bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2021–09–26
fifty-one papers selected by
Christian Frezza, , University of Cambridge, MRC Cancer Unit



  1. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00501-3. [Epub ahead of print]81(18): 3878-3878.e1
      Metabolic networks support cancer cell survival, proliferation, and malignant progression. Cancer cells take up large amounts of nutrients such as glucose and glutamine whose metabolism provides the energy, reducing equivalents, and biosynthetic precursors required to meet the biosynthetic demands of proliferation. Intermediates of glycolysis and the tricarboxylic acid (TCA) cycle provide critical building blocks for synthesis of non-essential amino acids, nucleotides, and fatty acids. To view this SnapShot, open or download the PDF.
    DOI:  https://doi.org/10.1016/j.molcel.2021.06.021
  2. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00693-6. [Epub ahead of print]81(18): 3731-3748
      Nutrient supply and demand delineate cell behavior in health and disease. Mammalian cells have developed multiple strategies to secure the necessary nutrients that fuel their metabolic needs. This is more evident upon disruption of homeostasis in conditions such as cancer, when cells display high proliferation rates in energetically challenging conditions where nutritional sources may be scarce. Here, we summarize the main routes of nutrient acquisition that fuel mammalian cells and their implications in tumorigenesis. We argue that the molecular mechanisms of nutrient acquisition not only tip the balance between nutrient supply and demand but also determine cell behavior upon nutrient limitation and energetic stress and contribute to nutrient partitioning and metabolic coordination between different cell types in inflamed or tumorigenic environments.
    Keywords:  SLC proteins; amino acid; cancer; nutrient scavenging; nutrient transport; nutrient transporters
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.026
  3. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00688-2. [Epub ahead of print]81(18): 3786-3802.e13
      Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.
    Keywords:  MDC; Tom70; amino acid; lysosome; mitochondria; nutrient carrier; vacuole
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.021
  4. Nat Metab. 2021 Sep;3(9): 1259-1274
      Changes in maternal diet and metabolic defects in mothers can profoundly affect health and disease in their progeny. However, the biochemical mechanisms that induce the initial reprogramming events at the cellular level have remained largely unknown owing to limitations in obtaining pure populations of quiescent oocytes. Here, we show that the precocious onset of mitochondrial respiratory quiescence causes a reprogramming of progeny metabolic state. The premature onset of mitochondrial respiratory quiescence drives the lowering of Drosophila oocyte NAD+ levels. NAD+ depletion in the oocyte leads to reduced methionine cycle production of the methyl donor S-adenosylmethionine in embryos and lower levels of histone H3 lysine 27 trimethylation, resulting in enhanced intestinal lipid metabolism in progeny. In addition, we show that triggering cellular quiescence in mammalian cells and chemotherapy-resistant human cancer cell models induces cellular reprogramming events identical to those seen in Drosophila, suggesting a conserved metabolic mechanism in systems reliant on quiescent cells.
    DOI:  https://doi.org/10.1038/s42255-021-00450-3
  5. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00692-4. [Epub ahead of print]81(18): 3803-3819.e7
      Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.
    Keywords:  AMP; AMPK; IMPA1; energy stress; glucose deprivation; inosiotl sensor; inositol; inositol/AMP ratio; mitochondrial fission; mitocondrial dynamics
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.025
  6. Cell Syst. 2021 Sep 16. pii: S2405-4712(21)00338-0. [Epub ahead of print]
      NAD+ is an essential coenzyme for all living cells. NAD+ concentrations decline with age, but whether this reflects impaired production or accelerated consumption remains unclear. We employed isotope tracing and mass spectrometry to probe age-related changes in NAD+ metabolism across tissues. In aged mice, we observed modest tissue NAD+ depletion (median decrease ∼30%). Circulating NAD+ precursors were not significantly changed, and isotope tracing showed the unimpaired synthesis of nicotinamide from tryptophan. In most tissues of aged mice, turnover of the smaller tissue NAD+ pool was modestly faster such that absolute NAD+ biosynthetic flux was maintained, consistent with more active NAD+-consuming enzymes. Calorie restriction partially mitigated age-associated NAD+ decline by decreasing consumption. Acute inflammatory stress induced by LPS decreased NAD+ by impairing synthesis in both young and aged mice. Thus, the decline in NAD+ with normal aging is relatively subtle and occurs despite maintained NAD+ production, likely due to increased consumption.
    Keywords:  CD38; NAD; NADH; PARP; PARP1; SIRT1; aging; flux; mononucleotide; niacin; nicotinamide; redox; riboside; sirtuins
    DOI:  https://doi.org/10.1016/j.cels.2021.09.001
  7. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00695-X. [Epub ahead of print]81(18): 3848-3865.e19
      Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.
    Keywords:  MDH1; ME1; NAD; NADPH; PC; cellular senescence; hypoxia; metabolon; mitochondrial dysfunction; p53
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.028
  8. Proc Natl Acad Sci U S A. 2021 09 28. pii: e2106947118. [Epub ahead of print]118(39):
      Reduced succinate dehydrogenase (SDH) activity resulting in adverse succinate accumulation was previously considered relevant only in 0.05 to 0.5% of kidney cancers associated with germline SDH mutations. Here, we sought to examine a broader role for SDH loss in kidney cancer pathogenesis/progression. We report that underexpression of SDH subunits resulting in accumulation of oncogenic succinate is a common feature in clear cell renal cell carcinoma (ccRCC) (∼80% of all kidney cancers), with a marked adverse impact on survival in ccRCC patients (n = 516). We show that SDH down-regulation is a critical brake in the TCA cycle during ccRCC pathogenesis and progression. In exploring mechanisms of SDH down-regulation in ccRCC, we report that Von Hippel-Lindau loss-induced hypoxia-inducible factor-dependent up-regulation of miR-210 causes direct inhibition of the SDHD transcript. Moreover, shallow deletion of SDHB occurs in ∼20% of ccRCC. We then demonstrate that SDH loss-induced succinate accumulation contributes to adverse loss of 5-hydroxymethylcytosine, gain of 5-methylcytosine, and enhanced invasiveness in ccRCC via inhibition of ten-eleven translocation (TET)-2 activity. Intriguingly, binding affinity between the catalytic domain of recombinant TET-2 and succinate was found to be very low, suggesting that the mechanism of succinate-induced attenuation of TET-2 activity is likely via product inhibition rather than competitive inhibition. Finally, exogenous ascorbic acid, a TET-activating demethylating agent, led to reversal of the above oncogenic effects of succinate in ccRCC cells. Collectively, our study demonstrates that functional SDH deficiency is a common adverse feature of ccRCC and not just limited to the kidney cancers associated with germline SDH mutations.
    Keywords:  TET-2; kidney cancer; succinate; succinate dehydrogenase
    DOI:  https://doi.org/10.1073/pnas.2106947118
  9. Methods Mol Biol. 2022 ;2363 85-100
      Transport of tricarboxylic acid (TCA) cycle substrates across mitochondrial membranes and their subsequent oxidative decarboxylation in the matrix provide reductants for respiration-coupled ATP synthesis. These processes are typically assessed together through the ability of mitochondria to consume oxygen or release carbon dioxide, however, this approach fails to assess or separate the complexity of transport and the subsequent metabolism of substrates and products. In this chapter, we provide a strategy for simultaneously measuring substrate transport and utilization by isolated mitochondria using a mass spectrometry-based technique. The results of cofeeding of isolated mitochondria with unlabeled malate and uniformly labeled pyruvate is used as an example. Mitochondria fed with substrates are separated from the extramitochondrial space by centrifugation through a single layer of silicone oil. Analysis of mitochondrial pellet and reaction supernatant enable quantitation of substrate import and product export. This method also allows an estimation of the contribution of different enzymatic pathways to the formation of a specific product. This assay opens opportunities to verify carrier functions in organello and to identify the substrate preferences of mitochondrial transporters of unknown function using targeted and/or untargeted metabolomics approaches.
    Keywords:  Metabolism; Mitochondria; Selective reaction monitoring (SRM) mass spectrometry; Silicone oil centrifugation; Transport
    DOI:  https://doi.org/10.1007/978-1-0716-1653-6_8
  10. Mitochondrion. 2021 Sep 15. pii: S1567-7249(21)00121-5. [Epub ahead of print]
      Mitochondria are dynamic, interactive organelles that connect cellular signaling and whole-cell homeostasis. This "mitochatting" allows the cell to receive information about the mitochondria's condition before accommodating energy demands. Mitofusin 2 (Mfn2), an outer mitochondrial membrane fusion protein specializes in mediating mitochondrial homeostasis. Early studies defined the biological significance of Mfn2, latter studies highlighted its role in substrate metabolism. However, determining Mfn2 potential to contribute to energy homeostasis needs study. This review summarizes current literature on mitochondrial metabolic processes, dynamics, and evidence of interactions among Mfn2 and regulatory processes that may link Mfn2's role in maintaining mitochondrial function and substrate metabolism.
    Keywords:  fatty acid oxidation; fission; fusion; glycolysis; mitochondrial dynamics; mitophagy
    DOI:  https://doi.org/10.1016/j.mito.2021.09.003
  11. Methods Mol Biol. 2022 ;2363 215-234
      Mitochondria are central hubs of redox biochemistry in the cell. An important role of mitochondrial carbon metabolism is to oxidize respiratory substrates and to pass the electrons down the mitochondrial electron transport chain to reduce oxygen and to drive oxidative phosphorylation. During respiration, reactive oxygen species are produced as a side reaction, some of which in turn oxidize cysteine thiols in proteins. Hence, the redox status of cysteine-containing mitochondrial proteins has to be controlled by the mitochondrial glutathione and thioredoxin systems, which draw electrons from metabolically derived NADPH. The redox status of mitochondrial cysteines can undergo fast transitions depending on the metabolic status of the cell, as for instance at early seed germination. Here, we describe a state-of-the-art method to quantify redox state of protein cysteines in isolated Arabidopsis seedling mitochondria of controlled metabolic and respiratory state by MS2-based redox proteomics using the isobaric thiol labeling reagent Iodoacetyl Tandem Mass Tag™ (iodoTMT). The procedure is also applicable to isolated mitochondria of other plant and nonplant systems.
    Keywords:  Cysteine; Iodoacetyl Tandem Mass Tag; Isobaric labeling; LC-MS/MS; MaxQuant; Mitochondria; Redox; Thiols
    DOI:  https://doi.org/10.1007/978-1-0716-1653-6_16
  12. FASEB J. 2021 Oct;35(10): e21909
      Metabolic stress contributes to the regulation of cell death in normal and diseased tissues. While different forms of cell death are known to be regulated by metabolic stress, how the cell engulfment and killing mechanism entosis is regulated is not well understood. Here we find that the death of entotic cells is regulated by the presence of amino acids and activity of the mechanistic target of rapamycin (mTOR). Amino acid withdrawal or mTOR inhibition induces apoptosis of engulfed cells and blocks entotic cell death that is associated with the lipidation of the autophagy protein microtubule-associated protein light chain 3 (LC3) to entotic vacuoles. Two other live cell engulfment programs, homotypic cell cannibalism (HoCC) and anti-CD47 antibody-mediated phagocytosis, known as phagoptosis, also undergo a similar vacuole maturation sequence involving LC3 lipidation and lysosome fusion, but only HoCC involves mTOR-dependent regulation of vacuole maturation and engulfed cell death similar to entosis. We further find that the regulation of cell death by mTOR is independent of autophagy activation and instead involves the 4E-BP1/2 proteins that are known regulators of mRNA translation. Depletion of 4E-BP1/2 proteins can restore the mTOR-regulated changes of entotic death and apoptosis rates of engulfed cells. These results identify amino acid signaling and the mTOR-4E-BP1/2 pathway as an upstream regulation mechanism for the fate of live engulfed cells formed by entosis and HoCC.
    Keywords:  amino acids; cell death; entosis; mTOR; metabolism
    DOI:  https://doi.org/10.1096/fj.202100870R
  13. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00698-5. [Epub ahead of print]81(18): 3760-3774
      The growing field of tumor metabolism has greatly expanded our knowledge of metabolic reprogramming in cancer. Apart from their established roles, various metabolic enzymes and metabolites harbor non-canonical ("moonlighting") functions to support malignant transformation. In this article, we intend to review the current understanding of moonlighting functions of metabolic enzymes and related metabolites broadly existing in cancer cells by dissecting each major metabolic pathway and its regulation of cellular behaviors. Understanding these non-canonical functions may broaden the horizon of the cancer metabolism field and uncover novel therapeutic vulnerabilities in cancer.
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.031
  14. ACS Chem Biol. 2021 Sep 23.
      Alpha-ketoglutarate (α-KG) is a key metabolite and signaling molecule in cancer cells, but the low permeability of α-KG limits the study of α-KG mediated effects in vivo. Recently, cell-permeable monoester and diester α-KG derivatives have been synthesized for use in vivo, but many of these derivatives are not compatible for use in hyperpolarized carbon-13 nuclear magnetic resonance spectroscopy (HP-13C-MRS). HP-13C-MRS is a powerful technique that has been used to noninvasively trace labeled metabolites in real time. Here, we show that using diethyl-[1-13C]-α-KG as a probe in HP-13C-MRS allows for noninvasive tracing of α-KG metabolism in vivo.
    DOI:  https://doi.org/10.1021/acschembio.1c00561
  15. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00694-8. [Epub ahead of print]81(18): 3708-3730
      Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.
    Keywords:  cancer; cellular metabolism; free fatty acids (FFAs); lipid metabolism; lipidomics; lipids; lipotoxicity; obesity; triacylglycerol accumulation
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.027
  16. EMBO J. 2021 Sep 20. e108648
      So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
    Keywords:  OXPHOS; complexome profiling; mitochondria; mtDNA; rho0 cells
    DOI:  https://doi.org/10.15252/embj.2021108648
  17. Proc Natl Acad Sci U S A. 2021 09 28. pii: e2101268118. [Epub ahead of print]118(39):
      Tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM) are caused by aberrant mechanistic Target of Rapamycin Complex 1 (mTORC1) activation due to loss of either TSC1 or TSC2 Cytokine profiling of TSC2-deficient LAM patient-derived cells revealed striking up-regulation of Interleukin-6 (IL-6). LAM patient plasma contained increased circulating IL-6 compared with healthy controls, and TSC2-deficient cells showed up-regulation of IL-6 transcription and secretion compared to wild-type cells. IL-6 blockade repressed the proliferation and migration of TSC2-deficient cells and reduced oxygen consumption and extracellular acidification. U-13C glucose tracing revealed that IL-6 knockout reduced 3-phosphoserine and serine production in TSC2-deficient cells, implicating IL-6 in de novo serine metabolism. IL-6 knockout reduced expression of phosphoserine aminotransferase 1 (PSAT1), an essential enzyme in serine biosynthesis. Importantly, recombinant IL-6 treatment rescued PSAT1 expression in the TSC2-deficient, IL-6 knockout clones selectively and had no effect on wild-type cells. Treatment with anti-IL-6 (αIL-6) antibody similarly reduced cell proliferation and migration and reduced renal tumors in Tsc2 +/- mice while reducing PSAT1 expression. These data reveal a mechanism through which IL-6 regulates serine biosynthesis, with potential relevance to the therapy of tumors with mTORC1 hyperactivity.
    Keywords:  interleukin 6; lymphangioleiomyomatosis; mTORC1; phosphoserine aminotransferase 1 (PSAT1); tuberous sclerosis complex
    DOI:  https://doi.org/10.1073/pnas.2101268118
  18. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00712-7. [Epub ahead of print]81(18): 3670-3671
      Schuler et al. (2021) demonstrate that mitochondrial-derived compartments protect cells from amino acid toxicity by activation of amino acid catabolism through the Ehrlich pathway, thus highlighting the incredible plasticity of mitochondria in rewiring cellular metabolism.
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.032
  19. Sci Rep. 2021 Sep 21. 11(1): 18770
      Mitochondrial malate dehydrogenase (MDH)-citrate synthase (CS) multi-enzyme complex is a part of the Krebs tricarboxylic acid (TCA) cycle 'metabolon' which is enzyme machinery catalyzing sequential reactions without diffusion of reaction intermediates into a bulk matrix. This complex is assumed to be a dynamic structure involved in the regulation of the cycle by enhancing metabolic flux. Microscale Thermophoresis analysis of the porcine heart MDH-CS complex revealed that substrates of the MDH and CS reactions, NAD+ and acetyl-CoA, enhance complex association while products of the reactions, NADH and citrate, weaken the affinity of the complex. Oxaloacetate enhanced the interaction only when it was present together with acetyl-CoA. Structural modeling using published CS structures suggested that the binding of these substrates can stabilize the closed format of CS which favors the MDH-CS association. Two other TCA cycle intermediates, ATP, and low pH also enhanced the association of the complex. These results suggest that dynamic formation of the MDH-CS multi-enzyme complex is modulated by metabolic factors responding to respiratory metabolism, and it may function in the feedback regulation of the cycle and adjacent metabolic pathways.
    DOI:  https://doi.org/10.1038/s41598-021-98314-z
  20. J Biol Chem. 2021 Sep 17. pii: S0021-9258(21)01006-1. [Epub ahead of print] 101204
      Impairments in mitochondrial energy metabolism have been implicated in human genetic diseases associated with mitochondrial and nuclear DNA mutations, neurodegenerative and cardiovascular disorders, diabetes, and aging. Alteration in mitochondrial complex I structure and activity has been shown to play a key role in Parkinson's disease and ischemia/reperfusion tissue injury, but significant difficulty remains in assessing the content of this enzyme complex in a given sample. The present study introduces a new method utilizing native polyacrylamide gel electrophoresis in combination with flavin fluorescence scanning to measure the absolute content of complex I, as well as α-ketoglutarate dehydrogenase complex (KGDHC), in any preparation. We show that the complex I content is 19±1 pmol/mg of protein in the brain mitochondria, while varies up to 10-fold in different mouse tissues. Together with the measurements of NADH-dependent specific activity, our method also allows accurate determination of complex I catalytic turnover which was calculated as 104 min-1 for NADH:ubiquinone reductase in mouse brain mitochondrial preparations. KGDHC content was determined to be 65±5 and 123±9 pmol/mg protein for mouse brain and bovine heart mitochondria, respectively. Our approach can also be extended to cultured cells, and we demonstrated that about 90 × 103 complex I molecules are present in a single HEK293 cell. The ability to determine complex I content should provide a valuable tool to investigate the enzyme status in samples after in vivo treatment in mutant organisms, cells in culture, or human biopsies.
    Keywords:  enzyme turnover; flavin adenine dinucleotide; flavin mononucleotide; fluorescence; ketoglutarate dehydrogenase complex; mitochondrial respiratory chain complex I; stoichiometry
    DOI:  https://doi.org/10.1016/j.jbc.2021.101204
  21. Methods Mol Biol. 2022 ;2363 63-75
      Respiratory rate measurements are crucial assays to understand mitochondrial biochemistry as well as metabolic regulation within tissues. Several technologies currently exist that can measure plant respiratory oxygen consumption or carbon dioxide evolution rates over short durations by either isolated mitochondria or plant tissues. Here we describe recently developed alternative methods for measuring tissue oxygen consumption rates (OCRs) using systems reliant on oxygen sensitive fluorophores. The methods described have distinct experimental advantages: they can allow high-throughput and long-duration measurements; and they are particularly suited to investigating the metabolic regulation of respiration by comparing OCRs among treatments or genotypes.
    Keywords:  High-throughput; Leaf disc; Metabolic phenotyping; Metabolic regulation; Oxygen consumption rate; Oxygen sensitive fluorescent quenching; Plant respiration; Respiratory inhibitors; Respiratory substrates
    DOI:  https://doi.org/10.1007/978-1-0716-1653-6_6
  22. Cancer Res. 2021 Sep 21.
      The SWI/SNF chromatin-remodeling complex is frequently altered in human cancers. For example, the SWI/SNF component ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCC), for which effective treatments are lacking. Here, we report that ARID1A transcriptionally represses the IRE1α-XBP1 axis of the endoplasmic reticulum (ER) stress response, which confers sensitivity to inhibition of the IRE1α-XBP1 pathway in ARID1A-mutant OCCC. ARID1A mutational status correlated with response to inhibition of the IRE1α-XBP1 pathway. In a conditional Arid1aflox/flox/Pik3caH1047R genetic mouse model, Xbp1 knockout significantly improved survival of mice bearing OCCCs. Furthermore, the IRE1α inhibitor B-I09 suppressed the growth of ARID1A-inactivated OCCCs in vivo in orthotopic xenograft, patient-derived xenograft, and the genetic mouse models. Finally, B-I09 synergized with inhibition of HDAC6, a known regulator of the ER stress response, in suppressing the growth of ARID1A-inactivated OCCCs. These studies define the IRE1α-XBP1 axis of the ER stress response as a targetable vulnerability for ARID1A-mutant OCCCs, revealing a promising therapeutic approach for treating ARID1A-mutant ovarian cancers. SIGNIFICANCE: These findings indicate that pharmacological inhibition of the IRE1α-XBP1 pathway alone or in combination with HDAC6 inhibition represents an urgently needed therapeutic strategy for ARID1A-mutant ovarian cancers.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-1545
  23. Methods Mol Biol. 2022 ;2363 51-62
      The integrity of isolated mitochondria can be estimated functionally using enzymatic activities or the permeability of mitochondrial membranes to molecules of different sizes. Thus, the permeability of the outer membrane to the protein cytochrome c, the permeability of the inner membrane to protons, and the permeability of the inner membrane to NAD+, NADH and organic acids using soluble matrix dehydrogenases as markers have all been used. These assays all have limitations to how the data can be converted into a measure of integrity, are differently sensitive to artifacts and require widely variable amounts of material. Therefore, each method has a restricted utility for estimating integrity, depending on the type of mitochondria analysed. Here, we review the advantages and disadvantages of different integrity assays and present protocols for integrity assays that require relatively small amounts of mitochondria. They are based on the permeability of the outer membrane to cytochrome c, and the inner membrane to protons or NAD(H). The latter has the advantage of utilizing a membrane-bound activity (complex I) and the pore-forming peptide alamethicin to gain access to the matrix space. These methods together provide a toolbox for the determination of functionality and quality of isolated mitochondria.
    Keywords:  Alamethicin; Complex I; Cytochrome c; H+ transport; Latency; Membrane integrity; Mitochondrial quality
    DOI:  https://doi.org/10.1007/978-1-0716-1653-6_5
  24. Cell Rep. 2021 Sep 21. pii: S2211-1247(21)01153-0. [Epub ahead of print]36(12): 109706
      The serine synthesis pathway (SSP) involving metabolic enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) drives intracellular serine biosynthesis and is indispensable for cancer cells to grow in serine-limiting environments. However, how SSP is regulated is not well understood. Here, we report that activating transcription factor 3 (ATF3) is crucial for transcriptional activation of SSP upon serine deprivation. ATF3 is rapidly induced by serine deprivation via a mechanism dependent on ATF4, which in turn binds to ATF4 and increases the stability of this master regulator of SSP. ATF3 also binds to the enhancers/promoters of PHGDH, PSAT1, and PSPH and recruits p300 to promote expression of these SSP genes. As a result, loss of ATF3 expression impairs serine biosynthesis and the growth of cancer cells in the serine-deprived medium or in mice fed with a serine/glycine-free diet. Interestingly, ATF3 expression positively correlates with PHGDH expression in a subset of TCGA cancer samples.
    Keywords:  ATF3; ATF4; PHGDH; PSAT1; PSPH; p300; serine biosynthesis; serine deprivation; serine metabolism; serine synthesis pathway
    DOI:  https://doi.org/10.1016/j.celrep.2021.109706
  25. Cancer Discov. 2021 Sep 24. pii: candisc.0248.2021. [Epub ahead of print]
      SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes CCSP+ cells within the lung in a cell-type dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex - via Smarca4 - acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution.
    DOI:  https://doi.org/10.1158/2159-8290.CD-21-0248
  26. Cancer Metab. 2021 Sep 23. 9(1): 33
       INTRODUCTION: The transcription factor MYC is overexpressed in 30% of small cell lung cancer (SCLC) tumors and is known to modulate the balance between two major pathways of metabolism: glycolysis and mitochondrial respiration. This duality of MYC underscores the importance of further investigation into its role in SCLC metabolism and could lead to insights into metabolic targeting approaches.
    METHODS: We investigated differences in metabolic pathways in transcriptional and metabolomics datasets based on cMYC expression in patient and cell line samples. Metabolic pathway utilization was evaluated by flow cytometry and Seahorse extracellular flux methodology. Glycolysis inhibition was evaluated in vitro and in vivo using PFK158, a small molecular inhibitor of PFKFB3.
    RESULTS: MYC-overexpressing SCLC patient samples and cell lines exhibited increased glycolysis gene expression directly mediated by MYC. Further, MYC-overexpressing cell lines displayed enhanced glycolysis consistent with the Warburg effect, while cell lines with low MYC expression appeared more reliant on oxidative metabolism. Inhibition of glycolysis with PFK158 preferentially attenuated glucose uptake, ATP production, and lactate in MYC-overexpressing cell lines. Treatment with PFK158 in xenografts delayed tumor growth and decreased glycolysis gene expression.
    CONCLUSIONS: Our study highlights an in-depth characterization of SCLC metabolic programming and presents glycolysis as a targetable mechanism downstream of MYC that could offer therapeutic benefit in a subset of SCLC patients.
    Keywords:  Glycolysis; MYC; Metabolism; PFK158; Small cell lung cancer
    DOI:  https://doi.org/10.1186/s40170-021-00270-9
  27. Cancer Discov. 2021 Sep 24.
      Clear cell renal cell carcinoma (ccRCC) cells promote browning of perinephric adipose tissue.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2021-137
  28. Front Cell Dev Biol. 2021 ;9 720656
      Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
    Keywords:  MIA; ROS; biogenesis; mitochondria; protein import; redox signaling; respiratory chain assembly
    DOI:  https://doi.org/10.3389/fcell.2021.720656
  29. Elife. 2021 Sep 21. pii: e68394. [Epub ahead of print]10
      Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks'; level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
    Keywords:  cancer biology; cell biology; mouse
    DOI:  https://doi.org/10.7554/eLife.68394
  30. Cell Prolif. 2021 Sep 21. e13127
       OBJECTIVES: The alteration of bioenergetics by oocytes in response to the demands of various biological processes plays a critical role in maintaining normal cellular physiology. However, little is known about the association between energy sensing and energy production with energy-dependent cellular processes like meiosis.
    MATERIALS AND METHODS: We demonstrated that cell cycle-dependent mitochondrial Ca2+ connects energy sensing to mitochondrial activity in meiosis progression within mouse oocytes. Further, we established a model in mouse oocytes using siRNA knockdowns that target mitochondrial calcium uniporters (MCUs) in order to inhibit mitochondrial Ca2+ concentrations.
    RESULTS: Decreased numbers of oocytes successfully progressed to the germinal vesicle stage and extruded the first polar body during in vitro culture after inhibition, while spindle checkpoint-dependent meiosis was also delayed. Mitochondrial Ca2+ levels changed, and this was followed by altered mitochondrial masses and ATP levels within oocytes during the entirety of meiosis progression. Abnormal mitochondrial Ca2+ concentrations in oocytes then hindered meiotic progress and activated AMP-activated protein kinase (AMPK) signalling that is associated with gene expression.
    CONCLUSIONS: These data provide new insight into the protective role that MCU-dependent mitochondrial Ca2+ signalling plays in meiotic progress, in addition to demonstrating a new mechanism of mitochondrial energy regulation by AMPK signalling that influences meiotic maturation.
    Keywords:  AMPK; meiosis; mitochondrial Ca2+; mitochondrial function; oocytes
    DOI:  https://doi.org/10.1111/cpr.13127
  31. Nat Chem Biol. 2021 Oct;17(10): 1027-1036
      Aging is an inevitable biochemical process that adversely affects personal health and poses ever-increasing challenges to society. Recent research has revealed the crucial role of metabolism in regulating aging and longevity. During diverse metabolic processes, the host organism and their symbiotic partners-the microbiota-produce thousands of chemical products (metabolites). Emerging studies have uncovered specific metabolites that act as signaling molecules to actively regulate longevity. Here we review the latest progress in understanding the molecular mechanisms by which metabolites from the host and/or microbiota promote longevity. We also highlight state-of-the-art technologies for discovering, profiling and imaging aging- and longevity-regulating metabolites and for deciphering the molecular basis of their actions. The broad application of these technologies in aging research, together with future advances, will foster the systematic discovery of aging- and longevity-regulating metabolites and their signaling pathways. These metabolite signals should provide promising targets for developing new interventions to promote longevity and healthy aging.
    DOI:  https://doi.org/10.1038/s41589-021-00837-z
  32. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00682-1. [Epub ahead of print]81(18): 3677-3690
      The evolution of AMPK and its homologs enabled exquisite responsivity and control of cellular energetic homeostasis. Recent work has been critical in establishing the mechanisms that determine AMPK activity, novel targets of AMPK action, and the distribution of AMPK-mediated control networks across the cellular landscape. The role of AMPK as a hub of metabolic control has led to intense interest in pharmacologic activation as a therapeutic avenue for a number of disease states, including obesity, diabetes, and cancer. As such, critical work on the compartmentalization of AMPK, its downstream targets, and the systems it influences has progressed in recent years. The variegated distribution of AMPK-mediated control of metabolic homeostasis has revealed key insights into AMPK in normal biology and future directions for AMPK-based therapeutic strategies.
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.015
  33. Cell Rep. 2021 Sep 21. pii: S2211-1247(21)01195-5. [Epub ahead of print]36(12): 109742
      Cold-induced thermogenesis in endotherms demands adaptive thermogenesis fueled by mitochondrial respiration and Ucp1-mediated uncoupling in multilocular brown adipocytes (BAs). However, dietary regulation of thermogenesis in BAs isn't fully understood. Here, we describe that the deficiency of Leucine-rich pentatricopeptide repeat containing-protein (Lrpprc) in BAs reduces mtDNA-encoded ETC gene expression, causes ETC proteome imbalance, and abolishes the mitochondria-fueled thermogenesis. BA-specific Lrpprc knockout mice are cold resistant in a 4°C cold-tolerance test in the presence of food, which is accompanied by the activation of transcription factor 4 (ATF4) and proteome turnover in BAs. ATF4 activation genetically by BA-specific ATF4 overexpression or physiologically by a low-protein diet feeding can improve cold tolerance in wild-type and Ucp1 knockout mice. Furthermore, ATF4 activation in BAs improves systemic metabolism in obesogenic environment regardless of Ucp1's action. Therefore, our study reveals a diet-dependent but Ucp1-independent thermogenic mechanism in BAs that is relevant to systemic thermoregulation and energy homeostasis.
    Keywords:  ATF4; brown adipocyte; thermogenesis
    DOI:  https://doi.org/10.1016/j.celrep.2021.109742
  34. Open Biol. 2021 Sep;11(9): 210168
      The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
    Keywords:  DNA topology; mitochondria; mitochondrial DNA; mitochondrial disease; topoisomerases
    DOI:  https://doi.org/10.1098/rsob.210168
  35. Nat Chem Biol. 2021 Oct;17(10): 1037-1045
      As sessile organisms, plants evolved elaborate metabolic systems that produce a plethora of specialized metabolites as a means to survive challenging terrestrial environments. Decades of research have revealed the genetic and biochemical basis for a multitude of plant specialized metabolic pathways. Nevertheless, knowledge is still limited concerning the selective advantages provided by individual and collective specialized metabolites to the reproductive success of diverse host plants. Here we review the biological functions conferred by various classes of plant specialized metabolites in the context of the interaction of plants with their surrounding environment. To achieve optimal multifunctionality of diverse specialized metabolic processes, plants use various adaptive mechanisms at subcellular, cellular, tissue, organ and interspecies levels. Understanding these mechanisms and the evolutionary trajectories underlying their occurrence in nature will ultimately enable efficient bioengineering of desirable metabolic traits in chassis organisms.
    DOI:  https://doi.org/10.1038/s41589-021-00822-6
  36. Amino Acids. 2021 Sep 22.
      One-carbon units, critical intermediates for cell growth, may be produced by a variety of means, one of which is via the production of formate. Excessive formate accumulation, known as formate overflow and a characteristic of oxidative cancer, has been observed in cancer cells. However, the basis for this high rate of formate production is unknown. We examined the effect of elevated expression of oncogenic Ras (RasV12), on formate production in NIH-3T3 cells (mouse fibroblasts) cultured with either labelled 13C-serine or 13C-glycine. Formate accumulation by the fibroblasts transformed by RasV12 was increased two-threefold over those by vector control (Babe) cells. The production of formate exceeded the rate of utilization in both cell types. 13C-formate was produced almost exclusively from the #3 carbon of 13C-serine. Virtually no labelled formate was produced from either the #2 carbon of serine or the #2 carbon of glycine. The increased formate production by RasV12 cells was associated with increased mRNA abundances for enzymes of formate production in both the mitochondria and the cytosol. Thus, we find the oncogenic RasV12 significantly increases formate overflow and may be one way for tumor cells to produce one-carbon units required for enhanced proliferation of these cells and/or for other processes which have not been identified.
    Keywords:  Cytosol; Folate; Glycine; Methylenetetrahydrofolate; Mitochondria; Serine
    DOI:  https://doi.org/10.1007/s00726-021-03078-5
  37. Nat Immunol. 2021 Sep 23.
      Blind mole rats (BMRs) are small rodents, characterized by an exceptionally long lifespan (>21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). Cells and tissues of BMRs express very low levels of DNA methyltransferase 1. Following cell hyperplasia, the BMR genome DNA loses methylation, resulting in the activation of RTEs. Upregulated RTEs form cytoplasmic RNA-DNA hybrids, which activate the cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and humans. We propose that RTEs were co-opted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of the innate immune response. Activation of RTEs is a double-edged sword, serving as a tumor suppressor but contributing to aging in late life via the induction of sterile inflammation.
    DOI:  https://doi.org/10.1038/s41590-021-01027-8
  38. Nat Rev Methods Primers. 2021 ;pii: 32. [Epub ahead of print]1
      The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
    DOI:  https://doi.org/10.1038/s43586-021-00029-y
  39. Am J Physiol Cell Physiol. 2021 Sep 22.
      Mitochondria have been recognized as key organelles in cardiac physiology and are potential targets for clinical interventions to improve cardiac function. Mitochondrial dysfunction has been accepted as a major contributor to the development of heart failure. The main function of mitochondria is to meet the high energy demands of the heart by oxidative metabolism. Ionic homeostasis in mitochondria directly regulates oxidative metabolism, and any disruption in ionic homeostasis causes mitochondrial dysfunction and eventually contractile failure. The mitochondrial ionic homeostasis is closely coupled with inner mitochondrial membrane potential. To regulate and maintain ionic homeostasis, mitochondrial membranes are equipped with ion transporting proteins. Ion transport mechanisms involving several different ion channels and transporters are highly efficient and dynamic, thus helping to maintain the ionic homeostasis of ions as well as their salts present in the mitochondrial matrix. In recent years, several novel proteins have been identified on the mitochondrial membranes and these proteins are actively being pursued in research for roles in the organ as well as organelle physiology. In this article, the role of mitochondrial ion channels in cardiac function is reviewed. In recent times, the major focus of the mitochondrial ion channel field is to establish molecular identities as well as assigning specific functions to them. Given the diversity of mitochondrial ion channels and their unique roles in cardiac function, they present novel and viable therapeutic targets for cardiac diseases.
    Keywords:  Bioenergetics; Cardiac function; Cardioprotection; Ion Channels; Mitochondria
    DOI:  https://doi.org/10.1152/ajpcell.00246.2021
  40. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00697-3. [Epub ahead of print]81(18): 3775-3785
      With the elucidation of myriad anabolic and catabolic enzyme-catalyzed cellular pathways crisscrossing each other, an obvious question arose: how could these networks operate with maximal catalytic efficiency and minimal interference? A logical answer was the postulate of metabolic channeling, which in its simplest embodiment assumes that the product generated by one enzyme passes directly to a second without diffusion into the surrounding medium. This tight coupling of activities might increase a pathway's metabolic flux and/or serve to sequester unstable/toxic/reactive intermediates as well as prevent their access to other networks. Here, we present evidence for this concept, commencing with enzymes that feature a physical molecular tunnel, to multi-enzyme complexes that retain pathway substrates through electrostatics or enclosures, and finally to metabolons that feature collections of enzymes assembled into clusters with variable stoichiometric composition. Lastly, we discuss the advantages of reversibly assembled metabolons in the context of the purinosome, the purine biosynthesis metabolon.
    Keywords:  membrane-less compartmentalization; metabolic channeling; metabolon; molecular tunnel; purinosome
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.030
  41. Mol Cell. 2021 Sep 16. pii: S1097-2765(21)00685-7. [Epub ahead of print]81(18): 3691-3707
      Redox reactions are intrinsically linked to energy metabolism. Therefore, redox processes are indispensable for organismal physiology and life itself. The term reactive oxygen species (ROS) describes a set of distinct molecular oxygen derivatives produced during normal aerobic metabolism. Multiple ROS-generating and ROS-eliminating systems actively maintain the intracellular redox state, which serves to mediate redox signaling and regulate cellular functions. ROS, in particular hydrogen peroxide (H2O2), are able to reversibly oxidize critical, redox-sensitive cysteine residues on target proteins. These oxidative post-translational modifications (PTMs) can control the biological activity of numerous enzymes and transcription factors (TFs), as well as their cellular localization or interactions with binding partners. In this review, we describe the diverse roles of redox regulation in the context of physiological cellular metabolism and provide insights into the pathophysiology of diseases when redox homeostasis is dysregulated.
    Keywords:  ROS; cysteine oxidation; hydrogen peroxide; post-translational modification; reactive oxygen species; redox metabolism; redox signaling
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.018
  42. Mol Cell. 2021 Sep 18. pii: S1097-2765(21)00729-2. [Epub ahead of print]
      The interferon (IFN) pathway is critical for cytotoxic T cell activation, which is central to tumor immunosurveillance and successful immunotherapy. We demonstrate here that PKCλ/ι inactivation results in the hyper-stimulation of the IFN cascade and the enhanced recruitment of CD8+ T cells that impaired the growth of intestinal tumors. PKCλ/ι directly phosphorylates and represses the activity of ULK2, promoting its degradation through an endosomal microautophagy-driven ubiquitin-dependent mechanism. Loss of PKCλ/ι results in increased levels of enzymatically active ULK2, which, by direct phosphorylation, activates TBK1 to foster the activation of the STING-mediated IFN response. PKCλ/ι inactivation also triggers autophagy, which prevents STING degradation by chaperone-mediated autophagy. Thus, PKCλ/ι is a hub regulating the IFN pathway and three autophagic mechanisms that serve to maintain its homeostatic control. Importantly, single-cell multiplex imaging and bioinformatics analysis demonstrated that low PKCλ/ι levels correlate with enhanced IFN signaling and good prognosis in colorectal cancer patients.
    Keywords:  STING; ULK1/2; atypical PKC; autophagy; chaperone-mediated autophagy; colorectal cancer; immunosuppression; immunosurveillance; immunotherapy; interferon
    DOI:  https://doi.org/10.1016/j.molcel.2021.08.039
  43. Cancer Lett. 2021 Sep 20. pii: S0304-3835(21)00471-7. [Epub ahead of print]522 129-141
      Mutations of KRAS gene are found in various types of cancer, including colorectal cancer (CRC). Despite intense efforts, no pharmacological approaches are expected to be effective against KRAS-mutant cancers. Macropinocytosis is an evolutionarily conserved actin-dependent endocytic process that internalizes extracellular fluids into large vesicles called macropinosomes. Recent studies have revealed macropinocytosis's important role in metabolic adaptation to nutrient stress in cancer cells harboring KRAS mutations. Here we showed that KRAS-mutant CRC cells enhanced macropinocytosis for tumor growth under nutrient-depleted conditions. We also demonstrated that activation of Rac1 and phosphoinositide 3-kinase were involved in macropinocytosis of KRAS-mutant CRC cells. Furthermore, we found that macropinocytosis was closely correlated with asparagine metabolism. In KRAS-mutant CRC cells engineered with knockdown of asparagine synthetase, macropinocytosis was accelerated under glutamine-depleted condition, and albumin addition could restore the glutamine depletion-induced growth suppression by recovering the intracellular asparagine level. Finally, we discovered that the combination of macropinocytosis inhibition and asparagine depletion dramatically suppressed the tumor growth of KRAS-mutant CRC cells in vivo. These results indicate that dual blockade of macropinocytosis and asparagine bioavailability could be a novel therapeutic strategy for KRAS-mutant cancers.
    Keywords:  Asparagine synthetase; KRAS mutation; Macropinocytosis; l-asparaginase
    DOI:  https://doi.org/10.1016/j.canlet.2021.09.023
  44. Cancer Discov. 2021 Sep 22. pii: candisc.1826.2020. [Epub ahead of print]
      The degree of metastatic disease varies widely amongst cancer patients and impacts clinical outcomes. However, the biological and functional differences that drive the extent of metastasis are poorly understood. We analyzed primary tumors and paired metastases using a multi-fluorescent lineage-labeled mouse model of pancreatic ductal adenocarcinoma (PDAC) - a tumor type where most patients present with metastases. Genomic and transcriptomic analysis revealed an association between metastatic burden and gene amplification or transcriptional upregulation of MYC and its downstream targets. Functional experiments showed that MYC promotes metastasis by recruiting tumor associated macrophages (TAMs), leading to greater bloodstream intravasation. Consistent with these findings, metastatic progression in human PDAC was associated with activation of MYC signaling pathways and enrichment for MYC amplifications specifically in metastatic patients. Collectively, these results implicate MYC activity as a major determinant of metastatic burden in advanced PDAC.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1826
  45. Cell Metab. 2021 Sep 17. pii: S1550-4131(21)00421-6. [Epub ahead of print]
      One of the defining characteristics of a pre-metastatic niche, a fundamental requirement for primary tumor metastasis, is infiltration of immunosuppressive macrophages. How these macrophages acquire their phenotype remains largely unexplored. Here, we demonstrate that tumor-derived exosomes (TDEs) polarize macrophages toward an immunosuppressive phenotype characterized by increased PD-L1 expression through NF-kB-dependent, glycolytic-dominant metabolic reprogramming. TDE signaling through TLR2 and NF-κB leads to increased glucose uptake. TDEs also stimulate elevated NOS2, which inhibits mitochondrial oxidative phosphorylation resulting in increased conversion of pyruvate to lactate. Lactate feeds back on NF-κB, further increasing PD-L1. Analysis of metastasis-negative lymph nodes of non-small-cell lung cancer patients revealed that macrophage PD-L1 positively correlates with levels of GLUT-1 and vesicle release gene YKT6 from primary tumors. Collectively, our study provides a novel mechanism by which macrophages within a pre-metastatic niche acquire their immunosuppressive phenotype and identifies an important link among exosomes, metabolism, and metastasis.
    Keywords:  NF-kB; PD-L1; exosomes; glycolysis; immunosuppression; lactate; metastasis
    DOI:  https://doi.org/10.1016/j.cmet.2021.09.002
  46. Nat Genet. 2021 Sep 23.
      Altered transcription is a cardinal feature of acute myeloid leukemia (AML); however, exactly how mutations synergize to remodel the epigenetic landscape and rewire three-dimensional DNA topology is unknown. Here, we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML: Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML. Our studies demonstrate that Flt3-ITD signals to chromatin to alter the epigenetic environment and synergizes with mutations in Npm1c to alter gene expression and drive leukemia induction. These analyses also allow the identification of long-range cis-regulatory circuits, including a previously unknown superenhancer of Hoxa locus, as well as larger and more detailed gene-regulatory networks, driven by transcription factors including PU.1 and IRF8, whose importance we demonstrate through perturbation of network members.
    DOI:  https://doi.org/10.1038/s41588-021-00925-9