bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2021–02–21
sixty-two papers selected by
Christian Frezza, , University of Cambridge, MRC Cancer Unit



  1. Sci Adv. 2021 Feb;pii: eabf0717. [Epub ahead of print]7(8):
      Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
    DOI:  https://doi.org/10.1126/sciadv.abf0717
  2. Cell Metab. 2021 Feb 09. pii: S1550-4131(21)00013-9. [Epub ahead of print]
      The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or β-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
    Keywords:  MIC19; PERK-OGT axis; TOM70; brown adipocytes; cold stress; cristae biogenesis; mitochondrial protein import; respiration
    DOI:  https://doi.org/10.1016/j.cmet.2021.01.013
  3. Cell Metab. 2021 Feb 10. pii: S1550-4131(21)00056-5. [Epub ahead of print]
      Obesity is a major risk factor for adverse outcomes in breast cancer; however, the underlying molecular mechanisms have not been elucidated. To investigate the role of crosstalk between mammary adipocytes and neoplastic cells in the tumor microenvironment (TME), we performed transcriptomic analysis of cancer cells and adjacent adipose tissue in a murine model of obesity-accelerated breast cancer and identified glycine amidinotransferase (Gatm) in adipocytes and Acsbg1 in cancer cells as required for obesity-driven tumor progression. Gatm is the rate-limiting enzyme in creatine biosynthesis, and deletion in adipocytes attenuated obesity-driven tumor growth. Similarly, genetic inhibition of creatine import into cancer cells reduced tumor growth in obesity. In parallel, breast cancer cells in obese animals upregulated the fatty acyl-CoA synthetase Acsbg1 to promote creatine-dependent tumor progression. These findings reveal key nodes in the crosstalk between adipocytes and cancer cells in the TME necessary for obesity-driven breast cancer progression.
    Keywords:  Acsbg1; Gatm; breast cancer; creatine; hypoxia; obesity
    DOI:  https://doi.org/10.1016/j.cmet.2021.01.018
  4. Front Cell Dev Biol. 2020 ;8 596819
      The fate and proliferative capacity of stem cells have been shown to strongly depend on their metabolic state. Mitochondria are the powerhouses of the cell being responsible for energy production via oxidative phosphorylation (OxPhos) as well as for several other metabolic pathways. Mitochondrial activity strongly depends on their structural organization, with their size and shape being regulated by mitochondrial fusion and fission, a process known as mitochondrial dynamics. However, the significance of mitochondrial dynamics in the regulation of stem cell metabolism and fate remains elusive. Here, we characterize the role of mitochondria morphology in female germ stem cells (GSCs) and in their more differentiated lineage. Mitochondria are particularly important in the female GSC lineage. Not only do they provide these cells with their energy requirements to generate the oocyte but they are also the only mitochondria pool to be inherited by the offspring. We show that the undifferentiated GSCs predominantly have fissed mitochondria, whereas more differentiated germ cells have more fused mitochondria. By reducing the levels of mitochondrial dynamics regulators, we show that both fused and fissed mitochondria are required for the maintenance of a stable GSC pool. Surprisingly, we found that disrupting mitochondrial dynamics in the germline also strongly affects nurse cells morphology, impairing egg chamber development and female fertility. Interestingly, reducing the levels of key enzymes in the Tricarboxylic Acid Cycle (TCA), known to cause OxPhos reduction, also affects GSC number. This defect in GSC self-renewal capacity indicates that at least basal levels of TCA/OxPhos are required in GSCs. Our findings show that mitochondrial dynamics is essential for female GSC maintenance and female fertility, and that mitochondria fusion and fission events are dynamically regulated during GSC differentiation, possibly to modulate their metabolic profile.
    Keywords:  Drosophila melanogaster; differentiation; fertility; germ stem cell; mitochondrial dynamics; oogenesis; oxidative phosphorylation
    DOI:  https://doi.org/10.3389/fcell.2020.596819
  5. Front Cell Dev Biol. 2020 ;8 620081
      Mitochondria are bioenergetic organelles with a plethora of fundamental functions ranging from metabolism and ATP production to modulation of signaling events leading to cell survival or cell death. Ion channels located in the outer and inner mitochondrial membranes critically control mitochondrial function and, as a consequence, also cell fate. Opening or closure of mitochondrial ion channels allow the fine-tuning of mitochondrial membrane potential, ROS production, and function of the respiratory chain complexes. In this review, we critically discuss the intracellular regulatory factors that affect channel activity in the inner membrane of mitochondria and, indirectly, contribute to cell death. These factors include various ligands, kinases, second messengers, and lipids. Comprehension of mitochondrial ion channels regulation in cell death pathways might reveal new therapeutic targets in mitochondria-linked pathologies like cancer, ischemia, reperfusion injury, and neurological disorders.
    Keywords:  apoptosis; cell death; cell signaling; ion channel; mitochondria
    DOI:  https://doi.org/10.3389/fcell.2020.620081
  6. Trends Biochem Sci. 2021 Feb 13. pii: S0968-0004(21)00020-7. [Epub ahead of print]
      Autophagy is the primary catabolic program of the cell that promotes survival in response to metabolic stress. It is tightly regulated by a suite of kinases responsive to nutrient status, including mammalian target of rapamycin complex 1 (mTORC1), AMP-activated protein kinase (AMPK), protein kinase C-α (PKCα), MAPK-activated protein kinases 2/3 (MAPKAPK2/3), Rho kinase 1 (ROCK1), c-Jun N-terminal kinase 1 (JNK), and Casein kinase 2 (CSNK2). Here, we highlight recently uncovered mechanisms linking amino acid, glucose, and oxygen levels to autophagy regulation through mTORC1 and AMPK. In addition, we describe new pathways governing the autophagic machinery, including the Unc-51-like (ULK1), vacuolar protein sorting 34 (VPS34), and autophagy related 16 like 1 (ATG16L1) enzyme complexes. Novel downstream targets of ULK1 protein kinase are also discussed, such as the ATG16L1 subunit of the microtubule-associated protein 1 light chain 3 (LC3)-lipidating enzyme and the ATG14 subunit of the VPS34 complex. Collectively, we describe the complexities of the autophagy pathway and its role in maintaining cellular nutrient homeostasis during times of starvation.
    Keywords:  AMPK; ATG complexes; amino acids; glucose; mTORC1; oxygen
    DOI:  https://doi.org/10.1016/j.tibs.2021.01.006
  7. Nature. 2021 Feb 15.
      Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4-6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9-11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1-a lactate transporter-in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use 'alternative' metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations.
    DOI:  https://doi.org/10.1038/s41586-020-03045-2
  8. Proc Natl Acad Sci U S A. 2021 Feb 23. pii: e2012469118. [Epub ahead of print]118(8):
      Emerging evidence suggests that intratumoral interferon (IFN) signaling can trigger targetable vulnerabilities. A hallmark of pancreatic ductal adenocarcinoma (PDAC) is its extensively reprogrammed metabolic network, in which nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, are critical cofactors. Here, we show that IFN signaling, present in a subset of PDAC tumors, substantially lowers NAD(H) levels through up-regulating the expression of NAD-consuming enzymes PARP9, PARP10, and PARP14. Their individual contributions to this mechanism in PDAC have not been previously delineated. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD salvage pathway, a dominant source of NAD in cancer cells. We found that IFN-induced NAD consumption increased dependence upon NAMPT for its role in recycling NAM to salvage NAD pools, thus sensitizing PDAC cells to pharmacologic NAMPT inhibition. Their combination decreased PDAC cell proliferation and invasion in vitro and suppressed orthotopic tumor growth and liver metastases in vivo.
    Keywords:  NAD; NAMPT; PARP; interferon; pancreatic cancer
    DOI:  https://doi.org/10.1073/pnas.2012469118
  9. Cell Calcium. 2021 Feb 06. pii: S0143-4160(21)00008-7. [Epub ahead of print]95 102354
      Both Ca2+ and reactive oxygen species (ROS) are double face entities, acting as signaling messengers or cell fate determinants according to their concentration and to spatial temporal restrictions. Recently, Beretta and colleagues found that ROS generated at ER-mitochondria contact sites (MAMs) support cell survival in stress conditions by decreasing inter-organelle Ca2+ transfer.
    Keywords:  Akt; Calcium; Endoplasmic reticulum; I/R injury; IP3R; Mitochondria; Nox4; PP2a; ROS
    DOI:  https://doi.org/10.1016/j.ceca.2021.102354
  10. Mol Oncol. 2021 Feb 18.
      STAT3 is a transcription factor with roles in inflammation and tumorigenicity. A fraction of STAT3 localizes in mitochondria, where it augments tumorigenesis via regulation of mitochondrial functions, including modulation of respiration and redox status. We show a novel mechanism for mitochondrial STAT3 regulation of redox homeostasis in triple negative breast cancer cells. Loss of STAT3 diminished complex I dehydrogenase activity and impaired NAD+ regeneration, leading to impaired expression of glutathione biosynthetic genes and other antioxidant genes. Expressing mitochondrially-restricted STAT3 or replenishment of the cellular NAD pool restored antioxidant gene expression, as did complementation of the NADH dehydrogenase activity by expression of the STAT3-independent yeast dehydrogenase, NDI1. These NAD-regulated processes contributed to malignant phenotypes by promoting clonal cell growth and migration. Proximity interaction and protein pull-down assays identified three components of complex I that associated with mitochondrial STAT3, providing a potential mechanistic basis for how mitochondrial STAT3 affects complex I activity. Our data document a novel mechanism through which mitochondrial STAT3 indirectly controls antioxidant gene regulation through a retrograde NAD+ signal that is modulated by complex I dehydrogenase activity.
    Keywords:  Mitochondria; STAT3; breast cancer; glutathione; oxidative stress; reactive oxygen species
    DOI:  https://doi.org/10.1002/1878-0261.12928
  11. Nature. 2021 02;590(7846): 480-485
      Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle.
    DOI:  https://doi.org/10.1038/s41586-021-03221-y
  12. Trends Neurosci. 2021 Feb 16. pii: S0166-2236(21)00013-8. [Epub ahead of print]
      Excitotoxicity is likely to occur in pathological scenarios in which mitochondrial function is already compromised, shaping neuronal responses to glutamate. In fact, mitochondria sustain cell bioenergetics, tune intracellular Ca2+ dynamics, and regulate glutamate availability by using it as metabolic substrate. Here, we suggest the need to explore glutamate toxicity in the context of specific disease models in which it may occur, re-evaluating the impact of mitochondrial dysfunction on glutamate excitotoxicity. Our aim is to signpost new approaches, perhaps combining glutamate and pathways to rescue mitochondrial function, as therapeutic targets in neurological disorders.
    Keywords:  bioenergetics; calcium; cell death; glutamate; mitochondria; neurodegeneration
    DOI:  https://doi.org/10.1016/j.tins.2021.01.001
  13. Exp Cell Res. 2021 Feb 11. pii: S0014-4827(21)00046-X. [Epub ahead of print] 112515
      Metabolite fluctuations following nutrient metabolism or environmental stresses impact various intracellular signaling networks and stress responses to maintain cellular and organismal homeostasis. It has been shown that subcellular organelles, such as the endoplasmic reticulum, the Golgi apparatus, lysosomes and mitochondria serve as crucial hubs linking alterations in metabolite levels to cellular responses. This role is coordinated by molecular machineries that are associated with the lipid membranes of organelles, which sense the fluctuations in specific metabolites and activate the appropriate signaling and effector molecules. Moreover, recent studies have demonstrated that membraneless organelles, such as the nucleolus and stress granules, are involved in the metabolic stress response. Metabolite-induced post-translational modifications appear to play an important role in this process. Here, we review the molecular mechanisms of metabolite sensing and metabolite-mediated stress responses through membrane-bound and membraneless organelles in mammalian cells.
    Keywords:  membrane; membraneless organelles; metabolic stress; metabolite; organelle; stress response
    DOI:  https://doi.org/10.1016/j.yexcr.2021.112515
  14. Cell Rep. 2021 Feb 16. pii: S2211-1247(21)00063-2. [Epub ahead of print]34(7): 108750
      Inter-cellular heterogeneity in metabolic state has been proposed to influence many cancer phenotypes, including responses to targeted therapy. Here, we track the transitions and heritability of metabolic states in single PIK3CA mutant breast cancer cells, identify non-genetic glycolytic heterogeneity, and build on observations derived from methods reliant on bulk analyses. Using fluorescent biosensors in vitro and in tumors, we have identified distinct subpopulations of cells whose glycolytic and mitochondrial metabolism are regulated by combinations of phosphatidylinositol 3-kinase (PI3K) signaling, bromodomain activity, and cell crowding effects. The actin severing protein cofilin, as well as PI3K, regulates rapid changes in glucose metabolism, whereas treatment with the bromodomain inhibitor slowly abrogates a subpopulation of cells whose glycolytic activity is PI3K independent. We show how bromodomain function and PI3K signaling, along with actin remodeling, independently modulate glycolysis and how targeting these pathways affects distinct subpopulations of cancer cells.
    Keywords:  FRET imaging; PI3K signaling; breast cancer; cofilin; intra-tumor heterogeneity; intravital imaging; tumor metabolism
    DOI:  https://doi.org/10.1016/j.celrep.2021.108750
  15. J Clin Invest. 2021 Feb 15. pii: 140100. [Epub ahead of print]131(4):
      Rapidly proliferating tumor and immune cells need metabolic programs that support energy and biomass production. The amino acid glutamine is consumed by effector T cells and glutamine-addicted triple-negative breast cancer (TNBC) cells, suggesting that a metabolic competition for glutamine may exist within the tumor microenvironment, potentially serving as a therapeutic intervention strategy. Here, we report that there is an inverse correlation between glutamine metabolic genes and markers of T cell-mediated cytotoxicity in human basal-like breast cancer (BLBC) patient data sets, with increased glutamine metabolism and decreased T cell cytotoxicity associated with poor survival. We found that tumor cell-specific loss of glutaminase (GLS), a key enzyme for glutamine metabolism, improved antitumor T cell activation in both a spontaneous mouse TNBC model and orthotopic grafts. The glutamine transporter inhibitor V-9302 selectively blocked glutamine uptake by TNBC cells but not CD8+ T cells, driving synthesis of glutathione, a major cellular antioxidant, to improve CD8+ T cell effector function. We propose a "glutamine steal" scenario, in which cancer cells deprive tumor-infiltrating lymphocytes of needed glutamine, thus impairing antitumor immune responses. Therefore, tumor-selective targeting of glutamine metabolism may be a promising therapeutic strategy in TNBC.
    Keywords:  Amino acid metabolism; Breast cancer; Cancer immunotherapy; Oncology
    DOI:  https://doi.org/10.1172/JCI140100
  16. Cancer Discov. 2021 Jan 27. pii: candisc.1211.2020. [Epub ahead of print]
      Metabolic reprogramming enables cancer cell growth, proliferation, and survival. This reprogramming is driven by the combined actions of oncogenic alterations in cancer cells and host cell factors acting on cancer cells in the tumor microenvironment. Cancer cell intrinsic mechanisms activate signal transduction components that either directly enhance metabolic enzyme activity or upregulate transcription factors that in turn increase expression of metabolic regulators. Extrinsic signaling mechanisms involve host-derived factors that further promote and amplify metabolic reprogramming in cancer cells. This review describes intrinsic and extrinsic mechanisms driving cancer metabolism in the tumor microenvironment and how such mechanisms may be targeted therapeutically.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1211
  17. Cell Rep. 2021 Jan 26. pii: S2211-1247(20)31667-3. [Epub ahead of print]34(4): 108678
      Osteosarcoma is the most common pediatric and adult primary malignant bone cancer. Curative regimens target the folate pathway, downstream of serine metabolism, with high-dose methotrexate. Here, the rate-limiting enzyme in the biosynthesis of serine from glucose, 3-phosphoglycerate dehydrogenase (PHGDH), is examined, and an inverse correlation between PHGDH expression and relapse-free and overall survival in osteosarcoma patients is found. PHGDH inhibition in osteosarcoma cell lines attenuated cellular proliferation without causing cell death, prompting a robust metabolic analysis to characterize pro-survival compensation. Using metabolomic and lipidomic profiling, cellular response to PHGDH inhibition is identified as accumulation of unsaturated lipids, branched chain amino acids, and methionine cycle intermediates, leading to activation of pro-survival mammalian target of rapamycin complex 1 (mTORC1) signaling. Increased mTORC1 activation sensitizes cells to mTORC1 pathway inhibition, resulting in significant, synergistic cell death in vitro and in vivo. Identifying a therapeutic combination for PHGDH-high cancers offers preclinical justification for a dual metabolism-based combination therapy for osteosarcoma.
    Keywords:  GATOR; PHGDH; SAMTOR; lipid metabolism; mTORC1; methotrexate; one-carbon metabolism; osteosarcoma; perhexiline; serine biosynthesis
    DOI:  https://doi.org/10.1016/j.celrep.2020.108678
  18. Nat Commun. 2021 02 18. 12(1): 1135
      While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.
    DOI:  https://doi.org/10.1038/s41467-021-21279-0
  19. Mol Cell. 2021 Feb 18. pii: S1097-2765(21)00053-8. [Epub ahead of print]81(4): 708-723.e5
      The PI3K pathway regulates cell metabolism, proliferation, and migration, and its dysregulation is common in cancer. We now show that both physiologic and oncogenic activation of PI3K signaling increase the expression of its negative regulator PTEN. This limits the duration of the signal and output of the pathway. Physiologic and pharmacologic inhibition of the pathway reduces PTEN and contributes to the rebound in pathway activity in tumors treated with PI3K inhibitors and limits their efficacy. Regulation of PTEN is due to mTOR/4E-BP1-dependent control of its translation and is lost when 4E-BP1 is deleted. Translational regulation of PTEN is therefore a major homeostatic regulator of physiologic PI3K signaling and plays a role in reducing the pathway activation by oncogenic PIK3CA mutants and the antitumor activity of PI3K pathway inhibitors. However, pathway output is hyperactivated in tumor cells with coexistent PI3K mutation and loss of PTEN function.
    Keywords:  4E-BP; BYL-719; PI3K signaling; PTEN regulation; PTEN translation; computational model of PI3K signaling; growth factor signaling; mTOR; negative feedback; resistance to PI3K inhibition
    DOI:  https://doi.org/10.1016/j.molcel.2021.01.033
  20. Aging (Albany NY). 2021 Feb 12. 13
      Senescent cells produce chronic inflammation that contributes to the diseases and debilities of aging. How this process is orchestrated in epithelial cells, the origin of human carcinomas, is poorly understood. We used human normal oral keratinocytes (NOKs) to elucidate senescence programs in a prototype primary mucosal epithelial cell that senesces spontaneously. While NOKs exhibit several typical facets of senescence, they also display distinct characteristics. These include expression of p21WAF1/CIP1 at early passages, making this common marker of senescence unreliable in NOKs. Transcriptome analysis by RNA-seq revealed specific commonalities with and differences from cancer cells, explicating the tumor avoidance role of senescence. Repression of DNA repair genes that correlated with downregulation of E2F1 mRNA and protein was observed for two donors; a divergent result was seen for the third. Using proteomic profiling of soluble (non-vesicular) and extracellular vesicle (EV) associated secretions, we propose additions to the senescence associated secretory phenotype, including HSP60, which localizes to the surface of EVs. Finally, EVs from senescent NOKs activate interferon pathway signaling in THP-1 monocytes in a STING-dependent manner and associate with mitochondrial and nuclear DNA. Our results highlight senescence changes in epithelial cells and how they might contribute to chronic inflammation and age-related diseases.
    Keywords:  carcinoma; cellular senescence; extracellular vesicles; inflammation; keratinocytes
    DOI:  https://doi.org/10.18632/aging.202658
  21. J Clin Invest. 2021 Feb 15. pii: 141799. [Epub ahead of print]131(4):
      The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.
    Keywords:  Adipose tissue; Cardiology; Cardiovascular disease; Metabolism
    DOI:  https://doi.org/10.1172/JCI141799
  22. EMBO Rep. 2021 Feb 15. e51635
      Mitochondria possess a small genome that codes for core subunits of the oxidative phosphorylation system and whose expression is essential for energy production. Information on the regulation and spatial organization of mitochondrial gene expression in the cellular context has been difficult to obtain. Here we devise an imaging approach to analyze mitochondrial translation within the context of single cells, by following the incorporation of clickable non-canonical amino acids. We apply this method to multiple cell types, including specialized cells such as cardiomyocytes and neurons, and monitor with spatial resolution mitochondrial translation in axons and dendrites. We also show that translation imaging allows to monitor mitochondrial protein expression in patient fibroblasts. Approaching mitochondrial translation with click chemistry opens new avenues to understand how mitochondrial biogenesis is integrated into the cellular context and can be used to assess mitochondrial gene expression in mitochondrial diseases.
    Keywords:  gene expression; hippocampal neuron; mitochondria; synapse; translation
    DOI:  https://doi.org/10.15252/embr.202051635
  23. Aging (Albany NY). 2021 Feb 19. 13
      Cerebral ischemia-reperfusion induces mitochondrial fragmentation and dysfunction, which plays a critical role in the subsequent neuronal death and neurological impairment. Protection of mitochondria is an effective strategy to prevent neuronal damage after cerebral ischemia-reperfusion injury. USP30 is a deubiquitinating enzyme that localizes to the outer mitochondrial membrane. USP30 participates in the regulation of mitophagy and maintenance of mitochondrial morphology. In this study, the neuroprotective effect of USP30 and the underlying mechanisms were assessed in an ischemia-reperfusion injury model. SK-N-BE (2) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. Ubiquitination of mitochondrial proteins is increased during the early stage of reperfusion after oxygen-glucose deprivation (OGD), but the ubiquitination of cytoplasmic proteins exhibits no obvious changes. OGDR insult also induces rapid ubiquitination and degradation of the mitochondrial fusion protein mitofusin 2 (MFN2) in the early stage of reperfusion after OGD. Overexpression of MFN2 attenuates OGDR induced mitochondrial fragmentation. USP30 overexpression suppresses OGDR-induced ubiquitination and degradation of MFN2, and protects against mitochondrial fragmentation. Therefore, precisely targeting USP30 may provide a novel therapeutic strategy for cerebral ischemia-reperfusion related disorders.
    Keywords:  MFN2; USP30; mitochondria; oxygen-glucose deprivation/reperfusion (OGDR); ubiquitination
    DOI:  https://doi.org/10.18632/aging.202629
  24. Cancer Discov. 2021 Jan 27. pii: candisc.1227.2020. [Epub ahead of print]
      Mitochondria are involved in many biological processes including cellular homeostasis, energy generation and apoptosis. Moreover, mitochondrial and metabolic pathways are interconnected with gene expression to regulate cellular functions such as cell growth, survival, differentiation and immune recognition. Metabolites and mitochondrial enzymes regulate chromatin modifying-enzymes, chromatin remodeling, and transcription regulators. Deregulation of mitochondrial pathways and metabolism leads to alterations in gene expression that promotes cancer development, progression and evasion of the immune system. This review highlights how mitochondrial and metabolic pathways function as a central mediator to control gene expression, specifically on stem cell functions, differentiation and immune response in leukemia.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1227
  25. Front Oncol. 2020 ;10 620641
      Metabolism can directly drive or indirectly enable an aberrant chromatin state of cancer cells. The physiological and molecular principles of the metabolic link to epigenetics provide a basis for pharmacological modulation with the anti-diabetic biguanide metformin. Here, we briefly review how metabolite-derived chromatin modifications and the metabolo-epigenetic machinery itself are both amenable to modification by metformin in a local and a systemic manner. First, we consider the capacity of metformin to target global metabolic pathways or specific metabolic enzymes producing chromatin-modifying metabolites. Second, we examine its ability to directly or indirectly fine-tune the activation status of chromatin-modifying enzymes. Third, we envision how the interaction between metformin, diet and gut microbiota might systemically regulate the metabolic inputs to chromatin. Experimental and clinical validation of metformin's capacity to change the functional outcomes of the metabolo-epigenetic link could offer a proof-of-concept to therapeutically test the metabolic adjustability of the epigenomic landscape of cancer.
    Keywords:  cancer; chromatin; diet; epigenetics; metabolism; metformin; microbiota
    DOI:  https://doi.org/10.3389/fonc.2020.620641
  26. Cancer Discov. 2021 Feb 19. pii: candisc.1325.2020. [Epub ahead of print]
      Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multi-step process, however the importance and specific roles of many of these genes during tumor initiation, growth and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS-driven lung cancer to quantify the impact of forty-eight known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, while the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression.
    DOI:  https://doi.org/10.1158/2159-8290.CD-20-1325
  27. Front Oncol. 2020 ;10 628664
      
    Keywords:  cancer mesenchymal phenotype; cancer metabolism; epithelial-mesenchymal transition; metabolic remodeling; partial epithelial-mesenchymal transition
    DOI:  https://doi.org/10.3389/fonc.2020.628664
  28. Front Mol Neurosci. 2020 ;13 625606
      
    Keywords:  angiogenesis; cell metabolism; metabolic fingerprint; metabolic flux analysis; nutrient; oxygen; regenerative medicine; stem cell differentiation and proliferation
    DOI:  https://doi.org/10.3389/fnmol.2020.625606
  29. Pharmacol Res. 2021 Feb 15. pii: S1043-6618(21)00079-7. [Epub ahead of print] 105495
      In mammalian cells enzymatic and non-enzymatic pathways produce H2S, a gaseous transmitter which recently emerged as promising therapeutic agent and modulator of mitochondrial bioenergetics. To explore this topic, the H2S donor NaHS, at micromolar concentrations, was tested on swine heart mitochondria. NaHS did not affect the F1FO-ATPase activated by the natural cofactor Mg2, but, when Mg2+ was replaced by Ca2+, a slight 15% enzyme inhibition at 100µM NaHS was shown. Conversely, both the NADH-O2 and succinate-O2 oxidoreductase activities were totally inhibited by 200μM NaHS with IC50 values of 61.6±4.1 and 16.5±4.6μM NaHS, respectively. Since the mitochondrial respiration was equally inhibited by NaHS at both first or second respiratory substrates sites, the H2S generation may prevent the electron transfer from complexes I and II to downhill respiratory chain complexes, probably because H2S competes with O2 in complex IV, thus reducing membrane potential as a consequence of the cytochrome c oxidase activity inhibition. The Complex IV blockage by H2S was consistent with the linear concentration-dependent NADH-O2 oxidoreductase inhibition and exponential succinate-O2 oxidoreductase inhibition by NaHS, whereas the coupling between substrate oxidation and phosphorylation was unaffected by NaHS. Even if H2S is known to cause sulfhydration of cysteine residues, thiol oxidizing (GSSG) or reducing (DTE) agents, did not affect the F1FO-ATPase activities and mitochondrial respiration, thus ruling out any involvement of post-translational modifications of thiols. The permeability transition pore, the lethal channel which forms when the F1FO-ATPase is stimulated by Ca2+, did not open in the presence of NaHS, which shows a similar effect to ruthenium red, thus suggesting a putative Ca2+ transport cycle inhibition.
    Keywords:  F(1)F(O)-ATPase; H(2)S; cofactors; mitochondria; mitochondrial respiration; permeability transition pore
    DOI:  https://doi.org/10.1016/j.phrs.2021.105495
  30. Cancer Sci. 2021 Feb 20.
      T-cells could be engineered to overcome the aberrant metabolic milieu of solid tumors and tip the balance in favor of a long-lasting clinical response. Here we explored the therapeutic potential of stably overexpressing cystathionine-gamma-lyase (CTH, CSE or cystathionase), a pivotal enzyme of the transsulfuration pathway, in anti-tumor CD8+ T cells with the initial aim to boost intrinsic cysteine metabolism. Using a mouse model of adoptive cell transfer (ACT), we found that CTH-expressing T cells exhibited a superior control of tumor growth compared to control T cells. However, contrary to our hypothesis, this effect was not associated with increased T-cell expansion in vivo or proliferation rescue in the absence of cysteine/cystine in vitro. Rather than impacting methionine or cysteine, ACT with CTH overexpression unexpectedly reduced glycine, serine and proline concentration within the tumor interstitial fluid. Interestingly, in vitro tumor cell growth was mostly impacted by the combination of serine/proline or serine/glycine deprivation. These results suggest that metabolic gene engineering of T cells could be further investigated to locally modulate amino acid availability within the tumor environment while avoiding systemic toxicity.
    Keywords:  T cells; adoptive cell transfer; amino acids; cysteine; metabolism
    DOI:  https://doi.org/10.1111/cas.14862
  31. J Cell Physiol. 2021 Feb 15.
      Abnormalities of the tumor vasculature result in insufficient blood supply and development of a tumor microenvironment that is characterized by low glucose concentrations, low extracellular pH, and low oxygen tensions. We previously reported that glucose-deprived conditions induce metabolic stress and promote tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. In this study, we examined whether the metabolic stress-associated endoplasmic reticulum (ER) stress response pathway plays a pivotal role in the enhancement of TRAIL cytotoxicity. We observed no significant cytotoxicity when human colorectal cancer SW48 cells were treated with various doses of TRAIL (2-100 ng/ml) for 4 h or glucose (0-25 mM) for 24 h. However, a combination of TRAIL and low glucose-induced dose-dependent apoptosis through activation of caspases (-8, -9, and -3). Studies with activating transcription factor 4 (ATF4), C/EBP-homologous protein (CHOP), p53 upregulated modulator of apoptosis (PUMA), or death receptor 5 (DR5)-deficient mouse embryonic fibroblasts or HCT116 cells suggest that the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis are involved in the combined treatment-induced apoptosis. Moreover, the combined treatment-induced apoptosis was completely suppressed in BH3 interacting-domain death agonist (Bid)- or Bcl-2-associated X protein (Bax)-deficient HCT116 cells, but not Bak-deficient HCT116 cells. Interestingly, the combined treatment-induced Bax oligomerization was suppressed in PUMA-deficient HCT116 cells. These results suggest that glucose deprivation enhances TRAIL-induced apoptosis by integrating the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis, consequently amplifying the Bid-Bax-associated mitochondria-dependent pathway.
    Keywords:  TRAIL cytotoxicity; endoplasmic reticulum stress; glucose deprivation
    DOI:  https://doi.org/10.1002/jcp.30329
  32. Biochim Biophys Acta Bioenerg. 2021 Feb 13. pii: S0005-2728(21)00032-3. [Epub ahead of print] 148399
      Many cellular processes involve the participation of large macromolecular assemblies. Understanding their function requires methods allowing to study their dynamic and mechanistic properties. Here we present a method for quantitative analysis of native protein or ribonucleoprotein complexes by mass spectrometry following their separation by density - qDGMS. Mass spectrometric quantitation is enabled through stable isotope labelling with amino acids in cell culture (SILAC). We provide a complete guide, from experimental design to preparation of publication-ready figures, using a purposely-developed R package - ComPrAn. As specific examples, we present the use of sucrose density gradients to inspect the assembly and dynamics of the human mitochondrial ribosome (mitoribosome), its interacting proteins, the small subunit of the cytoplasmic ribosome, cytoplasmic aminoacyl-tRNA synthetase complex and the mitochondrial PDH complex. ComPrAn provides tools for analysis of peptide-level data as well as normalization and clustering tools for protein-level data, dedicated visualization functions and graphical user interface. Although, it has been developed for the analysis of qDGMS samples, it can also be used for other proteomics experiments that involve 2-state labelled samples separated into fractions. We show that qDGMS and ComPrAn can be used to study macromolecular complexes in their native state, accounting for the dynamics inherent to biological systems and benefiting from its proteome-wide quantitative and qualitative capability.
    Keywords:  Complexome profiling; Density gradient ultracentrifugation; Mitochondrial ribosome; Proteomics; R package; SILAC
    DOI:  https://doi.org/10.1016/j.bbabio.2021.148399
  33. Histochem Cell Biol. 2021 Feb 18.
      It has long been appreciated that the endoplasmic reticulum (ER) and mitochondria, organelles important for regular cell function and survival, also play key roles in pathogenesis of various lung diseases, including asthma, fibrosis, and infections. Alterations in processes regulated within these organelles, including but not limited to protein folding in the ER and oxidative phosphorylation in the mitochondria, are important in disease pathogenesis. In recent years it has also become increasingly apparent that organelle structure dictates function. It is now clear that organelles must maintain precise organization and localization for proper function. Newer microscopy capabilities have allowed the scientific community to reveal, via 3D imaging, that the structure of these organelles and their interactions with each other are a main component of regulating function and, therefore, effects on the disease state. In this review, we will examine how 3D imaging through techniques could allow advancements in knowledge of how the ER and mitochondria function and the roles they may play in lung epithelia in progression of lung disease.
    Keywords:  3D; Endoplasmic reticulum; Epithelial; Lung; Mitochondria; Structure
    DOI:  https://doi.org/10.1007/s00418-020-01950-1
  34. J Biol Chem. 2021 Feb 10. pii: S0021-9258(21)00182-4. [Epub ahead of print] 100410
      Trace element selenium (Se) is incorporated as the 21st amino acid, selenocysteine (Sec), into selenoproteins through tRNA[Ser]Sec. Selenoproteins act as gatekeepers of redox homeostasis and modulate immune function to effect anti-inflammation and resolution. However, mechanistic underpinnings involving metabolic reprogramming during inflammation and resolution remain poorly understood. Bacterial endotoxin lipopolysaccharide (LPS) activation of murine bone marrow-derived macrophages (BMDMs) cultured in the presence or absence of Se (as selenite) was used to examine temporal changes in the proteome and metabolome by multiplexed tandem mass tag-quantitative proteomics, metabolomics, and machine-learning approaches. Kinetic deltagram and clustering analysis indicated addition of Se led to extensive reprogramming of cellular metabolism upon stimulation with LPS enhancing PPP, TCA cycle, and OXPHOS, to aid in the phenotypic transition towards alternatively activated macrophages, synonymous with resolution of inflammation. Remodeling of metabolic pathways and consequent metabolic adaptation towards pro-resolving phenotypes began with Se treatment at 0 h and became most prominent around 8 h post LPS stimulation that included succinate dehydrogenase complex (Sdh), pyruvate kinase (Pkm), and Sedoheptulokinase (Shpk). Se-dependent modulation of these pathways predisposed BMDMs to preferentially increase OXPHOS to efficiently regulate inflammation and its timely resolution. Use of macrophages lacking selenoproteins, indicated that all three metabolic nodes were sensitive to selenoproteome expression. Furthermore, inhibition of Sdh with dimethylmalonate affected the pro-resolving effects of Se by increasing the resolution interval in a murine peritonitis model. In summary, our studies provide novel insights into the role of cellular Se via metabolic reprograming to facilitate anti-inflammation and pro-resolution.
    Keywords:  macrophages; peritonitis; proteomics; redox; succinate dehydrogenase
    DOI:  https://doi.org/10.1016/j.jbc.2021.100410
  35. Free Radic Res. 2021 Jan 27. 1-14
      India, resembling other developing nations, is confronting a hastening demographic switch to non-communicable diseases. Inborn errors of metabolism (IEM) constitute a varied heterogeneous group of disorders with variable clinical appearance, primarily in the pediatric populace. Congenital deformities and genetic disorders are significant for mortality throughout the world, and the Indian scenario is not very different. IEMs are a group of monogenic issues described by dysregulation of the metabolic networks that bring about development and homeostasis. Incipient evidence focuses on oxidative stress and mitochondrial dysfunction as significant contributors to the multiorgan modifications are detected in a few IEMs. The amassing of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation ailments inhibit mitochondrial enzymes and processes, bringing about elevated levels of reactive oxygen species (ROS). In different IEMs, as in homocystinuria, various sources of ROS have been suggested. In patients' samples along with cellular and experimental animal models, a few investigations have recognized substantial increments in ROS levels alongside diminishes in antioxidant defenses, relating with oxidative damage to proteins, lipids as well as DNA. Elevated ROS levels interrupt redox signaling pathways controlling biological processes such as cell development, differentiation, or apoptosis; however, few investigations explore these processes in IEMs. This review depicts the mitochondrial dysfunction, oxidative stress, redox signaling in branched-chain amino acid disorders, further organic acidurias, and homocystinuria, alongside the latest research investigating the proficiency of antioxidants in addition to mitochondria-targeted therapies as therapeutic components in these diseases.
    Keywords:  Inborn errors of metabolism; branched-chain amino acid disorders; homocystinuria; mitochondrial dysfunction; organic acidurias; reactive oxygen species; redox signaling
    DOI:  https://doi.org/10.1080/10715762.2021.1877286
  36. Nat Metab. 2021 Feb 15.
      The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut-brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut-brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy.
    DOI:  https://doi.org/10.1038/s42255-021-00344-4
  37. Biochem Soc Trans. 2021 Feb 18. pii: BST20190232. [Epub ahead of print]
      Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
    Keywords:  CHCHD4; cancer; disulfide relay system; hypoxia; metabolism; mitochondria; mitochondrial import; oxidoreductase
    DOI:  https://doi.org/10.1042/BST20190232
  38. Nat Commun. 2021 02 16. 12(1): 1055
      mTORC1, a central controller of cell proliferation in response to growth factors and nutrients, is dysregulated in cancer. Whereas arginine activates mTORC1, it is overridden by high expression of cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1). Because cancer cells often encounter low levels of nutrients, an alternative mechanism might exist to regulate CASTOR1 expression. Here we show K29-linked polyubiquitination and degradation of CASTOR1 by E3 ubiquitin ligase RNF167. Furthermore, AKT phosphorylates CASTOR1 at S14, significantly increasing its binding to RNF167, and hence its ubiquitination and degradation, while simultaneously decreasing its affinity to MIOS, leading to mTORC1 activation. Therefore, AKT activates mTORC1 through both TSC2- and CASTOR1-dependent pathways. Several cell types with high CASTOR1 expression are insensitive to arginine regulation. Significantly, AKT and RNF167-mediated CASTOR1 degradation activates mTORC1 independent of arginine and promotes breast cancer progression. These results illustrate a mTORC1 regulating mechanism and identify RNF167 as a therapeutic target for mTORC1-dysregulated diseases.
    DOI:  https://doi.org/10.1038/s41467-021-21206-3
  39. Free Radic Biol Med. 2021 Feb 15. pii: S0891-5849(21)00099-X. [Epub ahead of print]
      Long dismissed as merely harmful respiratory by-products, Reactive Oxygen Species (ROS) have emerged as critical intracellular messengers during cell growth and differentiation. ROS's signaling roles are particularly prominent within the intestine, whose high regenerative capacity is maintained by Intestinal Stem Cells (ISCs). In this review, we outline roles for ROS in ISCs as revealed by studies using Drosophila and mouse model systems. We focus particularly on recent studies highlighting how ROS ties to metabolic adaptations, which ensure energy supply matches demand during ISC activation and differentiation. We describe how declines in these adaptive mechanisms, through aging or pathology, promote reciprocal changes in ISC metabolism and ROS signaling. These changes ultimately contribute to aberrant ISC function, a loss of tissue homeostasis, and a shortened lifespan.
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.02.015
  40. Front Cell Dev Biol. 2021 ;9 625524
      Chronic hypoxia is an essential component in many cardiac diseases. The heart consumes a substantial amount of energy and it is important to maintain the balance of energy supply and demand when oxygen is limited. Previous studies showed that the heart switches from fatty acid to glucose to maintain metabolic efficiency in the adaptation to chronic hypoxia. However, the underlying mechanism of this adaptive cardiac metabolism remains to be fully characterized. Moreover, how the altered cardiac metabolism affects the heart function in patients with chronic hypoxia has not been discussed in the current literature. In this review, we summarized new findings from animal and human studies to illustrate the mechanism underlying the adaptive cardiac metabolism under chronic hypoxia. Clinical focus is given to certain patients that are subject to the impact of chronic hypoxia, and potential treatment strategies that modulate cardiac metabolism and may improve the heart function in these patients are also summarized.
    Keywords:  HIF-1α; cardiac metabolism; chronic hypoxia; heart failure; heart function; metabolic efficiency
    DOI:  https://doi.org/10.3389/fcell.2021.625524
  41. Cell Calcium. 2021 Feb 01. pii: S0143-4160(21)00018-X. [Epub ahead of print]95 102364
      Human mitochondria are complex and highly dynamic biological systems, comprised of over a thousand parts and evolved to fully integrate into the specialized intracellular signaling networks and metabolic requirements of each cell and organ. Over the last two decades, several complementary, top-down computational and experimental approaches have been developed to identify, characterize and modulate the human mitochondrial system, demonstrating the power of integrating classical reductionist and discovery-driven analyses in order to de-orphanize hitherto unknown molecular components of mitochondrial machineries and pathways. To this goal, systematic, multiomics-based surveys of proteome composition, protein networks, and phenotype-to-pathway associations at the tissue, cell and organellar level have been largely exploited to predict the full complement of mitochondrial proteins and their functional interactions, therefore catalyzing data-driven hypotheses. Collectively, these multidisciplinary and integrative research approaches hold the potential to propel our understanding of mitochondrial biology and provide a systems-level framework to unraveling mitochondria-mediated and disease-spanning pathomechanisms.
    Keywords:  Functional associations; Integrative analyses; Mitochondrial system; Multiomics approaches
    DOI:  https://doi.org/10.1016/j.ceca.2021.102364
  42. Cancer Discov. 2021 Feb 15.
      Pancreatic injury plus oncogenic Kras mutation produced cancer-associated chromatin states in vivo.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2021-019
  43. Cell Rep. 2021 Jan 26. pii: S2211-1247(20)31659-4. [Epub ahead of print]34(4): 108670
      Inflammation-dependent base deaminases promote therapeutic resistance in many malignancies. However, their roles in human pre-leukemia stem cell (pre-LSC) evolution to acute myeloid leukemia stem cells (LSCs) had not been elucidated. Comparative whole-genome and whole-transcriptome sequencing analyses of FACS-purified pre-LSCs from myeloproliferative neoplasm (MPN) patients reveal APOBEC3C upregulation, an increased C-to-T mutational burden, and hematopoietic stem and progenitor cell (HSPC) proliferation during progression, which can be recapitulated by lentiviral APOBEC3C overexpression. In pre-LSCs, inflammatory splice isoform overexpression coincides with APOBEC3C upregulation and ADAR1p150-induced A-to-I RNA hyper-editing. Pre-LSC evolution to LSCs is marked by STAT3 editing, STAT3β isoform switching, elevated phospho-STAT3, and increased ADAR1p150 expression, which can be prevented by JAK2/STAT3 inhibition with ruxolitinib or fedratinib or lentiviral ADAR1 shRNA knockdown. Conversely, lentiviral ADAR1p150 expression enhances pre-LSC replating and STAT3 splice isoform switching. Thus, pre-LSC evolution to LSCs is fueled by primate-specific APOBEC3C-induced pre-LSC proliferation and ADAR1-mediated splicing deregulation.
    Keywords:  Enter keywords here
    DOI:  https://doi.org/10.1016/j.celrep.2020.108670
  44. Front Oncol. 2020 ;10 617109
      Cachexia is a syndrome that affects the entire organism and presents a variable plethora of symptoms in patients, always associated with continuous and involuntary degradation of skeletal muscle mass and function loss. In cancer, this syndrome occurs in 50% of all patients, while prevalence increases to 80% as the disease worsens, reducing quality of life, treatment tolerance, therapeutic response, and survival. Both chronic systemic inflammation and immunosuppression, paradoxically, correspond to important features in cachexia patients. Systemic inflammation in cachexia is fueled by the interaction between tumor and peripheral tissues with significant involvement of infiltrating immune cells, both in the peripheral tissues and in the tumor itself. Autophagy, as a process of regulating cellular metabolism and homeostasis, can interfere with the metabolic profile in the tumor microenvironment. Under a scenario of balanced autophagy in the tumor microenvironment, the infiltrating immune cells control cytokine production and secretion. On the other hand, when autophagy is unbalanced or dysfunctional within the tumor microenvironment, there is an impairment in the regulation of immune cell's inflammatory phenotype. The inflammatory phenotype upregulates metabolic consumption and cytokine production, not only in the tumor microenvironment but also in other tissues and organs of the host. We propose that cachexia-related chronic inflammation can be, at least, partly associated with the failure of autophagic processes in tumor cells. Autophagy endangers tumor cell viability by producing immunogenic tumor antigens, thus eliciting the immune response necessary to counteract tumor progression, while preventing the establishment of inflammation, a hallmark of cachexia. Comprehensive understanding of this complex functional dichotomy may enhance cancer treatment response and prevent/mitigate cancer cachexia. This review summarizes the recent available literature regarding the role of autophagy within the tumor microenvironment and the consequences eliciting the development of cancer cachexia.
    Keywords:  DAMPs; autophagy; cachexia; lymphocyte infiltration; metabolism; systemic inflammations; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2020.617109
  45. Nature. 2021 Jan 27.
      METTL3 (methyltransferase-like 3) mediates the N6-methyladenosine (m6A) methylation of mRNA, which affects the stability of mRNA and its translation into protein1. METTL3 also binds chromatin2-4, but the role of METTL3 and m6A methylation in chromatin is not fully understood. Here we show that METTL3 regulates mouse embryonic stem-cell heterochromatin, the integrity of which is critical for silencing retroviral elements and for mammalian development5. METTL3 predominantly localizes to the intracisternal A particle (IAP)-type family of endogenous retroviruses. Knockout of Mettl3 impairs the deposition of multiple heterochromatin marks onto METTL3-targeted IAPs, and upregulates IAP transcription, suggesting that METTL3 is important for the integrity of IAP heterochromatin. We provide further evidence that RNA transcripts derived from METTL3-bound IAPs are associated with chromatin and are m6A-methylated. These m6A-marked transcripts are bound by the m6A reader YTHDC1, which interacts with METTL3 and in turn promotes the association of METTL3 with chromatin. METTL3 also interacts physically with the histone 3 lysine 9 (H3K9) tri-methyltransferase SETDB1 and its cofactor TRIM28, and is important for their localization to IAPs. Our findings demonstrate that METTL3-catalysed m6A modification of RNA is important for the integrity of IAP heterochromatin in mouse embryonic stem cells, revealing a mechanism of heterochromatin regulation in mammals.
    DOI:  https://doi.org/10.1038/s41586-021-03210-1
  46. Sci Rep. 2021 Feb 18. 11(1): 4181
      The primary cilium is well-preserved in human differentiated thyroid cancers such as papillary and follicular carcinoma. Specific thyroid cancers such as Hürthle cell carcinoma, oncocytic variant of papillary thyroid carcinoma (PTC), and PTC with Hashimoto's thyroiditis show reduced biogenesis of primary cilia; these cancers are often associated the abnormalities in mitochondrial function. Here, we examined the association between primary cilia and the mitochondria-dependent apoptosis pathway. Tg-Cre;Ift88flox/flox mice (in which thyroid follicles lacked primary cilia) showed irregularly dilated follicles and increased apoptosis of thyrocytes. Defective ciliogenesis caused by deleting the IFT88 and KIF3A genes from thyroid cancer cell lines increased VDAC1 oligomerization following VDAC1 overexpression, thereby facilitating upregulation of mitochondria-dependent apoptosis. Furthermore, VDAC1 localized with the basal bodies of primary cilia in thyroid cancer cells. These results demonstrate that loss-of-function of primary cilia results in apoptogenic stimuli, which are responsible for mitochondrial-dependent apoptotic cell death in differentiated thyroid cancers. Therefore, regulating primary ciliogenesis might be a therapeutic approach to targeting differentiated thyroid cancers.
    DOI:  https://doi.org/10.1038/s41598-021-83418-3
  47. Physiol Rev. 2021 Feb 18.
      Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves crosstalk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge on their cellular, tissue as well as systemic functions in metabolism. Nevertheless, our knowledge on the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review will discuss the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models, but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders and aging.
    Keywords:  cancer metabolism; mTOR; mTORC; metabolic reprogramming; metabolism
    DOI:  https://doi.org/10.1152/physrev.00026.2020
  48. Proc Natl Acad Sci U S A. 2021 Feb 16. pii: e2020838118. [Epub ahead of print]118(7):
      We present a unifying theory to explain cancer recurrence, therapeutic resistance, and lethality. The basis of this theory is the formation of simultaneously polyploid and aneuploid cancer cells, polyaneuploid cancer cells (PACCs), that avoid the toxic effects of systemic therapy by entering a state of cell cycle arrest. The theory is independent of which of the classically associated oncogenic mutations have already occurred. PACCs have been generally disregarded as senescent or dying cells. Our theory states that therapeutic resistance is driven by PACC formation that is enabled by accessing a polyploid program that allows an aneuploid cancer cell to double its genomic content, followed by entry into a nondividing cell state to protect DNA integrity and ensure cell survival. Upon removal of stress, e.g., chemotherapy, PACCs undergo depolyploidization and generate resistant progeny that make up the bulk of cancer cells within a tumor.
    Keywords:  drug resistance; evolution; metastasis; tumor microenvironment; whole-genome doubling
    DOI:  https://doi.org/10.1073/pnas.2020838118
  49. Front Cell Dev Biol. 2021 ;9 624823
      Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
    Keywords:  Charcot-Marie-Tooth (CMT) disease; axonal transport deficiency; cytoskeleton; mitochondria; neurodegeneration; organelle transport
    DOI:  https://doi.org/10.3389/fcell.2021.624823
  50. J Exp Pathol (Wilmington). 2020 ;1(2): 60-70
      Previous studies showed that human cell line HEK293 lacking mitochondrial superoxide dismutase (MnSOD) exhibited decreased succinate dehydrogenase (SDH) activity, and mice lacking MnSOD displayed significant reductions in SDH and aconitase activities. Since MnSOD has significant effects on SDH activity, and succinate is a key regulator of TET enzymes needed for proper differentiation, we hypothesized that SOD2 loss would lead to succinate accumulation, inhibition of TET activity, and impaired erythroid precursor differentiation. To test this hypothesis, we genetically disrupted the SOD2 gene using the CRISPR/Cas9 genetic strategy in a human erythroleukemia cell line (HEL 92.1.7) capable of induced differentiation toward an erythroid phenotype. Cells obtained in this manner displayed significant inhibition of SDH activity and ~10-fold increases in cellular succinate levels compared to their parent cell controls. Furthermore, SOD2 -/- cells exhibited significantly reduced TET enzyme activity concomitant with decreases in genomic 5-hmC and corresponding increases in 5-mC. Finally, when stimulated with δ-aminolevulonic acid (δ-ALA), SOD2 -/- HEL cells failed to properly differentiate toward an erythroid phenotype, likely due to failure to complete the necessary global DNA demethylation program required for erythroid maturation. Together, our findings support the model of an SDH/succinate/TET axis and a role for succinate as a retrograde signaling molecule of mitochondrial origin that significantly perturbs nuclear epigenetic reprogramming and introduce MnSOD as a governor of the SDH/succinate/TET axis.
    Keywords:  DNA methylation; Epigenetic control; Gene expression; Iron homeostasis; Mitochondria; Retrograde signaling; Succinate dehydrogenase; Superoxide dismutase
  51. Nature. 2021 Feb 15.
      Limiting the metabolic competition in the tumor microenvironment (TME) may increase the effectiveness of immunotherapy. Because of its critical role in glucose metabolism of activated T cells, CD28 signaling has been proposed as a T-cell metabolic biosensor1. Conversely, CTLA-4 engagement has been shown to down-regulate T-cell glycolysis1. Here, we investigated the impact of CTLA-4 blockade on the metabolic fitness of intra-tumor T cells in relationship to the tumor glycolytic capacity. We found that CTLA-4 blockade promotes immune cell infiltration and metabolic fitness especially in glycolysis-low tumors. Accordingly, anti-CTLA-4 achieved better therapeutic outcomes in mice bearing glycolysis-defective tumors. Intriguingly, tumor-specific CD8+ T-cell responses correlated with phenotypic and functional destabilization of tumor-infiltrating regulatory T cells (Tregs) toward IFN-γ- and TNF-α-producing cells in glycolysis-defective tumors. By mimicking the highly and poorly glycolytic TME in vitro, we show that the effect of CTLA-4 blockade to promote Treg destabilization is dependent on Treg glycolysis and CD28 signaling. These findings indicate that decreasing tumor competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumor glycolysis. Moreover, these results reveal a new mechanism through which anti-CTLA-4 interferes with Treg function in the presence of glucose.
    DOI:  https://doi.org/10.1038/s41586-021-03326-4
  52. J Inherit Metab Dis. 2021 Feb 16.
      Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including non-lysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each. Corresponding author name: Carlos R. Ferreira, carlos.ferreira@nih.gov This article is protected by copyright. All rights reserved.
    Keywords:  Complex Lipids; Mitochondrial Membrane Biogenesis; Phosphoinositides; Phospholipids; Sphingolipids
    DOI:  https://doi.org/10.1002/jimd.12369
  53. Sci Adv. 2021 Feb;pii: eabe0174. [Epub ahead of print]7(8):
      The naked mole rat (NMR), a long-lived and cancer-resistant rodent, is highly resistant to hypoxia. Here, using robust cellular models wherein the mouse telomeric protein TRF1 is substituted by NMR TRF1 or its mutant forms, we show that TRF1 supports maximal glycolytic capacity under low oxygen, shows increased nuclear localization and association with telomeres, and protects telomeres from replicative stress. We pinpoint this evolutionary gain of metabolic function to specific amino acid changes in the homodimerization domain of this protein. We further find that NMR TRF1 accelerates telomere shortening. These findings reveal an evolutionary strategy to adapt telomere biology for metabolic control under an extreme environment.
    DOI:  https://doi.org/10.1126/sciadv.abe0174
  54. Nat Commun. 2021 Feb 19. 12(1): 1190
      DddA-derived cytosine base editors (DdCBEs), composed of the split interbacterial toxin DddAtox, transcription activator-like effector (TALE), and uracil glycosylase inhibitor (UGI), enable targeted C-to-T base conversions in mitochondrial DNA (mtDNA). Here, we demonstrate highly efficient mtDNA editing in mouse embryos using custom-designed DdCBEs. We target the mitochondrial gene, MT-ND5 (ND5), which encodes a subunit of NADH dehydrogenase that catalyzes NADH dehydration and electron transfer to ubiquinone, to obtain several mtDNA mutations, including m.G12918A associated with human mitochondrial diseases and m.C12336T that incorporates a premature stop codon, creating mitochondrial disease models in mice and demonstrating a potential for the treatment of mitochondrial disorders.
    DOI:  https://doi.org/10.1038/s41467-021-21464-1
  55. Br J Cancer. 2021 Jan 28.
      Metabolic reprogramming is one of the hallmarks of cancer and includes the Warburg effect, which is exhibited by many tumours. This can be exploited by positron emission tomography (PET) as part of routine clinical cancer imaging. However, an emerging and alternative method to detect altered metabolism is carbon-13 magnetic resonance imaging (MRI) following injection of hyperpolarised [1-13C]pyruvate. The technique increases the signal-to-noise ratio for the detection of hyperpolarised 13C-labelled metabolites by several orders of magnitude and facilitates the dynamic, noninvasive imaging of the exchange of 13C-pyruvate to 13C-lactate over time. The method has produced promising preclinical results in the area of oncology and is currently being explored in human imaging studies. The first translational studies have demonstrated the safety and feasibility of the technique in patients with prostate, renal, breast and pancreatic cancer, as well as revealing a successful response to treatment in breast and prostate cancer patients at an earlier stage than multiparametric MRI. This review will focus on the strengths of the technique and its applications in the area of oncological body MRI including noninvasive characterisation of disease aggressiveness, mapping of tumour heterogeneity, and early response assessment. A comparison of hyperpolarised 13C-MRI with state-of-the-art multiparametric MRI is likely to reveal the unique additional information and applications offered by the technique.
    DOI:  https://doi.org/10.1038/s41416-020-01224-6
  56. Biochim Biophys Acta Gen Subj. 2021 Feb 16. pii: S0304-4165(21)00033-7. [Epub ahead of print] 129874
       BACKGROUND: Mitochondria, which play a critical role in energy production by oxidative respiration, are highly dynamic organelles and their double membranes undergo frequent cycles of fusion and fission. Mitochondria are believed to be derived from the endosymbiosis of proteobacteria, and thus mitochondria still contain their own DNA, mitochondrial DNA (mtDNA). Recently, the morphology and distribution of the mitochondrial membrane and mtDNA were reported to be cooperatively regulated during their dynamic movement. However, the molecular mechanism is unclear, because the involved molecules are poorly understood, and suitable techniques to analyze nucleoids have not been fully developed.
    RESULTS: To solve these problems, we examined the molecular mechanism of nucleoid dynamics by two approaches. First, we constructed a new probe to perform live imaging of nucleoid dynamics using the DNA-binding domain of transcription factor A of mitochondria (TFAM) and the photo-convertible fluorescent protein Kikume Green-Red (KikGR). Nucleoids were visualized stably for a long period of time using the new probe. Second, we searched for nucleoid regulation factors by small interfering RNA screening using HeLa cells, and identified a subset of MARCH family ubiquitin ligases that affect nucleoid morphology.
    CONCLUSION: The factors and probe reported in this study should be useful to reveal novel mechanisms of mitochondrial regulation.
    GENERAL SIGNIFICANCE: The mtDNA dynamics should be concerned in the regulation of mitochondrial activity and quality control, concomitant with mitochondrial membrane dynamics.
    Keywords:  Live imaging; Mitochondrial fission; Mitochondrial fusion; Mitochondrial nucleoids; mtDNA dynamics; mtDNA probe
    DOI:  https://doi.org/10.1016/j.bbagen.2021.129874
  57. Plant Cell. 2020 Oct 02. 32(10): 3324-3345
      NADH and NAD+ are a ubiquitous cellular redox couple. Although the central role of NAD in plant metabolism and its regulatory role have been investigated extensively at the biochemical level, analyzing the subcellular redox dynamics of NAD in living plant tissues has been challenging. Here, we established live monitoring of NADH/NAD+ in plants using the genetically encoded fluorescent biosensor Peredox-mCherry. We established Peredox-mCherry lines of Arabidopsis (Arabidopsis thaliana) and validated the biophysical and biochemical properties of the sensor that are critical for in planta measurements, including specificity, pH stability, and reversibility. We generated an NAD redox atlas of the cytosol of living Arabidopsis seedlings that revealed pronounced differences in NAD redox status between different organs and tissues. Manipulating the metabolic status through dark-to-light transitions, respiratory inhibition, sugar supplementation, and elicitor exposure revealed a remarkable degree of plasticity of the cytosolic NAD redox status and demonstrated metabolic redox coupling between cell compartments in leaves. Finally, we used protein engineering to generate a sensor variant that expands the resolvable NAD redox range. In summary, we established a technique for in planta NAD redox monitoring to deliver important insight into the in vivo dynamics of plant cytosolic redox metabolism.
    DOI:  https://doi.org/10.1105/tpc.20.00241
  58. Front Immunol. 2020 ;11 621757
      Evasion of immunosurveillance is critical for cancer initiation and development. The expression of "don't eat me" signals protects cancer cells from being phagocytosed by macrophages, and the blockade of such signals demonstrates therapeutic potential by restoring the susceptibility of cancer cells to macrophage-mediated phagocytosis. However, whether additional self-protective mechanisms play a role against macrophage surveillance remains unexplored. Here, we derived a macrophage-resistant cancer model from cells deficient in the expression of CD47, a major "don't eat me" signal, via a macrophage selection assay. Comparative studies performed between the parental and resistant cells identified self-protective traits independent of CD47, which were examined with both pharmacological or genetic approaches in in vitro phagocytosis assays and in vivo tumor models for their roles in protecting against macrophage surveillance. Here we demonstrated that extracellular acidification resulting from glycolysis in cancer cells protected them against macrophage-mediated phagocytosis. The acidic tumor microenvironment resulted in direct inhibition of macrophage phagocytic ability and recruitment of weakly phagocytic macrophages. Targeting V-ATPase which transports excessive protons in cancer cells to acidify extracellular medium elicited a pro-phagocytic microenvironment with an increased ratio of M1-/M2-like macrophage populations, therefore inhibiting tumor development and metastasis. In addition, blockade of extracellular acidification enhanced cell surface exposure of CD71, targeting which by antibodies promoted cancer cell phagocytosis. Our results reveal that extracellular acidification due to the Warburg effect confers immune evasion ability on cancer cells. This previously unrecognized role highlights the components mediating the Warburg effect as potential targets for new immunotherapy harnessing the tumoricidal capabilities of macrophages.
    Keywords:  V-ATPase; immunotherapy; macrophage; microenvironment; phagocytosis
    DOI:  https://doi.org/10.3389/fimmu.2020.621757
  59. Nat Rev Mol Cell Biol. 2021 Feb 16.
      Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
    DOI:  https://doi.org/10.1038/s41580-021-00332-2
  60. Mol Cell. 2021 Feb 18. pii: S1097-2765(21)00089-7. [Epub ahead of print]81(4): 642-644
      Luengo et al. (2020) demonstrate that pyruvate dehydrogenase (PDH) overactivation blunts NAD+ regeneration by overcharging the mitochondrial membrane potential and driving ATP synthesis beyond demand. Under these conditions, some cells prioritize aerobic glycolysis to meet the need for oxidized cofactors in biosynthetic metabolism.
    DOI:  https://doi.org/10.1016/j.molcel.2021.02.003
  61. Sci Adv. 2021 Feb;pii: eabd6927. [Epub ahead of print]7(8):
      Translation is a crucial process in cancer development and progression. Many oncogenic signaling pathways target the translation initiation stage to satisfy the increased anabolic demands of cancer cells. Using quantitative profiling of initiating ribosomes, we found that ribosomal pausing at the start codon serves as a "brake" to restrain the translational output. In response to oncogenic RAS signaling, the initiation pausing relaxes and contributes to the increased translational flux. Intriguingly, messenger RNA (mRNA) m6A modification in the vicinity of start codons influences the behavior of initiating ribosomes. Under oncogenic RAS signaling, the reduced mRNA methylation leads to relaxed initiation pausing, thereby promoting malignant transformation and tumor growth. Restored initiation pausing by inhibiting m6A demethylases suppresses RAS-mediated oncogenic translation and subsequent tumorigenesis. Our findings unveil a paradigm of translational control that is co-opted by RAS mutant cancer cells to drive malignant phenotypes.
    DOI:  https://doi.org/10.1126/sciadv.abd6927