bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2021–11–28
forty papers selected by
Christian Frezza, , University of Cambridge, MRC Cancer Unit



  1. J Biol Chem. 2021 Nov 18. pii: S0021-9258(21)01245-X. [Epub ahead of print] 101436
      Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum (ER) inositol trisphosphate receptors (IP3R) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetics needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293, HeLa) with stable knockouts of all three IP3R isoforms (TKO) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels, but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely due to adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.
    Keywords:  IP(3) receptor; TCA cycle; bioenergetics; calcium signaling; glycolysis; mitochondrial calcium uniporter; mitochondrial metabolism
    DOI:  https://doi.org/10.1016/j.jbc.2021.101436
  2. Cancer Lett. 2021 Nov 20. pii: S0304-3835(21)00591-7. [Epub ahead of print]
      Cancer cells display metabolic alterations to meet the bioenergetic demands for their high proliferation rates. Succinate is a central metabolite of the tricarboxylic acid (TCA) cycle, but was also shown to act as an oncometabolite and to specifically activate the succinate receptor 1 (SUCNR1), which is expressed in several types of cancer. However, functional studies focusing on the connection between SUCNR1 and cancer cell metabolism are still lacking. In the present study, we analyzed the role of SUCNR1 for cancer cell metabolism and survival applying different signal transduction, metabolic and imaging analyses. We chose a gastric, a lung and a pancreatic cancer cell line for which our data revealed functional expression of SUCNR1. Further, presence of glutamine (Gln) caused high respiratory rates and elevated expression of SUCNR1. Knockdown of SUCNR1 resulted in a significant increase of mitochondrial respiration and superoxide production accompanied by an increase in TCA cycle throughput and a reduction of cancer cell survival in the analyzed cancer cell lines. Combination of SUCNR1 knockdown and treatment with the chemotherapeutics cisplatin and gemcitabine further increased cancer cell death. In summary, our data implicates that SUCNR1 is crucial for Gln-addicted cancer cells by limiting TCA cycle throughput, mitochondrial respiration and the production of reactive oxygen species, highlighting its potential as a pharmacological target for cancer treatment.
    Keywords:  Cancer metabolism; GPR91; Glutaminolysis; Metabolite-sensing GPCR; SUCNR1
    DOI:  https://doi.org/10.1016/j.canlet.2021.11.024
  3. Antioxidants (Basel). 2021 Nov 19. pii: 1838. [Epub ahead of print]10(11):
      Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells' progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
    Keywords:  ROS signaling; distant colonization; metastasis; mitochondrial redox metabolism; tumor development
    DOI:  https://doi.org/10.3390/antiox10111838
  4. J Biol Chem. 2021 Nov 19. pii: S0021-9258(21)01244-8. [Epub ahead of print] 101435
      The dual roles of H2S as an endogenously synthesized respiratory substrate and as a toxin, raise questions as to how it is cleared when the electron transport chain is inhibited. Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in the mitochondrial H2S oxidation pathway, using CoQ as an electron acceptor, and connects to the electron transport chain at the level of complex III. We have discovered that at high H2S concentrations, which are known to inhibit complex IV, a new redox cycle is established between SQOR and complex II, operating in reverse. Under these conditions, the purine nucleotide cycle and the malate aspartate shuttle furnish fumarate, which supports complex II reversal and leads to succinate accumulation. Complex II knockdown in colonocytes decreases the efficiency of H2S clearance while targeted knockout of complex II in intestinal epithelial cells significantly decreases the levels of thiosulfate, a biomarker of H2S oxidation, to approximately one third of the values seen in serum and urine samples from control mice. These data establish the physiological relevance of this newly discovered redox circuitry between SQOR and complex II for prioritizing H2S oxidation and reveal the quantitatively significant contribution of intestinal epithelial cells to systemic H2S metabolism.
    Keywords:  SDHA; coenzyme Q; complex II; electron transport chain; fumarate; hydrogen sulfide
    DOI:  https://doi.org/10.1016/j.jbc.2021.101435
  5. Cell Rep. 2021 Nov 23. pii: S2211-1247(21)01519-9. [Epub ahead of print]37(8): 110037
      Glucose metabolism modulates the islet β cell responses to diabetogenic stress, including inflammation. Here, we probed the metabolic mechanisms that underlie the protective effect of glucose in inflammation by interrogating the metabolite profiles of primary islets from human donors and identified de novo glutathione synthesis as a prominent glucose-driven pro-survival pathway. We find that pyruvate carboxylase is required for glutathione synthesis in islets and promotes their antioxidant capacity to counter inflammation and nitrosative stress. Loss- and gain-of-function studies indicate that pyruvate carboxylase is necessary and sufficient to mediate the metabolic input from glucose into glutathione synthesis and the oxidative stress response. Altered redox metabolism and cellular capacity to replenish glutathione pools are relevant in multiple pathologies beyond obesity and diabetes. Our findings reveal a direct interplay between glucose metabolism and glutathione biosynthesis via pyruvate carboxylase. This metabolic axis may also have implications in other settings where sustaining glutathione is essential.
    Keywords:  ROS; glucose; glutathione; inflammation; nitrosative stress; oxidative stress; pancreatic islets; pyruvate carboxylase
    DOI:  https://doi.org/10.1016/j.celrep.2021.110037
  6. J Mol Biol. 2021 Nov 19. pii: S0022-2836(21)00598-2. [Epub ahead of print] 167361
      MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved. To investigate the metabolic pathways that are regulated by miR-101-3p, we performed transcriptome and functional analyses of osteosarcoma cells transfected with miR-101-3p. We found that miR-101-3p downregulates multiple mitochondrial processes, including oxidative phosphorylation, pyruvate metabolism, the citric acid cycle and phospholipid metabolism. We also found that miR-101-3p transfection disrupts the transcription of mitochondrial DNA (mtDNA) via the downregulation of the mitochondrial transcription initiation complex proteins TFB2M and Mic60. These alterations in transcript expression disrupt mitochondrial function, with significant decreases in both basal (54%) and maximal (67%) mitochondrial respiration rates. Native gel electrophoresis revealed that this diminished respiratory capacity was associated with reduced steady-state levels of mature succinate dehydrogenase (complex II), with a corresponding reduction of complex II enzymatic activity. Furthermore, miR-101-3p transfection reduced the expression of the SDHB subunit, with a concomitant disruption of the assembly of the SDHC subunit into mature complex II. Overall, we describe a new role for miR-101-3p as a modulator of mitochondrial metabolism via its regulation of multiple mitochondrial processes, including mtDNA transcription and complex II biogenesis.
    Keywords:  MicroRNA-101; cancer metabolism; complex II biogenesis; mtDNA transcription; oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.jmb.2021.167361
  7. Cell Metab. 2021 Nov 12. pii: S1550-4131(21)00529-5. [Epub ahead of print]
      Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.
    Keywords:  Mitochondria; complexome; copy numbers; disease; half-lives; high-confidence proteome; human cells; protein translocation; respiratory chain; smORFs
    DOI:  https://doi.org/10.1016/j.cmet.2021.11.001
  8. Metabolites. 2021 Nov 09. pii: 764. [Epub ahead of print]11(11):
      Renal cell carcinoma (RCC) is among the 10 most common cancer entities and can be categorised into distinct subtypes by differential expression of Krebs cycle genes. We investigated the predictive value of several targeted metabolites with regards to tumour stages and patient survival in an unselected cohort of 420 RCCs. Unsupervised hierarchical clustering of metabolite ratios identified two main clusters separated by α-ketoglutarate (α-KG) levels and sub-clusters with differential levels of the oncometabolite 2-hydroxyglutarate (2HG). Sub-clusters characterised by high 2HG were enriched in higher tumour stages, suggesting metabolite profiles might be suitable predictors of tumour stage or survival. Bootstrap forest models based on single metabolite signatures showed that lactate, 2HG, citrate, aspartate, asparagine, and glutamine better predicted the cancer-specific survival (CSS) of clear cell RCC patients, whereas succinate and α-ketoglutarate were better CSS predictors for papillary RCC patients. Additionally, this assay identifies rare cases of tumours with SDHx mutations, which are caused predominantly by germline mutations and which predispose to development of different neoplasms. Hence, analysis of selected metabolites should be further evaluated for potential utility in liquid biopsies, which can be obtained using less invasive methods and potentially facilitate disease monitoring for both patients and caregivers.
    Keywords:  Krebs cycle; metabolic profiling; renal cell carcinoma; subtypes; succinate dehydrogenase mutations; survival analysis
    DOI:  https://doi.org/10.3390/metabo11110764
  9. Biomolecules. 2021 Nov 10. pii: 1666. [Epub ahead of print]11(11):
      A better understanding of the metabolic constraints of a tumor may lead to more effective anticancer treatments. Evidence has emerged in recent years shedding light on a crucial aspartate dependency of many tumor types. As a precursor for nucleotide synthesis, aspartate is indispensable for cell proliferation. Moreover, the malate-aspartate shuttle plays a key role in redox balance, and a deficit in aspartate can lead to oxidative stress. It is now recognized that aspartate biosynthesis is largely governed by mitochondrial metabolism, including respiration and glutaminolysis in cancer cells. Therefore, under conditions that suppress mitochondrial metabolism, including mutations, hypoxia, or chemical inhibitors, aspartate can become a limiting factor for tumor growth and cancer cell survival. Notably, aspartate availability has been associated with sensitivity or resistance to various therapeutics that are presently in the clinic or in clinical trials, arguing for a critical need for more effective aspartate-targeting approaches. In this review, we present current knowledge of the metabolic roles of aspartate in cancer cells and describe how cancer cells maintain aspartate levels under different metabolic states. We also highlight several promising aspartate level-modulating agents that are currently under investigation.
    Keywords:  GOT1; alpha-ketoglutarate; asparagine; aspartate; cancer metabolism; glutaminase; hypoxia; mitochondrial DNA mutation; mitochondrial respiration; oxidative phosphorylation
    DOI:  https://doi.org/10.3390/biom11111666
  10. Biochem Soc Trans. 2021 Nov 23. pii: BST20210798. [Epub ahead of print]
      The dynamic processes of mitochondrial fusion and fission determine the shape of mitochondria, which can range from individual fragments to a hyperfused network, and influence mitochondrial function. Changes in mitochondrial shape can occur rapidly, allowing mitochondria to adapt to specific cues and changing cellular demands. Here, we will review what is known about how key proteins required for mitochondrial fusion and fission are regulated by their acetylation status, with acetylation promoting fission and deacetylation enhancing fusion. In particular, we will examine the roles of NAD+ dependant sirtuin deacetylases, which mediate mitochondrial acetylation, and how this post-translational modification provides an exquisite regulatory mechanism to co-ordinate mitochondrial function with metabolic demands of the cell.
    Keywords:  acetylation/deacetylation; fission; fusion; mitochondria; sirtuins
    DOI:  https://doi.org/10.1042/BST20210798
  11. J Proteomics. 2021 Nov 20. pii: S1874-3919(21)00329-8. [Epub ahead of print] 104430
      A role for reversible phosphorylation in regulation of mitochondrial proteins has been neglected for a long time. Particularly, the import machineries that mediate influx of more than 1000 different precursor proteins into the organelle were considered as predominantly constitutively active entities. Only recently, a combination of advanced phosphoproteomic approaches and Phos-tag technology enabled the discovery of several phosphorylation sites at the translocase of the outer membrane TOM and the identification of cellular signalling cascades that allow dynamic adaptation of the protein influx into mitochondria upon changing cellular demands. Here, we present a protocol that allows biochemical and semi-quantitative profiling of intra-mitochondrial protein phosphorylation. We exemplify this with the pyruvate dehydrogenase complex (PDH), which serves as a central metabolic switch in energy metabolism that is based on reversible phosphorylation. Phos-tag technology allows rapid monitoring of the metabolic state via simultaneous detection of phosphorylated and non-phosphorylated species of the PDH core component Pda1. Our protocol can be applied for several further intra-organellar proteins like respiratory chain complexes or protein translocases of the inner membrane. SIGNIFICANCE: Our manuscript describes for the first time how Phos-tag technology can be applied to monitor phosphorylation of intramitochondrial proteins. We exemplify this with the regulation of the pyruvate dehydrogenase complex as central regulatory switch in energy metabolism. We show that our protocol allows a rapid monitoring of the metabolic state of the cell (phosphorylated PDH is inactive while non-phosphorylated PDH is active) and can be applied for rapid profiling of different metabolic conditions as well as for profiling phosphorylation of further intramitochondrial protein (complexes).
    Keywords:  Mitochondria; Protein import; Protein translocation; Signalling; TOM complex
    DOI:  https://doi.org/10.1016/j.jprot.2021.104430
  12. Metabolomics. 2021 Nov 25. 17(12): 104
       INTRODUCTION: KRAS was one of the earliest human oncogenes to be described and is one of the most commonly mutated genes in different human cancers, including colorectal cancer. Despite KRAS mutants being known driver mutations, KRAS has proved difficult to target therapeutically, necessitating a comprehensive understanding of the molecular mechanisms underlying KRAS-driven cellular transformation.
    OBJECTIVES: To investigate the metabolic signatures associated with single copy mutant KRAS in isogenic human colorectal cancer cells and to determine what metabolic pathways are affected.
    METHODS: Using NMR-based metabonomics, we compared wildtype (WT)-KRAS and mutant KRAS effects on cancer cell metabolism using metabolic profiling of the parental KRAS G13D/+ HCT116 cell line and its isogenic, derivative cell lines KRAS +/- and KRAS G13D/-.
    RESULTS: Mutation in the KRAS oncogene leads to a general metabolic remodelling to sustain growth and counter stress, including alterations in the metabolism of amino acids and enhanced glutathione biosynthesis. Additionally, we show that KRASG13D/+ and KRASG13D/- cells have a distinct metabolic profile characterized by dysregulation of TCA cycle, up-regulation of glycolysis and glutathione metabolism pathway as well as increased glutamine uptake and acetate utilization.
    CONCLUSIONS: Our study showed the effect of a single point mutation in one KRAS allele and KRAS allele loss in an isogenic genetic background, hence avoiding confounding genetic factors. Metabolic differences among different KRAS mutations might play a role in their different responses to anticancer treatments and hence could be exploited as novel metabolic vulnerabilities to develop more effective therapies against oncogenic KRAS.
    Keywords:  Cells; Colorectal cancer; HCT116; KRAS; Metabolic profiling; Metabolomics; Metabonomics; Mutations; NMR
    DOI:  https://doi.org/10.1007/s11306-021-01852-w
  13. Trends Cell Biol. 2021 Nov 23. pii: S0962-8924(21)00207-5. [Epub ahead of print]
      Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
    Keywords:  cell signalling; heteroplasmy; metabolic remodelling; mitochondrial disease; mtDNA
    DOI:  https://doi.org/10.1016/j.tcb.2021.10.005
  14. Elife. 2021 Nov 22. pii: e73808. [Epub ahead of print]10
      Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the FLIM measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.
    Keywords:  biochemistry; chemical biology; human; mouse; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.73808
  15. Cell Rep. 2021 Nov 23. pii: S2211-1247(21)01479-0. [Epub ahead of print]37(8): 110000
      In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.
    Keywords:  DNA packaging; STED nanoscopy; mitochondrial gene expression; mtDNA mutations; mtDNA replication
    DOI:  https://doi.org/10.1016/j.celrep.2021.110000
  16. Cell Calcium. 2021 Nov 19. pii: S0143-4160(21)00155-X. [Epub ahead of print]101 102501
      Mutations in either of the polycystic kidney disease genes, PKD1 or PKD2, engender the growth of cysts, altering renal function. Cystic growth is supported by major changes in cellular metabolism, some of which involve the mitochondrion, a major storage site for Ca2+ and a key organelle in cellular Ca2+ signaling. The goal here was to understand the role of components of the mitochondrial Ca2+ uptake complex in PC1-mutant cells in autosomal dominant polycystic kidney disease (ADPKD). We found that the mitochondrial Ca2+ uniporter (MCU) and voltage-dependent anion channels 1& 3 (VDAC) were down-regulated in different mouse and cell models of ADPKD along with the Ca2+-dependent enzyme, pyruvate dehydrogenase phosphatase (PDHX). The release of Ca2+ from the endoplasmic reticulum, and Ca2+ uptake by the mitochondria were upregulated in PC1(polycystin)-null cells. We also observed an enhanced staining with MitoTracker Red CMXRos in PC1-null cultured cells than in PC1-containing cells and a substantially higher increase in response to ER Ca2+ release. Increased colocalization of the Ca2+ sensitive dye, rhodamine2, with MitoTracker Green suggested an increase Ca2+ entry into the mitochondria in PC1 null cells subsequent to Ca2+ release from the ER or from Ca2+ entry from the extracellular solution. These data clearly demonstrate abnormal release of Ca2+ by the ER and corresponding alterations in Ca2+ uptake by the mitochondria in PC1-null cells. Importantly, inhibiting mitochondrial Ca2+ uptake with the specific inhibitor Ru360 inhibited cyst growth and altered both apoptosis and cell proliferation. We further show that the decrease in mitochondrial proteins and abnormally high Ca2+ signaling can be reversed by application of the cystic fibrosis (CFTR) corrector, VX-809. We conclude that enhanced Ca2+ signaling and alterations in proteins association with the mitochondrial Ca2+ uptake complex are associated with malfunction of PC1. Finally, our results identify novel therapeutic targets for treating ADPKD.
    Keywords:  Adult onset polycystic kidney disease; CFTR modulators; Calcium; Mitochondria
    DOI:  https://doi.org/10.1016/j.ceca.2021.102501
  17. Metabolites. 2021 Nov 20. pii: 792. [Epub ahead of print]11(11):
      Histone deacetylases (HDACs) are epigenetic enzymes that play a central role in gene regulation and are sensitive to the metabolic state of the cell. The cross talk between metabolism and histone acetylation impacts numerous biological processes including development and immune function. HDAC inhibitors are being explored for treating cancers, viral infections, inflammation, neurodegenerative diseases, and metabolic disorders. However, how HDAC inhibitors impact cellular metabolism and how metabolism influences their potency is unclear. Discussed herein are recent applications and future potential of systems biology methods such as high throughput drug screens, cancer cell line profiling, single cell sequencing, proteomics, metabolomics, and computational modeling to uncover the interplay between metabolism, HDACs, and HDAC inhibitors. The synthesis of new systems technologies can ultimately help identify epigenomic and metabolic biomarkers for patient stratification and the design of effective therapeutics.
    Keywords:  epigenome; gene regulation; histone acetylation; histone deacetylases; metabolomics; proteomics; transcriptomics
    DOI:  https://doi.org/10.3390/metabo11110792
  18. iScience. 2021 Nov 19. 24(11): 103366
      Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.
    Keywords:  Cancer; Cancer systems biology; Mathematical biosciences
    DOI:  https://doi.org/10.1016/j.isci.2021.103366
  19. iScience. 2021 Nov 19. 24(11): 103338
      The target of Rapamycin complex1 (TORC1) senses and integrates several environmental signals, including amino acid (AA) availability, to regulate cell growth. Folliculin (FLCN) is a tumor suppressor (TS) protein in renal cell carcinoma, which paradoxically activates TORC1 in response to AA supplementation. Few tractable systems for modeling FLCN as a TS are available. Here, we characterize the FLCN-containing complex in Schizosaccharomyces pombe (called BFC) and show that BFC augments TORC1 repression and activation in response to AA starvation and supplementation, respectively. BFC co-immunoprecipitates V-ATPase, a TORC1 modulator, and regulates its activity in an AA-dependent manner. BFC genetic and proteomic networks identify the conserved peptide transmembrane transporter Ptr2 and the phosphoribosylformylglycinamidine synthase Ade3 as new AA-dependent regulators of TORC1. Overall, these data ascribe an additional repressive function to Folliculin in TORC1 regulation and reveal S. pombe as an excellent system for modeling the AA-dependent, FLCN-mediated repression of TORC1 in eukaryotes.
    Keywords:  Cell biology; Cellular physiology; Functional aspects of cell biology
    DOI:  https://doi.org/10.1016/j.isci.2021.103338
  20. Front Cell Dev Biol. 2021 ;9 706687
      Drp1 is a central player in mitochondrial fission and is recruited to mitochondria by Mff and MIEFs (MIEF1 and MIEF2), but little is known about how its assembly state affects Drp1 mitochondrial recruitment and fission. Here, we used in vivo chemical crosslinking to explore the self-assembly state of Drp1 and how it regulates the association of Drp1 with MIEFs and Mff. We show that in intact mammalian cells Drp1 exists as a mixture of multiple self-assembly forms ranging from the minimal, probably tetrameric, self-assembly subunit to several higher order oligomers. Precluding mitochondria-bound Drp1 in Mff/MIEF1/2-deficient cells does not affect the oligomerization state of Drp1, while conversely forced recruitment of Drp1 to mitochondria by MIEFs or Mff facilitates Drp1 oligomerization. Mff preferentially binds to higher order oligomers of Drp1, whereas MIEFs bind to a wider-range of Drp1 assembly subunits, including both lower and higher oligomeric states. Mff only recruits active forms of Drp1, while MIEFs are less selective and recruit both active and inactive Drp1 as well as oligomerization- or GTPase-deficient Drp1 mutants to mitochondria. Moreover, all the fission-incompetent Drp1 mutants tested (except the monomeric mutant K668E) affect Drp1-driven mitochondrial dynamics via incorporation of the mutants into the native oligomers to form function-deficient Drp1 assemblies. We here confirm that MIEFs also serve as a platform facilitating the binding of Drp1 to Mff and loss of MIEFs severely impairs the interaction between Drp1 and Mff. Collectively, our findings suggest that Mff and MIEFs respond differently to the molecular assembly state of Drp1 and that the extent of Drp1 oligomerization regulates mitochondrial dynamics.
    Keywords:  Drp1; Drp1 mutation; MIEF1; MIEF2; Mff; mitochondria; mitochondrial dynamics; oligomerization
    DOI:  https://doi.org/10.3389/fcell.2021.706687
  21. Metabolites. 2021 Oct 27. pii: 734. [Epub ahead of print]11(11):
      The bioenergetics of the vast majority of terrestrial mammals evolved to consuming glucose (Glc) for energy production under regular atmosphere (about 21% oxygen). However, some vertebrate species, such as aquatic turtles, seals, naked mole rat, and blind mole rat, Spalax, have adjusted their homeostasis to continuous function under severe hypoxic environment. The exploration of hypoxia-tolerant species metabolic strategies provides a better understanding of the adaptation to hypoxia. In this study, we compared Glc homeostasis in primary Spalax and rat skin cells under normoxic and hypoxic conditions. We used the targeted-metabolomics approach, utilizing liquid chromatography and mass spectrometry (LC-MS) to track the fate of heavy Glc carbons (13C6 Glc), as well as other methodologies to assist the interpretation of the metabolic landscape, such as bioenergetics profiling, Western blotting, and gene expression analysis. The metabolic profile was recorded under steady-state (after 24 h) of the experiment. Glc-originated carbons were unequally distributed between the cytosolic and mitochondrial domains in Spalax cells compared to the rat. The cytosolic domain is dominant apparently due to the hypoxia-inducible factor-1 alpha (HIF-1α) mastering, since its level is higher under normoxia and hypoxia in Spalax cells. Consumed Glc in Spalax cells is utilized for the pentose phosphate pathway maintaining the NADPH pool, and is finally harbored as glutathione (GSH) and UDP-GlcNAc. The cytosolic domain in Spalax cells works in the semi-uncoupled mode that limits the consumed Glc-derived carbons flux to the tricarboxylic acid (TCA) cycle and reduces pyruvate delivery; however, it maintains the NAD+ pool via lactate dehydrogenase upregulation. Both normoxic and hypoxic mitochondrial homeostasis of Glc-originated carbons in Spalax are characterized by their massive cataplerotic flux along with the axis αKG→Glu→Pro→hydroxyproline (HPro). The product of collagen degradation, HPro, as well as free Pro are apparently involved in the bioenergetics of Spalax under both normoxia and hypoxia. The upregulation of 2-hydroxyglutarate production detected in Spalax cells may be involved in modulating the levels of HIF-1α. Collectively, these data suggest that Spalax cells utilize similar metabolic frame for both normoxia and hypoxia, where glucose metabolism is switched from oxidative pathways (conversion of pyruvate to Acetyl-CoA and further TCA cycle processes) to (i) pentose phosphate pathway, (ii) lactate production, and (iii) cataplerotic pathways leading to hexosamine, GSH, and HPro production.
    Keywords:  GSH; Spalax; adaptation; bioenergetics; glucose; hypoxia; metabolome; proline cycle
    DOI:  https://doi.org/10.3390/metabo11110734
  22. Sci Rep. 2021 Nov 23. 11(1): 22755
      Mitochondrial DNA (mtDNA) maintenance is essential to sustain a functionally healthy population of mitochondria within cells. Proper mtDNA replication and distribution within mitochondrial networks are essential to maintain mitochondrial homeostasis. However, the fundamental basis of mtDNA segregation and distribution within mitochondrial networks is still unclear. To address these questions, we developed an algorithm, Mitomate tracker to unravel the global distribution of nucleoids within mitochondria. Using this tool, we decipher the semi-regular spacing of nucleoids across mitochondrial networks. Furthermore, we show that mitochondrial fission actively regulates mtDNA distribution by controlling the distribution of nucleoids within mitochondrial networks. Specifically, we found that primary cells bearing disease-associated mutations in the fission proteins DRP1 and MYH14 show altered nucleoid distribution, and acute enrichment of enlarged nucleoids near the nucleus. Further analysis suggests that the altered nucleoid distribution observed in the fission mutants is the result of both changes in network structure and nucleoid density. Thus, our study provides novel insights into the role of mitochondria fission in nucleoid distribution and the understanding of diseases caused by fission defects.
    DOI:  https://doi.org/10.1038/s41598-021-01987-9
  23. Nature. 2021 Nov 24.
      Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.
    DOI:  https://doi.org/10.1038/s41586-021-04116-8
  24. PLoS One. 2021 ;16(11): e0260400
      Heme is an essential cofactor for enzymes of the electron transport chain (ETC) and ATP synthesis in mitochondrial oxidative phosphorylation (OXPHOS). Heme also binds to and destabilizes Bach1, a transcription regulator that controls expression of several groups of genes important for glycolysis, ETC, and metastasis of cancer cells. Heme synthesis can thus affect pathways through which cells generate energy and precursors for anabolism. In addition, increased heme synthesis may trigger oxidative stress. Since many cancers are characterized by a high glycolytic rate regardless of oxygen availability, targeting glycolysis, ETC, and OXPHOS have emerged as a potential therapeutic strategy. Here, we report that enhancing heme synthesis through exogenous supplementation of heme precursor 5-aminolevulinic acid (ALA) suppresses oxidative metabolism as well as glycolysis and significantly reduces proliferation of both ovarian and breast cancer cells. ALA supplementation also destabilizes Bach1 and inhibits migration of both cell types. Our data indicate that the underlying mechanisms differ in ovarian and breast cancer cells, but involve destabilization of Bach1, AMPK activation, and induction of oxidative stress. In addition, there appears to be an inverse correlation between the activity of oxidative metabolism and ALA sensitivity. Promoting heme synthesis by ALA supplementation may thus represent a promising new anti-cancer strategy, particularly in cancers that are sensitive to altered redox signaling, or in combination with strategies that target the antioxidant systems or metabolic weaknesses of cancer cells.
    DOI:  https://doi.org/10.1371/journal.pone.0260400
  25. Antioxidants (Basel). 2021 Nov 08. pii: 1785. [Epub ahead of print]10(11):
      Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
    Keywords:  coenzyme Q; metabolic disease; mitochondria; rare disease; ubiquinone
    DOI:  https://doi.org/10.3390/antiox10111785
  26. iScience. 2021 Nov 19. 24(11): 103354
      The Krebs cycle enzyme fumarase, which has been identified as a tumor suppressor, is involved in the deoxyribonucleic acid (DNA) damage response (DDR) in human, yeast, and bacterial cells. We have found that the overexpression of the cysteine desulfurase Nfs1p restores DNA repair in fumarase-deficient yeast cells. Nfs1p accumulates inactivating post-translational modifications in yeast cells lacking fumarase under conditions of DNA damage. Our model is that in addition to metabolic signaling of the DDR in the nucleus, fumarase affects the DDR by protecting the desulfurase Nfs1p in mitochondria from modification and inactivation. Fumarase performs this protection by directly binding to Nfs1p in mitochondria and enabling, the maintenance, via metabolism, of a non-oxidizing environment in mitochondria. Nfs1p is required for the formation of Fe-S clusters, which are essential cofactors for DNA repair enzymes. Thus, we propose that the overexpression of Nfs1p overcomes the lack of fumarase by enhancing the activity of DNA repair enzymes.
    Keywords:  Biochemistry; Biological sciences; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2021.103354
  27. Micron. 2021 Nov 12. pii: S0968-4328(21)00172-4. [Epub ahead of print]153 103181
      Iron-Sulfur (Fe-S) clusters are essential for life, as they are widely utilized in nearly every biochemical pathway. When bound to proteins, Fe-S clusters assist in catalysis, signal recognition, and energy transfer events, as well as additional cellular pathways including cellular respiration and DNA repair and replication. In Eukaryotes, Fe-S clusters are produced through coordinated activity by mitochondrial Iron-Sulfur Cluster (ISC) assembly pathway proteins through direct assembly, or through the production of the activated sulfur substrate used by the Cytosolic Iron-Sulfur Cluster Assembly (CIA) pathway. In the mitochondria, Fe-S cluster assembly is accomplished through the coordinated activity of the ISC pathway protein complex composed of a cysteine desulfurase, a scaffold protein, the accessory ISD11 protein, the acyl carrier protein, frataxin, and a ferredoxin; downstream events that accomplish Fe-S cluster transfer and delivery are driven by additional chaperone/delivery proteins that interact with the ISC assembly complex. Deficiency in human production or activity of Fe-S cluster containing proteins is often detrimental to cell and organism viability. Here we summarize what is known about the structure and functional activities of the proteins involved in the early steps of assembling [2Fe-2S] clusters before they are transferred to proteins devoted to their delivery. Our goal is to provide a comprehensive overview of how the ISC assembly apparatus proteins interact to make the Fe-S cluster which can be delivered to proteins downstream to the assembly event.
    Keywords:  Acyl carrier protein; Cysteine desulfurase; Ferredoxin; Frataxin; Friedrich’s ataxia; Iron-sulfur clusters; Scaffold
    DOI:  https://doi.org/10.1016/j.micron.2021.103181
  28. Nat Immunol. 2021 Nov 22.
      Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.
    DOI:  https://doi.org/10.1038/s41590-021-01065-2
  29. FEBS J. 2021 Nov 24.
      The 4th International meeting Metabolism and Cancer initially programed to take place in Bordeaux (France) was held virtually on May 27-29, 2021. The three-day event was followed by around 600 participants daily from 47 countries around the world. The meeting hosted 21 speakers including selected talks and a keynote lecture from the Nobel prize winner Sir Peter J. Ratcliffe (Oxford, United Kingdom). Presentations and discussions were divided in four scientific sessions: (1) Redox and energy metabolism; (2) Redox and hypoxia; (3) Metabolic profiling and epigenetic control; and (4) Signaling, fueling and metabolism in cancer and a general public session on cancer and nutrition. This report summarizes the presentations and outcomes of the 4th annual Metabolism and Cancer symposium. We provide here a summary of the scientific highlights of this exciting meeting.
    Keywords:  Cancer; Epigenetics; Hypoxia; Metabolism; Mitochondria; Redox; Signaling
    DOI:  https://doi.org/10.1111/febs.16295
  30. Cells. 2021 Oct 26. pii: 2898. [Epub ahead of print]10(11):
      Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions.
    Keywords:  STING; TLR9; extracellular cf-mtDNA; inflammasome; mitochondria; mtDNA
    DOI:  https://doi.org/10.3390/cells10112898
  31. Redox Biol. 2021 Nov 11. pii: S2213-2317(21)00346-3. [Epub ahead of print]48 102186
      When ROS production exceeds the cellular antioxidant capacity, the cell needs to eliminate the defective mitochondria responsible for excessive ROS production. It has been proposed that the removal of these defective mitochondria involves mitophagy, but the mechanism of this regulation remains unclear. Here, we demonstrate that moderate mitochondrial superoxide and hydrogen peroxide production oxidates KEAP1, thus breaking the interaction between this protein and PGAM5, leading to the inhibition of its proteasomal degradation. Accumulated PGAM5 interferes with the processing of the PINK1 in the mitochondria leading to the accumulation of PINK1 on the outer mitochondrial membrane. In turn, PINK1 promotes Parkin recruitment to mitochondria and sensitizes mitochondria for autophagic removal. We also demonstrate that inhibitors of the KEAP1-PGAM5 protein-protein interaction (including CPUY192018) mimic the effect of mitochondrial ROS and sensitize mitophagy machinery, suggesting that these inhibitors could be used as pharmacological regulators of mitophagy. Together, our results show that KEAP1/PGAM5 complex senses mitochondrially generated superoxide/hydrogen peroxide to induce mitophagy.
    Keywords:  Mitophagy; NRF2/KEAP1 pathway; Neurodegenerative diseases; Oxidative stress; PINK1/Parkin pathway
    DOI:  https://doi.org/10.1016/j.redox.2021.102186
  32. Nat Commun. 2021 Nov 24. 12(1): 6829
      Signals are relayed from receptor tyrosine kinases (RTKs) at the cell surface to effector systems in the cytoplasm and nucleus, and coordination of this process is important for the execution of migratory phenotypes, such as cell scattering and invasion. The endosomal system influences how RTK signalling is coded, but the ways in which it transmits these signals to the nucleus to influence gene expression are not yet clear. Here we show that hepatocyte growth factor, an activator of MET (an RTK), promotes Rab17- and clathrin-dependent endocytosis of EphA2, another RTK, followed by centripetal transport of EphA2-positive endosomes. EphA2 then mediates physical capture of endosomes on the outer surface of the nucleus; a process involving interaction between the nuclear import machinery and a nuclear localisation sequence in EphA2's cytodomain. Nuclear capture of EphA2 promotes RhoG-dependent phosphorylation of the actin-binding protein, cofilin to oppose nuclear import of G-actin. The resulting depletion of nuclear G-actin drives transcription of Myocardin-related transcription factor (MRTF)/serum-response factor (SRF)-target genes to implement cell scattering and the invasive behaviour of cancer cells.
    DOI:  https://doi.org/10.1038/s41467-021-26839-y
  33. Cell Signal. 2021 Nov 17. pii: S0898-6568(21)00290-4. [Epub ahead of print] 110201
      O-GlcNAcylation is a post-translational modification occurring on serine/threonine residues of nuclear and cytoplasmic proteins, mediated by the enzymes OGT and OGA which catalyze the addition or removal of the UDP-GlcNAc moieties, respectively. Structural changes brought by this modification lead to alternations of protein stability, protein-protein interactions, and phosphorylation. Importantly, O-GlcNAcylation is a nutrient sensor by coupling nutrient sensing with cellular signaling. Elevated levels of OGT and O-GlcNAc have been reported in a variety of cancers and has been linked to regulation of multiple cancer signaling pathways. In this review, we discuss the most recent findings on the role of O-GlcNAcylation as a metabolic sensor in signaling pathways and immune response in cancer.
    Keywords:  Metabolism; O-GlcNAc; OGT; Signaling; Transcription; cancer
    DOI:  https://doi.org/10.1016/j.cellsig.2021.110201
  34. Nat Commun. 2021 Nov 23. 12(1): 6801
      Naked mole-rats are among the most hypoxia-tolerant mammals. During hypoxia, their body temperature (Tb) decreases via unknown mechanisms to conserve energy. In small mammals, non-shivering thermogenesis in brown adipose tissue (BAT) is critical to Tb regulation; therefore, we hypothesize that hypoxia decreases naked mole-rat BAT thermogenesis. To test this, we measure changes in Tb during normoxia and hypoxia (7% O2; 1-3 h). We report that interscapular thermogenesis is high in normoxia but ceases during hypoxia, and Tb decreases. Furthermore, in BAT from animals treated in hypoxia, UCP1 and mitochondrial complexes I-V protein expression rapidly decrease, while mitochondria undergo fission, and apoptosis and mitophagy are inhibited. Finally, UCP1 expression decreases in hypoxia in three other social African mole-rat species, but not a solitary species. These findings suggest that the ability to rapidly down-regulate thermogenesis to conserve oxygen in hypoxia may have evolved preferentially in social species.
    DOI:  https://doi.org/10.1038/s41467-021-27170-2
  35. Nat Commun. 2021 Nov 23. 12(1): 6803
      Enzymes are represented across a vast space of protein sequences and structural forms and have activities that far exceed the best chemical catalysts; however, engineering them to have novel or enhanced activity is limited by technologies for sensing product formation. Here, we describe a general and scalable approach for characterizing enzyme activity that uses the metabolism of the host cell as a biosensor by which to infer product formation. Since different products consume different molecules in their synthesis, they perturb host metabolism in unique ways that can be measured by mass spectrometry. This provides a general way by which to sense product formation, to discover unexpected products and map the effects of mutagenesis.
    DOI:  https://doi.org/10.1038/s41467-021-27185-9
  36. Nat Commun. 2021 Nov 25. 12(1): 6859
      The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
    DOI:  https://doi.org/10.1038/s41467-021-27266-9
  37. PLoS Genet. 2021 Nov 22. 17(11): e1009933
      In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.
    DOI:  https://doi.org/10.1371/journal.pgen.1009933
  38. Nat Commun. 2021 Nov 26. 12(1): 6931
      Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.
    DOI:  https://doi.org/10.1038/s41467-021-27190-y
  39. Trends Mol Med. 2021 Nov 17. pii: S1471-4914(21)00278-1. [Epub ahead of print]
      Time-restricted eating (TRE), which limits the daily meal timing to a window of 6-12 h, has been shown to reduce the risks of cardiometabolic diseases through consolidating circadian rhythms of metabolism and physiology. Recent advances indicate that canonical circadian clocks are dispensable for the actions of TRE in the liver, and that meal timing entrains circadian rhythms in peripheral tissues in a tissue-specific manner (e.g., the liver and fat are readily entrainable, whereas the heart and kidneys are resistant). Here, we propose that TRE engages clock-modulated checkpoints (CCPs) to reset circadian rhythms of tissue functions. Elucidation of CCPs would reveal the mechanistic basis of tissue responsiveness to TRE, and facilitate the use of TRE in precision medicine for cardiometabolic diseases.
    Keywords:  cardiometabolic diseases; circadian rhythm; de novo lipogenesis; metabolic dysfunction-associated fatty liver disease; peripheral clocks; time-restricted eating
    DOI:  https://doi.org/10.1016/j.molmed.2021.10.006
  40. Am J Blood Res. 2021 ;11(5): 534-543
       BACKGROUND: Mitochondrial bioenergetic alterations are commonly observed metabolic adaptation in malignancies including acute myeloid leukemia (AML). Mitochondrial DNA alterations are well known in pediatric AML with possible prognostic significance; however, mitochondrial complex activity and its impact on disease outcome have not been previously explored. The aim of this study was to evaluate the mitochondrial complex II and complex V activity and its prognostic significance in pediatric AML patients.
    METHODS: Consecutive 82 de novo pediatric (≤18 years) patients with AML were included in the study along with age and sex matched controls. Bone marrow mononuclear cells were isolated from baseline bone marrow samples from all patients and controls. DNA, RNA and proteins were extracted and relative expression of mitochondrial biogenesis genes TFAM, POLG, POLRMT were estimated along with mitochondrial DNA copy number. The mitochondrial complex II and V enzymes were immunocaptured and their activity was measured by substrate specific absorbance change by kinetic ELISA. The mitochondrial complex II and V activity was compared with controls and their association with clinico-pathological features and survival outcome were analysed. Complex activity was also correlated with relative expression of biogenesis genes.
    RESULTS: The activity of mitochondrial complex II and V were found to be significantly enhanced (P = 0.010 and P = 0.0013 respectively) in pediatric AML patients compared to controls. The activity of mitochondrial complex II and V showed significant positive correlation with relative gene expression of mitochondrial biogenesis genes TFAM (P = 0.001 and P = 0.016 respectively) and POLG (P = 0.005 and P = 0.006 respectively). Neither of the two complex activities showed any significant association with baseline disease demographics or any clinico-pathological feature. Furthermore, the complex II and V activity did not show any impact on event free survival (P = 0.25 and P = 0.24 respectively) and overall survival (P = 0.14 and P = 0.17 respectively) in our cohort.
    CONCLUSION: The activity of both mitochondrial complex II and V are significantly elevated in bone marrow mononuclear cells of children with AML compared to controls. The enhanced activity may be related to upregulation of mitochondrial biogenesis genes TFAM and POLG. The enhanced activity of either of the complexes did not impact disease biology or survival outcomes in pediatric AML.
    Keywords:  ATP synthase; Acute myeloid leukemia; children; mitochondria; mitochondrial biogenesis; mitochondrial complex activity; outcome; pediatric; succinate dehydrogenase; survival