptosis is implicated in various human pathologies, including neurodegeneration, chemotherapy-resistant cancers, ischemia-reperfusion injury, and acute and chronic kidney diseases. Despite the fact that the ferroptotic process has been rigorously interrogated in multiple preclinical models, the lack of specific and readily available biomarkers to detect ferroptosis in vivo in mouse models makes it challenging to delineate its contribution to key pathologic events in vivo. Critical steps to practically evaluate ferroptosis include, but are not limited to, detecting increased cell death and pathologic accumulation of toxic lipid peroxides and testing augmentation of observed pathologic events by genetic inhibition of the glutathione-GPX4 axis or mitigation of the pathologic process by ferroptosis inhibitors. Here, we describe methods to evaluate these key features of the ferroptotic process in mice in vivo. Specifically, we describe methods to detect toxic lipid peroxides (4-hydroxynonenal) and cell death (based on terminal deoxynucleotidyl transferase dUTP nick end labeling staining) as well as a protocol to pharmacologically inhibit ferroptotic stress using liproxstatin-1. These protocols provide tools for understanding the ferroptotic process in mouse genetic or disease models. © 2022 Wiley Periodicals LLC. Basic Protocol 1: How to use liproxstatin-1 Basic Protocol 2: How to evaluate ferroptosis in mouse kidneys.
    Keywords:  4-HNE; 4-hydroxynonenal; ferroptosis; liproxstatin-1; mouse disease models
    DOI:  https://doi.org/10.1002/cpz1.413
  18. Sci Rep. 2022 Apr 02. 12(1): 5576
      Goldfish enter a hypometabolic state to survive chronic hypoxia. We recently described tissue-specific contributions of membrane lipid composition remodeling and mitochondrial function to metabolic suppression across different goldfish tissues. However, the molecular and especially epigenetic foundations of hypoxia tolerance in goldfish under metabolic suppression are not well understood. Here we show that components of the molecular oxygen-sensing machinery are robustly activated across tissues irrespective of hypoxia duration. Induction of gene expression of enzymes involved in DNA methylation turnover and microRNA biogenesis suggest a role for epigenetic transcriptional and post-transcriptional suppression of gene expression in the hypoxia-acclimated brain. Conversely, mechanistic target of rapamycin-dependent translational machinery activity is not reduced in liver and white muscle, suggesting this pathway does not contribute to lowering cellular energy expenditure. Finally, molecular evidence supports previously reported chronic hypoxia-dependent changes in membrane cholesterol, lipid metabolism and mitochondrial function via changes in transcripts involved in cholesterol biosynthesis, β-oxidation, and mitochondrial fusion in multiple tissues. Overall, this study shows that chronic hypoxia robustly induces expression of oxygen-sensing machinery across tissues, induces repressive transcriptional and post-transcriptional epigenetic marks especially in the chronic hypoxia-acclimated brain and supports a role for membrane remodeling and mitochondrial function and dynamics in promoting metabolic suppression.
    DOI:  https://doi.org/10.1038/s41598-022-09374-8
  19. Cell Metab. 2022 Apr 05. pii: S1550-4131(22)00095-X. [Epub ahead of print]34(4): 503-505
      In this issue of Cell Metabolism, Hochrein et al. identify a metabolic checkpoint controlling the transcriptional programming of effector CD4+ T cells. The authors show that GLUT3-mediated glucose import and ACLY-dependent acetyl-CoA generation control histone acetylation and, hence, the epigenetic imprinting of effector gene expression in differentiated effector CD4+ T cells. These findings suggest a novel therapeutic target for inflammation-associated diseases.
    DOI:  https://doi.org/10.1016/j.cmet.2022.03.007
  20. Mol Metab. 2022 Apr 04. pii: S2212-8778(22)00058-8. [Epub ahead of print] 101489
       OBJECTIVE: There is strong evidence that mitochondrial DNA mutations and mitochondrial dysfunction play a role in diabetes pathogenesis. The homozygous knock-in mtDNA mutator mouse is a model of premature aging due to the accumulation of mitochondrial DNA mutations. We used this mouse model to investigate the relationship between mitochondrial subunit expression and pancreatic islet cell composition.
    METHODS: Quadruple immunofluorescence was used to quantify mitochondrial subunit expression (complex I and IV) and cell composition in pancreatic islets from mitochondrial DNA mutator mice (PolgAmut/mut) and control C57BL/6 mice at 12 and 44 weeks of age.
    RESULTS: Mitochondrial complex I subunit expression was decreased in islets from 12 week PolgAmut/mut mice. This complex I deficiency persisted with age and was associated with decreased insulin staining intensity at 44 weeks. Complex I deficiency was greater in α-cells compared with β-cells in islets from 44 week PolgAmut/mut mice. Islet cell composition was normal in 12 week PolgAmut/mut mice, but the β: α cell ratio was decreased in islets from 44 week PolgAmut/mut mice. This was due to an increase in α-cell number linked to an increase in α-cell proliferation.
    CONCLUSION: Complex I deficiency promotes α-cell proliferation and alters islet cell composition.
    Keywords:  Mitochondria; mtDNA; mtDNA mutator mice; pancreatic islets
    DOI:  https://doi.org/10.1016/j.molmet.2022.101489
  21. Expert Rev Mol Diagn. 2022 Apr 08.
       INTRODUCTION: Adaptations of eukaryotic cells to environmental changes are important for their survival. However, under some circumstances, microenvironmental changes promote that eukaryotic cells utilize a metabolic signature resembling a unicellular organism named the Warburg effect. Most cancer cells share the Warburg effect displaying lactic fermentation and high glucose uptake. The Warburg effect also induces a metabolic rewiring stimulating glutamine consumption and lipid synthesis, also considered cancer hallmarks. Amino acid metabolism alteration due to the Warburg effect increases plasma levels of proline and branched-chain amino acids in several cancer types. Proline and lipids are probably used as electron transfer molecules in carcinogenic cells. In addition, branched-chain amino acids fuel the Krebs cycle, protein synthesis, and signaling in cancer cells.
    AREAS COVERED: This review covers how metabolomics studies describe changes in some metabolites and proteins associated with the Warburg effect and related metabolic pathways.
    EXPERT OPINION: In this review, we analyze the metabolic signature of the Warburg effect and related phenotypes and propose some Warburg effect-related metabolites and proteins (lactate, glucose uptake, glucose transporters, glutamine, branched-chain amino acids, proline, and some lipogenic enzymes) as promising cancer biomarkers.
    Keywords:  Biomarker; Warburg effect; cancer; diagnosis; metabolism; molecular prognosis
    DOI:  https://doi.org/10.1080/14737159.2022.2065196
  22. Oxid Med Cell Longev. 2022 ;2022 5652586
      Metabolic changes have been suggested to be a hallmark of tumors and are closely associated with tumorigenesis. In a previous study, we demonstrated the role of lactate dehydrogenase in regulating abnormal glucose metabolism in pituitary adenomas (PA). As the key organelle of oxidative phosphorylation (OXPHOS), mitochondria play a vital role in the energy supply for tumor cells. However, few attempts have been made to elucidate mitochondrial metabolic homeostasis in PA. Dynamin-related protein 1 (Drp1) is a member of the dynamin superfamily of GTPases, which mediates mitochondrial fission. This study is aimed at investigating whether Drp1 affects the progression of PA through abnormal mitochondrial metabolism. We analyzed the expression of dynamin-related protein 1 (Drp1) in 20 surgical PA samples. The effects of Drp1 on PA growth were assessed in vitro and in xenograft models. We found an upregulation of Drp1 in PA samples with a low proliferation index. Knockdown or inhibition of Drp1 enhanced the proliferation of PA cell lines in vitro, while overexpression of Drp1 could reversed such effects. Mechanistically, overexpressed Drp1 damaged mitochondria by overproduction of reactive oxygen species (ROS), which induced mitochondrial OXPHOS inhibition and decline of ATP production. The energy deficiency inhibited proliferation of PA cells. In addition, overexpressed Drp1 promoted cytochrome c release from damaged mitochondria into the cytoplasm and then activated the downstream caspase apoptotic cascade reaction, which induced apoptosis of PA cells. Moreover, the decreased ATP production induced by Drp1 overexpressing activated the AMPK cellular energy stress sensor and enhanced autophagy through the AMPK-ULK1 pathway, which might play a protective role in PA growth. Furthermore, overexpression of Drp1 repressed PA growth in vivo. Our data indicates that Drp1-mediated mitochondrial metabolic dysfunction inhibits PA growth by affecting cell proliferation, apoptosis, and autophagy. Selectively targeting mitochondrial metabolic homeostasis stands out as a promising antineoplastic strategy for PA therapy.
    DOI:  https://doi.org/10.1155/2022/5652586
  23. Cardiovasc Res. 2022 Apr 07. pii: cvac058. [Epub ahead of print]
      The influence of cellular metabolism on epigenetic pathways are well documented but misunderstood. Scientists have long known of the metabolic impact on epigenetic determinants. More often than not, that title role for DNA methylation was portrayed by the metabolite SAM or S-adenosylmethionine. Technically speaking there are many other metabolites that drive epigenetic processes that instruct seemingly distant - yet highly connect pathways - and none more so than our understanding of the cancer epigenome. Recent studies have shown that available energy link the extracellular environment to influence cellular responses. This focused review examines the recent interest in epigenomics and casts cancer, metabolism and immunity in unfamiliar roles - cooperating. There are not only language lessons from cancer research, we have come round to appreciate that reaching into areas previously thought of as too distinct are also object lessons in understanding health and disease. The Warburg effect is one such signature of how glycolysis influences metabolic shift during oncogenesis. That shift in metabolism - now recognised as central to proliferation in cancer biology - influence core enzymes that not only control gene expression but are also central to replication, condensation and the repair of nucleic acid. These nuclear processes rely on metabolism and with glucose at center stage the role of respiration and oxidative metabolism are now synonymous with the mitochondria as the powerhouses of metaboloepigenetics. The emerging evidence for metaboloepigenetics in trained innate immunity has revealed recognisable signalling pathways with antecedent extracellular stimulation. With due consideration to immunometabolism we discuss the striking signalling similarities influencing these core pathways. The immunometabolic-epigenetic axis in cardiovascular disease has deeply etched connections with inflammation and we examine the chromatin template as a carrier of epigenetic indices that determine the expression of genes influencing atherosclerosis and vascular complications of diabetes.
    Keywords:  Metabolism; cardiovascular disease; diabetes; epigenetics; glycolysis; metaboloepigenetics; trained immunity
    DOI:  https://doi.org/10.1093/cvr/cvac058
  24. Antioxid Redox Signal. 2022 Apr 04.
       SIGNIFICANCE: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act both as signaling mediators or deleterious molecules, depending on their intracellular levels.
    RECENT ADVANCES: In the last years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with impairment of several MAMs-associated events, including perturbation of the redox state upon accumulation of high ROS levels.
    CRITICAL ISSUES: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases.
    FUTURE DIRECTIONS: Given that Sig-1R is an ER resident chaperone highly enriched at the MAMs and controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson and Huntington diseases should be further explored.
    DOI:  https://doi.org/10.1089/ars.2020.8231
  25. J Neurosci. 2022 Apr 06. pii: JN-RM-1463-21. [Epub ahead of print]
      Calcium is an important second messenger regulating a bioenergetic response to the workloads triggered by neuronal activation. In embryonic mouse cortical neurons using glucose as only fuel, activation by NMDA elicits a strong workload (ATP demand) dependent on Na+ and Ca2+ entry, and stimulates glucose uptake, glycolysis, pyruvate and lactate production and OXPHOS in a Ca2+-dependent way. We find that Ca2+-upregulation of glycolysis, pyruvate levels and respiration, but not glucose uptake, all depend on Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier, component of the malate-aspartate shuttle (MAS). MAS activation increases glycolysis, pyruvate production and respiration, a process inhibited in the presence of BAPTA-AM suggesting that the Ca2+ binding motifs in Aralar may be involved in the activation. MCU silencing had no effect indicating that none of these processes required MCU-dependent mitochondrial Ca2+ uptake. The neuronal respiratory response to carbachol was also dependent on Aralar, but not on MCU. We find that mouse cortical neurons are endowed with a constitutive ER-to-mitochondria Ca2+ flow maintaining basal cell bioenergetics in which Ryanodine receptors, RyR2, rather than InsP3R, are responsible for Ca2+ release, and in which MCU does not participate. The results reveal that in neurons using glucose MCU does not participate in OXPHOS regulation under basal or stimulated conditions, while Aralar-MAS appears as the major Ca2+-dependent pathway tuning simultaneously glycolysis and OXPHOS to neuronal activation.SIGNIFICANT STATEMENTSNeuronal activation increases cell workload to restore ion gradients altered by activation. Ca2+ is involved in matching increased workload with ATP production, but the mechanisms are still unknown. We find that glycolysis, pyruvate production and neuronal respiration are stimulated upon neuronal activation in a Ca2+ dependent way, independently of effects of Ca2+ as workload inducer. MCU does not play a relevant role in Ca2+ stimulated pyruvate production and oxygen consumption as both are unchanged in MCU silenced neurons. However, Ca2+ stimulation is blunt in the absence of Aralar, a Ca2+-binding mitochondrial carrier component of Malate-Aspartate Shuttle (MAS). The results suggest that Ca2+-regulated Aralar-MAS activation upregulates glycolysis and pyruvate production which fuels mitochondrial respiration, through regulation of cytosolic NAD+/NADH ratio.
    Keywords:  Aralar/AGC1/Slc25a12; Neuronal metabolism; calcium regulation; glycolysis; malate aspartate shuttle; mitochondrial calcium uniporter
    DOI:  https://doi.org/10.1523/JNEUROSCI.1463-21.2022
  26. Cancer Sci. 2022 Apr 09.
      Renal cell carcinoma with Xp11.2 translocation involving TFE3 gene (TFE3-RCC) is a recently identified subset of RCC with unique morphology and clinical presentation. The chimeric PRCC-TFE3 protein produced by Xp11.2 translocation has been shown to transcriptionally activate its downstream target genes that play important roles in carcinogenesis and tumor development of TFE3-RCC. However, the underlying molecular mechanisms remain poorly understood. Here we show that in TFE3-RCC cells, PRCC-TFE3 controls heme oxygenase 1 (HMOX1) expression to confer chemoresistance. Inhibition of HMOX1 sensitized the PRCC-TFE3 expressing cells to genotoxic reagents. We screened for a novel chlorambucil-polyamide conjugate (Chb) to target PRCC-TFE3 dependent transcription, and identified Chb16 as a PRCC-TFE3-dependent transcriptional inhibitor of HMOX1 expression. Treatment of the patient derived cancer cells with Chb16 exhibited senescence and growth arrest, and increased sensitivity of the TFE3-RCC cells to the genotoxic reagent etoposide. Thus, our data showed that the TFE3-RCC cells acquired chemoresistance through HMOX1 expression and that inhibition of HMOX1 by Chb16 may be an effective therapeutic strategy for TFE3-RCC.
    Keywords:  HMOX1; PRCC-TFE3; Xp11.2 translocation renal cell carcinoma (TFE3-RCC); chemoresistance; pyrrole-imidazole polyamides
    DOI:  https://doi.org/10.1111/cas.15364
  27. Nat Commun. 2022 Apr 06. 13(1): 1859
      The cohesin complex participates in the organization of 3D genome through generating and maintaining DNA loops. Stromal antigen 2 (STAG2), a core subunit of the cohesin complex, is frequently mutated in various cancers. However, the impact of STAG2 inactivation on 3D genome organization, especially the long-range enhancer-promoter contacts and subsequent gene expression control in cancer, remains poorly understood. Here we show that depletion of STAG2 in melanoma cells leads to expansion of topologically associating domains (TADs) and enhances the formation of acetylated histone H3 lysine 27 (H3K27ac)-associated DNA loops at sites where binding of STAG2 is switched to its paralog STAG1. We further identify Interferon Regulatory Factor 9 (IRF9) as a major direct target of STAG2 in melanoma cells via integrated RNA-seq, STAG2 ChIP-seq and H3K27ac HiChIP analyses. We demonstrate that loss of STAG2 activates IRF9 through modulating the 3D genome organization, which in turn enhances type I interferon signaling and increases the expression of PD-L1. Our findings not only establish a previously unknown role of the STAG2 to STAG1 switch in 3D genome organization, but also reveal a functional link between STAG2 and interferon signaling in cancer cells, which may enhance the immune evasion potential in STAG2-mutant cancer.
    DOI:  https://doi.org/10.1038/s41467-022-29541-9
  28. Cell Rep. 2022 Apr 05. pii: S2211-1247(22)00357-6. [Epub ahead of print]39(1): 110609
      Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment (TME). However, the relationship between the phenotype and metabolic pattern of TAMs remains poorly understood. We performed single-cell transcriptome profiling on hepatic TAMs from mice bearing liver metastatic tumors. We find that TAMs manifest high heterogeneity at the levels of transcription, development, metabolism, and function. Integrative analyses and validation experiments indicate that increased purine metabolism is a feature of TAMs with pro-tumor and terminal differentiation phenotypes. Like mouse TAMs, human TAMs are highly heterogeneous. Human TAMs with increased purine metabolism exhibit a pro-tumor phenotype and correlate with poor therapeutic efficacy to immune checkpoint blockade. Altogether, our work demonstrates that TAMs are developmentally, metabolically, and functionally heterogeneous and purine metabolism may be a key metabolic feature of a pro-tumor macrophage population.
    Keywords:  CP: Cancer; CP: Metabolism; cancer; checkpoint; immunosuppression; immunotherapy; liver; macrophage; metabolism; purine; single-cell RNA sequencing; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.celrep.2022.110609
  29. Aging Cell. 2022 Apr 07. e13604
      Methionine restriction (MetR) can extend lifespan and delay the onset of aging-associated pathologies in most model organisms. Previously, we showed that supplementation with the metabolite S-adenosyl-L-homocysteine (SAH) extends lifespan and activates the energy sensor AMP-activated protein kinase (AMPK) in the budding yeast Saccharomyces cerevisiae. However, the mechanism involved and whether SAH can extend metazoan lifespan have remained unknown. Here, we show that SAH supplementation reduces Met levels and recapitulates many physiological and molecular effects of MetR. In yeast, SAH supplementation leads to inhibition of the target of rapamycin complex 1 (TORC1) and activation of autophagy. Furthermore, in Caenorhabditis elegans SAH treatment extends lifespan by activating AMPK and providing benefits of MetR. Therefore, we propose that SAH can be used as an intervention to lower intracellular Met and confer benefits of MetR.
    Keywords:   Caenorhabditis elegans ; Saccharomyces cerevisiae ; S-adenosyl-L-homocysteine (SAH); S-adenosyl-L-methionine (SAM); methionine restriction (MetR)
    DOI:  https://doi.org/10.1111/acel.13604
  30. Mol Cell. 2022 Mar 30. pii: S1097-2765(22)00260-X. [Epub ahead of print]
      Ferroptosis, a newly emerged form of regulated necrotic cell death, has been demonstrated to play an important role in multiple diseases including cancer, neurodegeneration, and ischemic organ injury. Mounting evidence also suggests its potential physiological function in tumor suppression and immunity. The execution of ferroptosis is driven by iron-dependent phospholipid peroxidation. As such, the metabolism of biological lipids regulates ferroptosis via controlling phospholipid peroxidation, as well as various other cellular processes relevant to phospholipid peroxidation. In this review, we provide a comprehensive analysis by focusing on how lipid metabolism impacts the initiation, propagation, and termination of phospholipid peroxidation; how multiple signal transduction pathways communicate with ferroptosis via modulating lipid metabolism; and how such intimate cross talk of ferroptosis with lipid metabolism and related signaling pathways can be exploited for the development of rational therapeutic strategies.
    Keywords:  cancer therapy; ferroptosis; lipid metabolism
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.022
  31. Cell Death Dis. 2022 Apr 06. 13(4): 308
      Ferroptosis, a form of regulated cell death, plays an important role in acute kidney injury (AKI). Previous studies have shown that prolyl hydroxylase domain protein (PHD) inhibitors that activate HIF signaling provide strong protection against AKI, which is characterized by marked cell death. However, the relationship between PHD inhibition/HIF signaling and ferroptosis in AKI has not been elucidated. Here, we review recent studies to explore the issue. First, we will review the literature concerning the functions of HIF in promoting mitophagy, suppressing mitochondrial respiration and modulating redox homeostasis. Second, we will describe the current understanding of ferroptosis and its role in AKI, particularly from the perspective of mitochondrial dysfunction. Finally, we will discuss the possibility that mitochondria link PHD inhibition/HIF signaling and ferroptosis in AKI. In conclusion, we propose that HIF may protect renal cells against ferroptosis in AKI by reducing mitochondrial oxidative stress and damage.
    DOI:  https://doi.org/10.1038/s41419-022-04770-4
  32. Kidney360. 2021 Feb 25. 2(2): 355-364
      The proximal tubule relies on oxidative mitochondrial metabolism to meet its energy needs and has limited capacity for glycolysis, which makes it uniquely susceptible to damage during AKI, especially after ischemia and anoxia. Under these conditions, mitochondrial ATP production is initially decreased by several mechanisms, including fatty acid-induced uncoupling and inhibition of respiration related to changes in the shape and volume of mitochondria. Glycolysis is initially insufficient as a source of ATP to protect the cells and mitochondrial function, but supplementation of tricarboxylic acid cycle intermediates augments anaerobic ATP production, and improves recovery of mitochondrial oxidative metabolism. Incomplete recovery is characterized by defects of respiratory enzymes and lipid metabolism. During the transition to CKD, tubular cells atrophy but maintain high expression of glycolytic enzymes, and there is decreased fatty acid oxidation. These metabolic changes may be amenable to a number of therapeutic interventions.
    Keywords:  AKI; CKD; aTP; acute kidney injury and ICU nephrology; basic science; glycolysis; metabolism; mitochondria; tricarboxylic acid cycle
    DOI:  https://doi.org/10.34067/KID.0004772020
  33. Nat Commun. 2022 Apr 06. 13(1): 1853
      Protein homeostatic control of mitochondria is key to age-related diseases and organismal decline. However, it is unknown how the diverse types of stress experienced by mitochondria can be integrated and appropriately responded to in human cells. Here we identify perturbations in the ancient conserved processes of mitochondrial protein import and processing as sources of DELE1 activation: DELE1 is continuously sorted across both mitochondrial membranes into the matrix and detects different types of perturbations along the way. DELE1 molecules in transit can become licensed for mitochondrial release and stress signaling through proteolytic removal of N-terminal sorting signals. Import defects that occur at the mitochondrial surface allow DELE1 precursors to bind and activate downstream factor HRI without the need for cleavage. Genome-wide genetics reveal that DELE1 additionally responds to compromised presequence processing by the matrix proteases PITRM1 and MPP, which are mutated in neurodegenerative diseases. These mechanisms rationalize DELE1-dependent mitochondrial stress integration in the human system and may inform future therapies of neuropathies.
    DOI:  https://doi.org/10.1038/s41467-022-29479-y
  34. J Cell Biol. 2022 May 02. pii: e202203061. [Epub ahead of print]221(5):
      SNX-RGS proteins are molecular tethers localized to multiple interorganelle contact sites that exhibit roles in cellular metabolism. Here, we highlight recent findings on these proteins and discuss their emerging roles in metabolism, human disease, and lipid trafficking.
    DOI:  https://doi.org/10.1083/jcb.202203061
  35. Nucleic Acids Res. 2022 Apr 08. pii: gkac246. [Epub ahead of print]
      Mediator activates RNA polymerase II (Pol II) function during transcription, but it remains unclear whether Mediator is able to travel with Pol II and regulate Pol II transcription beyond the initiation and early elongation steps. By using in vitro and in vivo transcription recycling assays, we find that human Mediator 1 (MED1), when phosphorylated at the mammal-specific threonine 1032 by cyclin-dependent kinase 9 (CDK9), dynamically moves along with Pol II throughout the transcribed genes to drive Pol II recycling after the initial round of transcription. Mechanistically, MED31 mediates the recycling of phosphorylated MED1 and Pol II, enhancing mRNA output during the transcription recycling process. Importantly, MED1 phosphorylation increases during prostate cancer progression to the lethal phase, and pharmacological inhibition of CDK9 decreases prostate tumor growth by decreasing MED1 phosphorylation and Pol II recycling. Our results reveal a novel role of MED1 in Pol II transcription and identify phosphorylated MED1 as a targetable driver of dysregulated Pol II recycling in cancer.
    DOI:  https://doi.org/10.1093/nar/gkac246
  36. Cell Death Differ. 2022 Apr 08.
      The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
    DOI:  https://doi.org/10.1038/s41418-022-00996-z
  37. Nat Biotechnol. 2022 Apr 04.
      The all-protein cytosine base editor DdCBE uses TALE proteins and a double-stranded DNA-specific cytidine deaminase (DddA) to mediate targeted C•G-to-T•A editing. To improve editing efficiency and overcome the strict TC sequence-context constraint of DddA, we used phage-assisted non-continuous and continuous evolution to evolve DddA variants with improved activity and expanded targeting scope. Compared to canonical DdCBEs, base editors with evolved DddA6 improved mitochondrial DNA (mtDNA) editing efficiencies at TC by 3.3-fold on average. DdCBEs containing evolved DddA11 offered a broadened HC (H = A, C or T) sequence compatibility for both mitochondrial and nuclear base editing, increasing average editing efficiencies at AC and CC targets from less than 10% for canonical DdCBE to 15-30% and up to 50% in cell populations sorted to express both halves of DdCBE. We used these evolved DdCBEs to efficiently install disease-associated mtDNA mutations in human cells at non-TC target sites. DddA6 and DddA11 substantially increase the effectiveness and applicability of all-protein base editing.
    DOI:  https://doi.org/10.1038/s41587-022-01256-8
  38. Front Cell Dev Biol. 2022 ;10 837337
      Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
    Keywords:  mitochondrial dynamics; mitochondrial dysfunction; mitophagy; neurodegenaration; phosphorylation; ubiquitination
    DOI:  https://doi.org/10.3389/fcell.2022.837337
  39. Cell Rep. 2022 Apr 05. pii: S2211-1247(22)00389-8. [Epub ahead of print]39(1): 110637
      ARID2 is the most recurrently mutated SWI/SNF complex member in melanoma; however, its tumor-suppressive mechanisms in the context of the chromatin landscape remain to be elucidated. Here, we model ARID2 deficiency in melanoma cells, which results in defective PBAF complex assembly with a concomitant genomic redistribution of the BAF complex. Upon ARID2 depletion, a subset of PBAF and shared BAF-PBAF-occupied regions displays diminished chromatin accessibility and associated gene expression, while BAF-occupied enhancers gain chromatin accessibility and expression of genes linked to the process of invasion. As a function of altered accessibility, the genomic occupancy of melanoma-relevant transcription factors is affected and significantly correlates with the observed transcriptional changes. We further demonstrate that ARID2-deficient cells acquire the ability to colonize distal organs in multiple animal models. Taken together, our results reveal a role for ARID2 in mediating BAF and PBAF subcomplex chromatin dynamics with consequences for melanoma metastasis.
    Keywords:  ARID2; BAF; CP: Cancer; PBAF; SWI/SNF; chromatin; invasion; melanoma; transcription factors
    DOI:  https://doi.org/10.1016/j.celrep.2022.110637
  40. Semin Cell Dev Biol. 2022 Mar 30. pii: S1084-9521(22)00095-7. [Epub ahead of print]
      Mitochondrial remodeling is crucial to meet the bioenergetic demand to support muscle contractile activity during daily tasks and muscle regeneration following injury. A set of mitochondrial quality control (MQC) processes, including mitochondrial biogenesis, dynamics, and mitophagy, are in place to maintain a well-functioning mitochondrial network and support muscle regeneration. Alterations in any of these pathways compromises mitochondrial quality and may potentially lead to impaired myogenesis, defective muscle regeneration, and ultimately loss of muscle function. Among MQC processes, mitophagy has gained special attention for its implication in the clearance of dysfunctional mitochondria via crosstalk with the endo-lysosomal system, a major cell degradative route. Along this pathway, additional opportunities for mitochondrial disposal have been identified that may also signal at the systemic level. This communication occurs via inclusion of mitochondrial components within membranous shuttles named mitochondrial-derived vesicles (MDVs). Here, we discuss MDV generation and release as a mitophagy-complementing route for the maintenance of mitochondrial homeostasis in skeletal myocytes. We also illustrate the possible role of muscle-derived MDVs in immune signaling during muscle remodeling and adaptation.
    Keywords:  Extracellular vesicles; Mitochondrial DNA damage; Mitochondrial biogenesis; Mitochondrial quality control; Mitophagy; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.semcdb.2022.03.023
  41. Cell Metab. 2022 Apr 05. pii: S1550-4131(22)00093-6. [Epub ahead of print]34(4): 564-580.e8
      Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.
    Keywords:  CCR4-NOT deadenylase complex; FGF21; GDF15; energy expenditure; food intake; hepatokine; inter-organ communication; mRNA degradation; metabolic syndrome
    DOI:  https://doi.org/10.1016/j.cmet.2022.03.005
  42. Front Immunol. 2022 ;13 842489
      Stimulator of interferon response cGAMP interactor 1 (STING1), also known as TMEM173, is an immune adaptor protein that governs signal crosstalk that is implicated in many physiological and pathological processes. Although it has been established that STING1 traffics from the endoplasmic reticulum (ER) to Golgi apparatus (Golgi) upon DNA-triggered activation, emerging evidence reveals that STING1 can be transported to different organelles, which dictate its immune-dependent (e.g., the production of type I interferons and pro-inflammatory cytokines) and -independent (e.g., the activation of autophagy and cell death) functions. In this brief review, we outline the roles of STING1 in different organelles (including the ER, ER-Golgi intermediate compartment, Golgi, mitochondria, endosomes, lysosomes, and nucleus) and discuss the potential relevance of these roles to diseases and pharmacological interventions.
    Keywords:  STING1; adaptor protein; autophagy; cell death; immunity; organelle
    DOI:  https://doi.org/10.3389/fimmu.2022.842489
  43. Mol Cell. 2022 Apr 04. pii: S1097-2765(22)00257-X. [Epub ahead of print]
      Mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes play critical roles in governing genomic architecture and gene expression and are frequently perturbed in human cancers. Transcription factors (TFs), including fusion oncoproteins, can bind to BAF complex surfaces to direct chromatin targeting and accessibility, often activating oncogenic gene loci. Here, we demonstrate that the FUS::DDIT3 fusion oncoprotein hallmark to myxoid liposarcoma (MLPS) inhibits BAF complex-mediated remodeling of adipogenic enhancer sites via sequestration of the adipogenic TF, CEBPB, from the genome. In mesenchymal stem cells, small-molecule inhibition of BAF complex ATPase activity attenuates adipogenesis via failure of BAF-mediated DNA accessibility and gene activation at CEBPB target sites. BAF chromatin occupancy and gene expression profiles of FUS::DDIT3-expressing cell lines and primary tumors exhibit similarity to SMARCB1-deficient tumor types. These data present a mechanism by which a fusion oncoprotein generates a BAF complex loss-of-function phenotype, independent of deleterious subunit mutations.
    Keywords:  ATP-dependent chromatin remodeling; BAF complex; CEBPB; FUS-DDIT3; MLPS; adipogenesis; enhancers; fusion oncoprotein; mesenchymal stem cells; myxoid liposarcoma
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.019
  44. Biochem Biophys Res Commun. 2022 Mar 18. pii: S0006-291X(22)00421-1. [Epub ahead of print]607 131-137
      The mitochondrial enzyme SIRT3 is an NAD+-dependent deacetylase important in cell metabolism, and a decline in its protein expression or activity has been linked with insulin resistance in obesity, ageing and type 2 diabetes. While studies in SIRT3 knockout mice have dramatically improved our understanding of the function of SIRT3, the impact of increasing SIRT3 levels remains under-examined. In this study we investigated the effects of liver-specific SIRT3 overexpression in mice on mitochondrial function and metabolic profile in both isolated hepatocytes and in vivo. Primary hepatocytes overexpressing SIRT3 displayed increased oxygen consumption and a reduction in triglyceride accumulation. In mice with hepatic SIRT3 overexpression, increased fasting β-hydroxybutyrate levels were observed, coupled with an increase in oxygen consumption in isolated mitochondria and increased substrate utilization in liver homogenates. However, metabolic profiling of mice exposed to either chow or high-fat diet revealed no effect of hepatic SIRT3 overexpression on glucose tolerance, body composition or tissue triglyceride accumulation. These findings suggest limited whole-body benefit of increasing hepatic SIRT3 during the development of diet-induced insulin resistance.
    Keywords:  Liver; Mouse; Obesity; SIRT3; Sirtuin
    DOI:  https://doi.org/10.1016/j.bbrc.2022.03.088
  45. Kidney360. 2020 Oct 29. 1(10): 1157-1164
      Organelles play important roles in maintaining cellular homeostasis. Organelle stress responses, especially in mitochondria, endoplasmic reticula (ER), and primary cilia, are deeply involved in kidney disease pathophysiology. Mitochondria are the center of energy production in most eukaryotic cells. Renal proximal tubular cells are highly energy demanding and abundant in mitochondria. Mitochondrial dysfunctions in association with energy metabolism alterations produce reactive oxygen species and promote inflammation in proximal tubular cells, resulting in progression of kidney disease. The ER play critical roles in controlling protein quality. Unfolded protein response (UPR) pathways are the adaptive response to ER stress for maintaining protein homeostasis. UPR pathway dysregulation under pathogenic ER stress often occurs in glomerular and tubulointerstitial cells and promotes progression of kidney disease. The primary cilia sense extracellular signals and maintain calcium homeostasis in cells. Dysfunction of the primary cilia in autosomal dominant polycystic kidney disease reduces the calcium concentration in proximal tubular cells, leading to increased cell proliferation and retention of cyst fluid. In recent years, the direct interaction at membrane contact sites has received increased attention in association with the development of imaging technologies. The part of the ER that is directly connected to mitochondria is termed the mitochondria-associated ER membrane (MAM), which regulates calcium homeostasis and phospholipid metabolism in cells. Disruption of MAM integrity collapses cellular homeostasis and leads to diseases such as diabetes and Alzheimer disease. This review summarizes recent research on organelle stress and crosstalk, and their involvement in kidney disease pathophysiology. In addition, potential treatment options that target organelle stress responses are discussed.
    Keywords:  AKI-to-CKD transition; ER stress; acute kidney injury; chronic kidney disease; lipid metabolism; mitochondria; organelle crosstalk; organelle stress; tubular inflammation; unfolded protein response (UPR)
    DOI:  https://doi.org/10.34067/KID.0002442020
  46. Cell Rep. 2022 Apr 05. pii: S2211-1247(22)00355-2. [Epub ahead of print]39(1): 110607
      The mechanism by which redox metabolism regulates the fates of acute myeloid leukemia (AML) cells remains largely unknown. Using a highly sensitive, genetically encoded fluorescent sensor of nicotinamide adenine dinucleotide phosphate (NADPH), iNap1, we find three heterogeneous subpopulations of AML cells with different cytosolic NADPH levels in an MLL-AF9-induced murine AML model. The iNap1-high AML cells have enhanced proliferation capacities both in vitro and in vivo and are enriched for more functional leukemia-initiating cells than iNap1-low counterparts. The iNap1-high AML cells prefer localizing in the bone marrow endosteal niche and are resistant to methotrexate treatment. Furthermore, iNap1-high human primary AML cells have enhanced proliferation abilities both in vitro and in vivo. Mechanistically, the MTHFD1-mediated folate cycle regulates NADPH homeostasis to promote leukemogenesis and methotrexate resistance. These results provide important clues for understanding mechanisms by which redox metabolism regulates cancer cell fates and a potential metabolic target for AML treatments.
    Keywords:  CP: Cancer; NADPH metabolism; acute myeloid leukemia; endosteal niche; folate cycle; leukemia-initiating cells; metabolic sensor; methotrexate resistance; methylenetetrahydrofolate dehydrogenase; tetrahydrofolic acid; vascular niche
    DOI:  https://doi.org/10.1016/j.celrep.2022.110607
  47. iScience. 2022 Apr 15. 25(4): 104097
      High-resolution spatial transcriptomics enables mapping of RNA expression directly from intact tissue sections; however, its utility for the elucidation of disease processes and therapeutically actionable pathways remains unexplored. We applied Slide-seqV2 to mouse and human kidneys, in healthy and distinct disease paradigms. First, we established the feasibility of Slide-seqV2 in tissue from nine distinct human kidneys, which revealed a cell neighborhood centered around a population of LYVE1+ macrophages. Second, in a mouse model of diabetic kidney disease, we detected changes in the cellular organization of the spatially restricted kidney filter and blood-flow-regulating apparatus. Third, in a mouse model of a toxic proteinopathy, we identified previously unknown, disease-specific cell neighborhoods centered around macrophages. In a spatially restricted subpopulation of epithelial cells, we discovered perturbations in 77 genes associated with the unfolded protein response. Our studies illustrate and experimentally validate the utility of Slide-seqV2 for the discovery of disease-specific cell neighborhoods.
    Keywords:  Cell biology; Pathophysiology; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2022.104097
  48. Nat Commun. 2022 Apr 04. 13(1): 1808
      Expanding the exercise capacity of skeletal muscle is an emerging strategy to combat obesity-related metabolic diseases and this can be achieved by shifting skeletal muscle fibers toward slow-twitch oxidative type. Here, we report that Sirt6, an anti-aging histone deacetylase, is critical in regulating myofiber configuration toward oxidative type and that Sirt6 activator can be an exercise mimetic. Genetic inactivation of Sirt6 in skeletal muscle reduced while its transgenic overexpression increased mitochondrial oxidative capacity and exercise performance in mice. Mechanistically, we show that Sirt6 downregulated Sox6, a key repressor of slow fiber specific gene, by increasing the transcription of CREB. Sirt6 expression is elevated in chronically exercised humans, and mice treated with an activator of Sirt6 showed an increase in exercise endurance as compared to exercise-trained controls. Thus, the current study identifies Sirt6 as a molecular target for reprogramming myofiber composition toward the oxidative type and for improving muscle performance.
    DOI:  https://doi.org/10.1038/s41467-022-29472-5
  49. Proc Natl Acad Sci U S A. 2022 Apr 12. 119(15): e2118740119
      SignificanceMultiple human genetic diseases are caused by mutations in the maternally transmitted DNA of mitochondria, the powerhouses of the cell. It is important to study how these mutations arise and accumulate with age, especially because humans in many societies now choose to have children at an older age. However, this is difficult to accomplish in humans, particularly for female germline cells, oocytes. To overcome this limitation, we studied mitochondrial mutation origins and accumulation with age in a primate model species, rhesus macaque. We found that new mutations accumulate the fastest in metabolically active liver and the slowest in oocytes. Thus, primate oocytes might have developed a mechanism to protect their mitochondrial DNA from excessive mutations, allowing reproduction later in life.
    Keywords:  duplex sequencing; heteroplasmy; mitochondria; mutations; oocytes
    DOI:  https://doi.org/10.1073/pnas.2118740119
  50. Sci Signal. 2022 Apr 05. 15(728): eabm2496
      PAX8 is a master transcription factor that is essential during embryogenesis and promotes neoplastic growth. It is expressed by the secretory cells lining the female reproductive tract, and its deletion during development results in atresia of reproductive tract organs. Nearly all ovarian carcinomas express PAX8, and its knockdown results in apoptosis of ovarian cancer cells. To explore the role of PAX8 in these tissues, we purified the PAX8 protein complex from nonmalignant fallopian tube cells and high-grade serous ovarian carcinoma cell lines. We found that PAX8 was a member of a large chromatin remodeling complex and preferentially interacted with SOX17, another developmental transcription factor. Depleting either PAX8 or SOX17 from cancer cells altered the expression of factors involved in angiogenesis and functionally disrupted tubule and capillary formation in cell culture and mouse models. PAX8 and SOX17 in ovarian cancer cells promoted the secretion of angiogenic factors by suppressing the expression of SERPINE1, which encodes a proteinase inhibitor with antiangiogenic effects. The findings reveal a non-cell-autonomous function of these transcription factors in regulating angiogenesis in ovarian cancer.
    DOI:  https://doi.org/10.1126/scisignal.abm2496
  51. Kidney360. 2020 Nov 25. 1(11): 1319-1327
      The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, is crucial in regulating cell growth, metabolism, proliferation, and survival. Under physiologic conditions, mTOR signaling maintains podocyte and tubular cell homeostasis. In AKI, activation of mTOR signaling in tubular cells and interstitial fibroblasts promotes renal regeneration and repair. However, constitutive activation of mTOR signaling in kidneys results in the initiation and progression of glomerular hypertrophy, interstitial fibrosis, polycystic kidney disease, and renal cell carcinoma. Here, we summarize the recent studies about mTOR signaling in renal physiology and injury, and discuss the possibility of its use as a therapeutic target for kidney diseases.
    Keywords:  TOR serine-threonine kinases; acute kidney injury; acute kidney injury and ICU nephrology; glomerular hypertrophy; kidney fibrosis; mTOR; polycystic kidney disease; renal cell carcinoma
    DOI:  https://doi.org/10.34067/KID.0003782020
  52. Front Cardiovasc Med. 2022 ;9 850340
      The heart is a highly metabolically active organ that predominantly utilizes fatty acids as an energy substrate. The heart also derives some part of its energy by oxidation of other substrates, including glucose, lactose, amino acids and ketones. The critical feature of cardiac pathology is metabolic remodeling and loss of metabolic flexibility. Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins (SIRT1 to SIRT7), with NAD+ dependent deacetylase activity. SIRT3 is expressed in high levels in healthy hearts but downregulated in the aged or diseased hearts. Experimental evidence shows that increasing SIRT3 levels or activity can ameliorate several cardiac pathologies. The primary deacetylation targets of SIRT3 are mitochondrial proteins, most of which are involved in energy metabolism. Thus, SIRT3 improves cardiac health by modulating cardiac energetics. In this review, we discuss the essential role of SIRT3 in regulating cardiac metabolism in the context of physiology and pathology. Specifically, we summarize the recent advancements that emphasize the critical role of SIRT3 as a master regulator of cardiac metabolism. We also present a comprehensive view of all known activators of SIRT3, and elaborate on their therapeutic potential to ameliorate energetic abnormalities in various cardiac pathologies.
    Keywords:  SIRT3; glycolysis; heart failure; metabolism; mitochondrial oxidation
    DOI:  https://doi.org/10.3389/fcvm.2022.850340
  53. Biochimie. 2022 Mar 30. pii: S0300-9084(22)00078-5. [Epub ahead of print]198 92-95
      The F1FO-ATPase has Mg2+ cofactor as the natural divalent cation to support the bifunctional activity of ATP synthesis and hydrolysis. Different physio(patho)logical conditions permit the molecular interaction of Ca2+ with the enzyme and the modification of the biological role. Three distinct binding regions of Ca2+ have been localized on the enzyme complex: one in the F1 catalytic sites and the other two sites in the membrane-embedded domain FO. In all likelihood, Ca2+-activated enzyme most frequently works as an H+-translocating F1FO-ATP(hydrol)ase with a monofunctional activity that triggers the formation of mitochondrial permeability transition pore (mPTP) phenomenon. The protein(s) component of the mPTP is considered an arcane mystery. However, the F1FO-ATPase could reveal the molecular mechanism of pore opening when Ca2+ is bound to the enzyme. In this regard, the role of Ca2+-dependent function of the F1FO-ATPase in the formation of the mPTP is discussed.
    Keywords:  Calcium; Divalent cations; F(1)F(O)-ATPase; Mitochondria; Permeability transition pore
    DOI:  https://doi.org/10.1016/j.biochi.2022.03.012
  54. Elife. 2022 Apr 06. pii: e68598. [Epub ahead of print]11
      Alveolar formation requires coordinated movement and interaction between alveolar epithelial cells, mesenchymal myofibroblasts and endothelial cells/pericytes to produce secondary septa. These processes rely on the acquisition of distinct cellular properties to enable ligand secretion for cell-cell signaling and initiate morphogenesis through cellular contraction, cell migration and cell shape change. In this study, we showed that mitochondrial activity and distribution play a key role in bestowing cellular functions on both alveolar epithelial cells and mesenchymal myofibroblasts for generating secondary septa to form alveoli in mice. These results suggest that mitochondrial function is tightly regulated to empower cellular machineries in a spatially-specific manner. Indeed, such regulation via mitochondria is required for secretion of ligands, such as platelet-derived growth factor, from alveolar epithelial cells to influence myofibroblast proliferation and contraction/migration. Moreover, mitochondrial function enables myofibroblast contraction/migration during alveolar formation. Together, these findings yield novel mechanistic insights into how mitochondria regulate pivotal steps of alveologenesis. They highlight selective utilization of energy in cells and diverse energy demands in different cellular processes during development. Our work serves as a paradigm for studying how mitochondria control tissue patterning.
    Keywords:  developmental biology; mouse
    DOI:  https://doi.org/10.7554/eLife.68598
  55. Methods Enzymol. 2022 ;pii: S0076-6879(21)00507-3. [Epub ahead of print]665 29-47
      Most of the chemical diversity present in the natural world derives from the incredible ability of enzymes to act on and control metabolism. Yet, thousands of enzymes have no defined function. The capacity to probe, investigate and assign previously unknown enzyme function with speed and confidence is therefore highly sought-after. Metabolomics is becoming a dominant player in the field of functional genomics and, when coupled with genetic tools and protein biochemistry techniques, has enabled unbiased, de novo annotation of orphan enzymes both in vitro and ex vivo. In this chapter, we describe two distinct experimental and analytical metabolomic methodologies used to reveal enzyme function. Activity-based metabolomic profiling (ABMP) is an in vitro technique that enables tracking of enzyme-induced changes in a complex metabolite extract. Global metabolomic profiling permits the comparison of extracted cellular metabolome of groups of samples (e.g., wild-type versus mutant bacteria). The methods we describe present the advantage of generating cell extracts containing a broad range of metabolites in their native states, which can then be used to identify substrates for orphan enzymes. This chapter aims to provide a guide for the use of these metabolomic techniques by scientists interested in identifying bona fide physiological substrates of orphan enzymes and the metabolic pathways they belong to.
    Keywords:  Activity-based metabolomic profiling; Enzyme function; Global metabolomic profiling; Orphan enzyme
    DOI:  https://doi.org/10.1016/bs.mie.2021.12.001
  56. Mol Cell. 2022 Mar 25. pii: S1097-2765(22)00254-4. [Epub ahead of print]
      GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.
    Keywords:  apoptosis; glutaminase; glutamine metabolism
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.016
  57. Nature. 2022 Apr 06.
    3R-BRAIN
      Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
    DOI:  https://doi.org/10.1038/s41586-022-04554-y
  58. Nat Commun. 2022 Apr 06. 13(1): 1870
      Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.
    DOI:  https://doi.org/10.1038/s41467-022-29512-0
  59. Cardiovasc Res. 2022 Apr 07. pii: cvac050. [Epub ahead of print]
       AIMS: Cardiomyopathy and arrhythmias can be severe presentations in patients with inherited defects of mitochondrial long-chain fatty acid β-oxidation (FAO). The pathophysiological mechanisms that underlie these cardiac abnormalities remain largely unknown. We investigated the molecular adaptations to a FAO deficiency in the heart using the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse model.
    METHODS AND RESULTS: We observed enrichment of amino acid metabolic pathways and of ATF4 target genes among the upregulated genes in the LCAD KO heart transcriptome. We also found a prominent activation of the eIF2α/ATF4 axis at the protein level that was independent of the feeding status, in addition to a reduction of cardiac protein synthesis during a short period of food withdrawal. These findings are consistent with an activation of the integrated stress response (ISR) in the LCAD KO mouse heart. Notably, charging of several tRNAs, such as tRNAGln was decreased in LCAD KO hearts, reflecting a reduced availability of cardiac amino acids, in particular, glutamine. We replicated the activation of the ISR in hearts of mice with a muscle-specific deletion of carnitine palmitoyltransferase 2.
    CONCLUSIONS: Our results show that perturbations in amino acid metabolism caused by long-chain FAO deficiency impact on cardiac metabolic signaling, in particular the ISR. These results may serve as a foundation for investigating the role of the ISR in the cardiac pathology associated with long-chain FAO defects.Translational Perspective: The heart relies mainly on mitochondrial fatty acid β-oxidation (FAO) for its high energy requirements. The heart disease observed in patients with a genetic defect in this pathway highlights the importance of FAO for cardiac health. We show that the consequences of a FAO defect extend beyond cardiac energy homeostasis and include amino acid metabolism and associated signaling pathways such as the integrated stress response.
    Keywords:  LCAD; amino acids; fatty acid oxidation; hypertrophy; tRNA
    DOI:  https://doi.org/10.1093/cvr/cvac050
  60. Endocrinology. 2022 Apr 02. pii: bqac041. [Epub ahead of print]
      The mechanistic target of rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first, second and third generation mTOR inhibitors as a cancer therapy in both pre-clinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.
    Keywords:  diet; drug resistance; mTOR; metabolism
    DOI:  https://doi.org/10.1210/endocr/bqac041
  61. Nat Commun. 2022 Apr 05. 13(1): 1823
      Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.
    DOI:  https://doi.org/10.1038/s41467-022-29341-1
  62. Elife. 2022 Apr 05. pii: e76970. [Epub ahead of print]11
      C-type cytochromes (cyt c) are proteins that undergo post-translational modification to covalently bind heme, which allows them to facilitate redox reactions in electron transport chains across all domains of life. Genomic evidence suggests that cyt c are involved in electron transfer processes among the Archaea, especially in members that produce or consume the potent greenhouse gas methane. However, neither the maturation machinery for cyt c in Archaea nor their role in methane metabolism has ever been functionally characterized. Here, we have used CRISPR-Cas9 genome editing tools to map a distinct pathway for cyt c biogenesis in the model methanogenic archaeon Methanosarcina acetivorans, and have also identified substrate-specific functional roles for cyt c during methanogenesis. Although the cyt c maturation machinery from M. acetivorans is universally conserved in the Archaea, our evolutionary analyses indicate that different clades of Archaea acquired this machinery through multiple independent horizontal gene transfer events from different groups of Bacteria. Overall, we demonstrate the convergent evolution of a novel Archaea-specific cyt c maturation machinery and its physiological role during methanogenesis, a process which contributes substantially to global methane emissions.
    Keywords:  infectious disease; microbiology
    DOI:  https://doi.org/10.7554/eLife.76970
  63. Open Biol. 2022 Apr;12(4): 210350
      Although tumourigenesis occurs due to genetic mutations, the role of epigenetic dysregulations in cancer is also well established. Epigenetic dysregulations in cancer may occur as a result of mutations in genes encoding histone/DNA-modifying enzymes and chromatin remodellers or mutations in histone protein itself. It is also true that misregulated gene expression without genetic mutations in these factors could also support tumour initiation and progression. Interestingly, metabolic rewiring has emerged as a hallmark of cancer due to gene mutations in specific metabolic enzymes or dietary/environmental factors. Recent studies report an intricate cross-talk between epigenetic and metabolic reprogramming in cancer. This review discusses the role of epigenetic and metabolic dysregulations and their cross-talk in tumourigenesis with a special focus on gliomagenesis. We also discuss the role of recently developed human embryonic stem cells/induced pluripotent stem cells-derived organoid models of gliomas and how these models are proving instrumental in uncovering human-specific cellular and molecular complexities of gliomagenesis.
    Keywords:  epigenetics; gliomagenesis; metabolism; organoids; tumourigenesis
    DOI:  https://doi.org/10.1098/rsob.210350
  64. Elife. 2022 Apr 05. pii: e75424. [Epub ahead of print]11
      Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1,000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.
    Keywords:  biochemistry; chemical biology; infectious disease; microbiology
    DOI:  https://doi.org/10.7554/eLife.75424
  65. Life Sci Alliance. 2022 Jul;pii: e202101334. [Epub ahead of print]5(7):
      The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.
    DOI:  https://doi.org/10.26508/lsa.202101334
  66. Subcell Biochem. 2022 ;98 189-204
      KRAS is the most frequently mutated oncogene in cancer and despite intensive studies, attempts to develop effective therapies targeting KRAS or its downstream signaling have failed mostly due to the complexity of KRAS activation and function in cancer initiation and progression. Over the years, KRAS has been involved in several biological processes including cell survival, proliferation, and metabolism by promoting not only a favorable tumor environment but also a cell-microenvironment dialog to allow cancer cells to adapt to tumor microenvironment scarcity. One of the mechanisms involved in this adaption is KRAS-mediated macropinocytosis. Macropinocytosis is an evolutionarily conserved, large-scale, and nonselective form of endocytosis involving actin-driven cell membrane remodeling to engulf large amounts of extracellular fluids and proteins from the local environment. While macropinocytosis process has been known for decades, recent gain interest due to its regulation of KRAS-driven tumor growth in adverse microenvironments. By promoting extracellular protein and other macromolecules internalization, macropinocytosis provides a survival mechanism under nutrient scarce conditions and the potential for unrestricted tumor growth. Thus, a better understanding of macropinocytotic process is needed to develop alternative therapeutic strategies.
    Keywords:  Integrin; KRAS addiction; Macropinocytosis; Microenvironment sensing
    DOI:  https://doi.org/10.1007/978-3-030-94004-1_10
  67. Nat Commun. 2022 Apr 04. 13(1): 1797
      Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAPdef) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAPdef urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAPdef patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAPdef patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAPdef associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAPdef and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials.
    DOI:  https://doi.org/10.1038/s41467-022-29397-z
  68. Sci Adv. 2022 Apr 08. 8(14): eabm7985
      The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging.
    DOI:  https://doi.org/10.1126/sciadv.abm7985
  69. Crit Rev Oncog. 2021 ;26(4): 1-17
      Cancer and circadian rhythms are linked in several ways, through immunomodulatory, neuroendocrine, and metabolic pathways. The circadian timing system consists of interacting circadian clocks in organs throughout the body that contain cells endowed with self-sustaining molecular circadian oscillations. Circadian rhythms are spontaneously generated by specific transcription and translation feedback cycles. Cancer cells emerging from these rhythmic tissues are subjected to daily physiological rhythms imposed by the circadian system, and some transformed cells have their own intrinsic circadian clocks. The role of these circadian clock cells in cancer prevention and oncogenesis remains to be fully explored. Nevertheless, evidence suggests that new cancers are fostered by degradation of the circadian system's rhythmic properties. In contrast, circadian clocks within cancer cells might aid in their survival if they provide benefits such as an ability to synchronize with daily nutrient availability or circadian rhythms in immune cell activity. Here, we address new evidence challenging the simplicity of carcinogenesis models that depend solely on the importance of minimized cancer risk provided by well-aligned and robust circadian clocks in the body. The biology of cancer stem cells and the benefits they may receive from their own rhythmic and non-rhythmic expressions of core circadian clock genes are examined with a focus on gliomas and liver cancer stem cells, along with possibilities for timed medical interventions.
    DOI:  https://doi.org/10.1615/CritRevOncog.2021041960
  70. Mol Cell. 2022 Apr 07. pii: S1097-2765(22)00222-2. [Epub ahead of print]82(7): 1244-1245
      Ge et al. (2022) describes an inhibitory, post-translational modification of PTEN at C211 by fumarate, which offers new insight into the integration of PI3K signaling and metabolism via a potential feedforward regulatory mechanism involving a PI3K-glucose-fumarate-PTEN axis.
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.013
  71. Crit Rev Oncog. 2021 ;26(4): 19-36
      The circadian rhythms regulate physiological and cellular processes that maintain normal homeostasis, keeping our cells synchronized to the dark-light cycle. The disruption of circadian clock genes has been associated with various diseases, including cancer. The clock genes impact several cancer-related signaling trajectories, including the tumor suppressor's p53 pathway involvement in the regulation of the cell cycle and apoptosis. In most human cancers, p53 loses its normal functions and tumor-suppressive activity through function-inactivating mutations. Herein, we review the roles of each of the clock genes (PER1-3, CRY1/2, BMAL1, CLOCK, REV-ERBα/β, RORα, and SIRT1) in their association and regulation of p53. We analyzed by bioinformatics the expression of several clock genes (CLOCK, CRY1-2, PER1-3), p53, and apoptotic and metabolic genes across all tumors in the TCGA platform, and found deregulated patterns in many cases. Our findings support the development of new therapies targeted against some clock genes to restore p53 activities and the inhibition of tumor development. Such therapies will complement a large number of currently tested treatments targeting the restoration of wild-type p53 to prevent tumor growth and lead cancer cells to apoptosis.
    DOI:  https://doi.org/10.1615/CritRevOncog.2022042860