bims-caglex Biomed News
on Cellular aging and life extension
Issue of 2024‒06‒16
three papers selected by
Mario Alexander Guerra Patiño, Universidad Antonio Nariño



  1. JAR Life. 2024 ;13 88-92
      Biological age is a concept that uses bio-physiological parameters to account for individual heterogeneity in the biological processes driving aging and aims to enhance the prediction of age-related clinical conditions compared to chronological age. Although engaging in healthy lifestyle behaviors has been linked to a lower mortality risk and a reduced incidence of chronic diseases, it remains unclear to what extent these health benefits result from slowing the pace of the biological aging process. This short review summarized how modifiable lifestyle factors - including diet, physical activity, smoking, alcohol consumption, and the aggregate of multiple healthy behaviors - were associated with established estimates of biological age based on clinical or cellular/molecular markers, including Klemera-Doubal Method biological age, homeostatic dysregulation, phenotypic age, DNA methylation age, and telomere length. In brief, the available studies tend to show a consistent association of lifestyle factors with physiological measures of biological age, while findings regarding molecular-based metrics vary. The limited evidence highlights the need for further research in this field, particularly with a life-course approach.
    Keywords:  Healthy aging; age acceleration; biomarker of aging; epigenetic age; healthspan
    DOI:  https://doi.org/10.14283/jarlife.2024.13
  2. J Orthop Translat. 2024 May;46 129-142
      Background: Age-related mandibular osteoporosis frequently causes loose teeth, difficulty eating, and disfiguration in elders. Bmi1-/- mice displaying accelerated skeletal aging represent a useful model for testing interventions against premature jaw bone loss. As an anti-aging agent, metformin may ameliorate molecular dysfunction driving osteoporosis pathogenesis. We explored the mechanisms of mandibular osteopenia in Bmi1-/- mice and prevention by metformin treatment.Methods: Three mouse groups were utilized: wild-type controls, untreated Bmi1-/-, and Bmi1-/- receiving 1 g/kg metformin diet. Mandibular bone phenotype was assessed by X-ray, micro-CT, histology, and immunohistochemistry. AMPK-mTOR pathway analysis, senescence markers, osteoblast and osteoclast gene expression were evaluated in jaw tissue. Osteoclast differentiation capacity and associated signaling molecules were examined in cultured Bmi1-/- bone marrow mononuclear cells ± metformin.
    Results: Bmi1 loss reduced mandible bone density concomitant with decreased AMPK activity, increased mTOR signaling and cellular senescence in jaw tissue versus wild-type controls. This was accompanied by impaired osteoblast function and upregulated osteoclastogenesis markers. Metformin administration normalized AMPK-mTOR balance, oxidative stress and senescence signaling to significantly improve mandibular bone architecture in Bmi1-/- mice. In culture, metformin attenuated excessive osteoclast differentiation from Bmi1-/- marrow precursors by correcting dysregulated AMPK-mTOR-p53 pathway activity and suppressing novel pro-osteoclastogenic factor Stfa1.
    Conclusions: Our study newly demonstrates metformin prevents accelerated jaw bone loss in a premature aging murine model by rectifying molecular dysfunction in cellular energy sensors, redox state, senescence and osteoclastogenesis pathways. Targeting such age-associated mechanisms contributing to osteoporosis pathogenesis may help maintain oral health and aesthetics in the growing elderly population.
    Translational potential: The pronounced mandibular osteopenia exhibited in Bmi1-/- mice represents an accelerated model of jaw bone deterioration observed during human aging. Our finding that metformin preserves mandibular bone integrity in this progeroid model has important clinical implications. As an inexpensive oral medication already widely used to manage diabetes, metformin holds translational promise for mitigating age-related osteoporosis. The mandible is essential for chewing, swallowing, speech and facial structure, but progressively loses bone mass and strength with advancing age, significantly impacting seniors' nutrition, physical function and self-image. Our results suggest metformin's ability to rectify cellular energy imbalance, oxidative stress and osteoclast overactivity may help maintain jaw bone health into old age. Further research is still needed given metformin's multifaceted biology and bone regulation by diverse pathways. However, this preclinical study provides a strong rationale for clinical trials specifically examining mandibular outcomes in elderly subjects receiving standard metformin treatment for diabetes or prediabetes. Determining if metformin supplementation can prevent or delay oral disability and disfigurement from senescent jaw bone loss in the growing aged population represents an important public health priority. In summary, our mechanistic findings in a genetic mouse model indicate metformin merits investigation in rigorous human studies for alleviating morbidity associated with age-related mandibular osteoporosis.
    Keywords:  AMPK-mTOR; Bmi1 deficiency; Mandibular bone loss; Metformin; p53- Stfa1
    DOI:  https://doi.org/10.1016/j.jot.2024.03.001
  3. J Clin Invest. 2024 Jun 13. pii: e165814. [Epub ahead of print]
      The identification of genes that confer either extension of lifespan or accelerate age-related decline was a step forward in understanding the mechanisms of ageing and revealed that it is partially controlled by genetics and transcriptional programs. Here we discovered that the human DNA sequence C16ORF70 encoded for a protein, named MYTHO (Macroautophagy and YouTH Optimizer), which controls life- and health-span. MYTHO protein is conserved from C. elegans to humans and its mRNA was upregulated in aged mice and elderly people. Deletion of the ortholog myt-1 gene in C. elegans dramatically shortened lifespan and decreased animal survival upon exposure to oxidative stress. Mechanistically, MYTHO is required for autophagy likely because it acts as a scaffold that binds WIPI2 and BCAS3 to recruit and assemble the conjugation system at the phagophore, the nascent autophagosome. We conclude that MYTHO is a transcriptionally regulated initiator of autophagy that is central in promoting stress resistance and healthy ageing.
    Keywords:  Aging; Autophagy; Cell biology; Cellular senescence; Skeletal muscle
    DOI:  https://doi.org/10.1172/JCI165814