bims-caglex Biomed News
on Cellular aging and life extension
Issue of 2024‒03‒31
23 papers selected by
Mario Alexander Guerra Patiño, Universidad Antonio Nariño



  1. bioRxiv. 2024 Mar 22. pii: 2024.03.19.585779. [Epub ahead of print]
      Intestinal stem cells (ISCs) drive the rapid regeneration of the gut epithelium to maintain organismal homeostasis. Aging, however, significantly reduces intestinal regenerative capacity. While cellular senescence is a key feature of the aging process, little is known about the in vivo effects of senescent cells on intestinal fitness. Here, we identify the accumulation of senescent cells in the aging gut and, by harnessing senolytic CAR T cells to eliminate them, we uncover their detrimental impact on epithelial integrity and overall intestinal homeostasis in natural aging, injury and colitis. Ablation of intestinal senescent cells with senolytic CAR T cells in vivo or in vitro is sufficient to promote the regenerative potential of aged ISCs. This intervention improves epithelial integrity and mucosal immune function. Overall, these results highlight the ability of senolytic CAR T cells to rejuvenate the intestinal niche and demonstrate the potential of targeted cell therapies to promote tissue regeneration in aging organisms.
    DOI:  https://doi.org/10.1101/2024.03.19.585779
  2. J Fungi (Basel). 2024 Mar 14. pii: 215. [Epub ahead of print]10(3):
      Aging is a complex biological process that is influenced by both intrinsic and extrinsic factors. Recently, it has been discovered that reactive oxygen species can accelerate the aging process, leading to an increased incidence of age-related diseases that are characteristic of aging. This review aims to discuss the potential of mushrooms as a dietary intervention for anti-aging, focusing on their nutritional perspective. Mushrooms contain various bioactive compounds, including carbohydrates, bioactive proteins, fungal lipids, and phenolic compounds. These compounds have shown promising effectiveness in combating skin aging and age-related diseases. In vitro and in vivo studies have demonstrated that treatments with mushrooms or their extracts can significantly extend lifespan and improve health span. Furthermore, studies have aimed to elucidate the precise cellular and molecular mechanisms of action and the structure-activity relationship of mushroom bioactive compounds. These findings provide a strong basis for further research, including human clinical trials and nutritional investigations, to explore the potential benefits of mushrooms in real-life anti-aging practices. By exploring the anti-aging effects of mushrooms, this review aims to provide valuable insights that can contribute to the development of broader strategies for healthy aging.
    Keywords:  Mushrooms; age-related disease; anti-aging; bioactive compounds; cellular mechanisms
    DOI:  https://doi.org/10.3390/jof10030215
  3. Curr Gene Ther. 2024 Mar 25.
      Extrinsic and intrinsic factors contribute to skin aging; nonetheless, they are intertwined. Moreover, intrinsic skin aging mirrors age-related declines in the entire human body's internal organs. There is evidence that skin appearance is an indicator of the general health of somebody. Earlier, it was apparent that the intrinsic factors are unalterable, but the sparkling of skin aging gene therapy on the horizon is changing this narrative. Skin aging gene therapy offers tools for skin rejuvenation and, natural beauty restoration, and therapy for diseases affecting the entire skin. However, skin aging gene therapy is an arduous and sophisticated task relying on precise interim stimulation of telomerase to extend telomeres and wend back the biological clock in the hopes to find the fountain of youth, while preserving cells innate biological features. Finding the hidden fountain of youth will be a remarkable discovery for promoting aesthetics medicine, genecosmetics, and healthy aging. Caloric restriction offers ultimate health benefits and a reproducible way to promote longevity in mammals, while delaying age-related diseases. Moreover, exercise further enhances these health benefits. This article highlights the potential of skin aging gene therapy and foretells the emerging dawn of the genecosmetics era.
    Keywords:  Gene; aging; extrinsic; genecosmetics.; intrinsic; therapy
    DOI:  https://doi.org/10.2174/0115665232286489240320051925
  4. Front Aging Neurosci. 2024 ;16 1354025
      The growing phenomenon of population aging is redefining demographic dynamics, intensifying age-related conditions, especially dementia, projected to triple by 2050 with an enormous global economic burden. This study investigates visual arts-mediated Cognitive Activation Therapy (CAT) as a non-pharmacological CAT intervention targets both biological aging [leukocyte telomere length (LTL), DNA methylation age (DNAmAge)] and cognitive functionality. Aligning with a broader trend of integrating non-pharmacological approaches into dementia care. The longitudinal study involved 20 patients with mild to moderate neurocognitive disorders. Cognitive and functional assessments, and biological aging markers -i.e., LTL and DNAmAge- were analyzed before and after CAT intervention. Change in LTL was positively correlated with days of treatment (p =0.0518). LTL significantly elongated after intervention (p =0.0269), especially in men (p =0.0142), correlating with younger age (p =0.0357), and higher education (p =0.0008). DNAmAge remained instead stable post-treatment. Cognitive and functional improvements were observed for Copy of complex geometric figure, Progressive Silhouettes, Position Discrimination, Communication Activities of Daily Living-Second edition, Direct Functional Status (p < 0.0001) and Object decision (p =0.0594), but no correlations were found between LTL and cognitive gains. Visual arts-mediated CAT effectively mitigates cellular aging, especially in men, by elongating LTL. These findings underscore the potential of non-pharmacological interventions in enhancing cognitive and functional status and general well-being in dementia care. Further research with larger and longer-term studies is essential for validation.
    Keywords:  Alzheimer’s disease; Cognitive Activation Therapy; DNA methylation age; biological aging; dementia; leukocytes telomere length; neurocognitive disorders; visual art
    DOI:  https://doi.org/10.3389/fnagi.2024.1354025
  5. Cell Biosci. 2024 Mar 26. 14(1): 40
      BACKGROUND: Mesenchymal stem cells (MSCs) hold immense promise for use in immunomodulation and regenerative medicine. However, their inherent heterogeneity makes it difficult to achieve optimal therapeutic outcomes for a specific clinical disease. Primed MSCs containing a certain cytokine can enhance their particular functions, thereby increasing their therapeutic potential for related diseases. Therefore, understanding the characteristic changes and underlying mechanisms of MSCs primed by various cytokines is highly important.RESULTS: In this study, we aimed to reveal the cellular heterogeneity, functional subpopulations, and molecular mechanisms of MSCs primed with IFN-γ, TNF-α, IL-4, IL-6, IL-15, and IL-17 using single-cell RNA sequencing (scRNA-seq). Our results demonstrated that cytokine priming minimized the heterogeneity of the MSC transcriptome, while the expression of MSC surface markers exhibited only slight changes. Notably, compared to IL-6, IL-15, and IL-17; IFN-γ, TNF-α, and IL-4 priming, which stimulated a significantly greater number of differentially expressed genes (DEGs). Functional analysis, which included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, indicated that IFN-γ, TNF-α, and IL-4-primed hUC-MSCs are involved in interferon-mediated immune-related processes, leukocyte migration, chemotaxis potential, and extracellular matrix and cell adhesion, respectively. Moreover, an investigation of various biological function scores demonstrated that IFN-γ-primed hUC-MSCs exhibit strong immunomodulatory ability, TNF-α-primed hUC-MSCs exhibit high chemotaxis potential, and IL-4-primed hUC-MSCs express elevated amounts of collagen. Finally, we observed that cytokine priming alters the distribution of functional subpopulations of MSCs, and these subpopulations exhibit various potential biological functions. Taken together, our study revealed the distinct regulatory effects of cytokine priming on MSC heterogeneity, biological function, and functional subpopulations at the single-cell level.
    CONCLUSIONS: These findings contribute to a comprehensive understanding of the inflammatory priming of MSCs, paving the way for their precise treatment in clinical applications.
    Keywords:  Cell heterogeneity; Cytokine priming; Functional subpopulations; Mesenchymal stem cells (MSCs); Single-cell RNA sequencing (scRNA-seq)
    DOI:  https://doi.org/10.1186/s13578-024-01219-3
  6. bioRxiv. 2023 Sep 14. pii: 2023.09.12.556363. [Epub ahead of print]
      A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.One Sentence Summary: Insulin receptor signaling facilitates the induction of age associated B cell inflammatory changes, which drive phenotypic aging of the T cell compartment and adverse outcomes to mammalian healthspan parameters.
    DOI:  https://doi.org/10.1101/2023.09.12.556363
  7. Metabolites. 2024 Feb 28. pii: 146. [Epub ahead of print]14(3):
      Chronic low back pain, a major cause of disability with a great global socioeconomic impact, has been inextricably associated with intervertebral disc degeneration. On the other hand, an enhanced number of senescent cells has been identified in aged and degenerated intervertebral discs and their senescence-associated secretory phenotype (SASP) has been connected with qualitative/quantitative alterations in the extracellular matrix and ultimately with the disturbance of tissue homeostasis. Given that selective elimination of senescent cells (by the so-called senolytics) or amendment of their secretome towards a less catabolic/inflammatory phenotype (by molecules known as senomorphics) has been reported to alleviate symptoms of several age-associated diseases and to improve tissue quality during aging, here we will review the emerging role of senolytic and senomorphic agents derived from plants and natural products against intervertebral disc degeneration. The mode of action of these senotherapeutics, as well as the challenges in their practical application, will also be explicitly discussed in an attempt to direct their more targeted and effective use in exclusive or combinatorial therapeutic schemes for the prevention and/or treatment of disc degenerative disorders.
    Keywords:  cellular senescence; extracellular matrix (ECM); intervertebral disc; low back pain; plant-derived metabolites; senescence-associated secretory phenotype (SASP); senolytics; senomorphics
    DOI:  https://doi.org/10.3390/metabo14030146
  8. Nat Commun. 2024 Mar 29. 15(1): 2765
      Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .
    DOI:  https://doi.org/10.1038/s41467-024-46773-z
  9. Chembiochem. 2024 Mar 26. e202400149
      Labeling of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins (Cas) is a huge challenge for their genome engineering applications. Cysteine-mediated bioconjugation is the most efficient strategy for labeling Cas proteins. Introducing a cysteine residue in the protein at the right place might be challenging without perturbing the enzymatic activity. We report a method that does not require cysteine residues for small molecule presentation on the CRISPR-associated protein SpCas9 for in vitro protein detection, probing cellular protein expression, and nuclear co-delivery of molecules in mammalian cells. We repurposed a simple protein purification tag His6 peptide for non-covalent labeling of molecules on the CRISPR enzyme SpCas9. The small molecule labeling enabled us to detect SpCas9 in a biochemical assay. We demonstrate that small molecule labeling can be utilized for probing bacterial protein expression in realtime. Furthermore, we coupled SpCas9's nuclear-targeting ability in co-delivering the presenting small molecules to the mammalian cell nucleus for prospective genome engineering applications. Furthermore, we demonstrate that the method can be generalized to label oligonucleotides for multiplexing CRISPR-based genome editing and template-mediated DNA repair applications. This work paves the way for genomic loci-specific bioactive small molecule and oligonucleotide co-delivery toward genetic and epigenetic regulations.
    Keywords:  CRISPR-Cas Protein labeling Co-delivery Genetic Epigenetic
    DOI:  https://doi.org/10.1002/cbic.202400149
  10. Elife. 2024 Mar 28. pii: RP88623. [Epub ahead of print]12
      We herein introduce voyAGEr, an online graphical interface to explore age-related gene expression alterations in 49 human tissues. voyAGEr offers a visualisation and statistical toolkit for the finding and functional exploration of sex- and tissue-specific transcriptomic changes with age. In its conception, we developed a novel bioinformatics pipeline leveraging RNA sequencing data, from the GTEx project, encompassing more than 900 individuals. voyAGEr reveals transcriptomic signatures of the known asynchronous ageing between tissues, allowing the observation of tissue-specific age periods of major transcriptional changes, associated with alterations in different biological pathways, cellular composition, and disease conditions. Notably, voyAGEr was created to assist researchers with no expertise in bioinformatics, providing a supportive framework for elaborating, testing and refining their hypotheses on the molecular nature of human ageing and its association with pathologies, thereby also aiding in the discovery of novel therapeutic targets. voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr.
    Keywords:  ageing; chromosomes; computational biology; gene expression; gene expression profiling; human; systems biology; transcriptome
    DOI:  https://doi.org/10.7554/eLife.88623
  11. Aging Cell. 2024 Mar 30. e14154
      Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.
    Keywords:  SASP; cellular senescence; dynamics; heterogeneity; subcellular structure
    DOI:  https://doi.org/10.1111/acel.14154
  12. Int J Stem Cells. 2024 Mar 27.
      Stem cells and the cells they produce are unique because they vary from one cell to another. Traditional methods of studying cells often overlook these differences. However, the development of new technologies for studying individual cells has greatly changed biological research in recent years. Among these innovations, single-cell RNA sequencing (scRNA-seq) stands out. This technique allows scientists to examine the activity of genes in each cell, across thousands or even millions of cells. This makes it possible to understand the diversity of cells, identify new types of cells, and see how cells differ across different tissues, individuals, species, times, and conditions. This paper discusses the importance of scRNA-seq and the computational tools and software that are essential for analyzing the vast amounts of data generated by scRNA-seq studies. Our goal is to provide practical advice for bioinformaticians and biologists who are using scRNA-seq to study stem cells. We offer an overview of the scRNA-seq field, including the tools available, how they can be used, and how to present the results of these studies effectively. Our findings include a detailed overview and classification of tools used in scRNA-seq analysis, based on a review of 2,733 scientific publications. This review is complemented by information from the scRNA-tools database, which lists over 1,400 tools for analyzing scRNA-seq data. This database is an invaluable resource for researchers, offering a wide range of options for analyzing their scRNA-seq data.
    Keywords:  Computational biology; Single-cell gene expression analysis; Stem cells
    DOI:  https://doi.org/10.15283/ijsc23170
  13. Nutrients. 2024 Mar 21. pii: 906. [Epub ahead of print]16(6):
      Aging is the result of several complex and multifactorial processes, where several agents contribute to an increased intrinsic vulnerability and susceptibility to age-related diseases. The hallmarks of aging are a set of biological mechanisms that are finely regulated and strictly interconnected, initiating or contributing to biological changes and anticipating several age-related diseases. The complex network of cellular and intercellular connections between the hallmarks might represent a possible target for the research of agents with pleiotropic effects. Vitamin D (VitD) is known to have a positive impact not only on muscle and bone health but also on several extra-skeletal districts, due to the widespread presence of Vitamin D Receptors (VDRs). VitD and VDR could be molecules potentially targeting the hallmarks of the aging network. To date, evidence about the potential effects of VitD on the hallmarks of aging is scarce in humans and mainly based on preclinical models. Although underpowered and heterogeneous, in-human studies seem to confirm the modulatory effect of VitD on some hallmarks of aging and diseases. However, more investigations are needed to clarify the pleiotropic effects of VitD and its impact on the hallmark of aging, hopefully highlighting the courses for translational applications and potential clinical conclusions.
    Keywords:  aging; clinical studies; hallmarks of aging; vitamin D
    DOI:  https://doi.org/10.3390/nu16060906
  14. Aging Biol. 2024 ;pii: 20230019. [Epub ahead of print]2
      Continuous methionine restriction (MR) is one of only a few dietary interventions known to dramatically extend mammalian healthspan. For example, continuously methionine-restricted rodents show less age-related pathology and are up to 45% longer-lived than controls. Intriguingly, MR is feasible for humans, andanumberofstudieshavesuggestedthatmethionine-restrictedindividualsmayreceivesimilarhealthspan benefits as rodents. However, long-term adherence to a continuously methionine-restricted diet is likely to be challenging (or even undesirable) for many individuals. To address this, we previously developed an intermittent version of MR (IMR) and demonstrated that it confers nearly identical metabolic health benefits to mice as the continuous intervention, despite having a relatively short interventional period (i.e., only three days per week). We also observed that female mice undergoing IMR show a more pronounced amelioration of diet-induced dysglycemia than continuously methionine-restricted counterparts, while male mice undergoing IMR retain more lean body mass as compared with continuously methionine-restricted controls. Prompted by such findings, we sought to determine other ways in which IMR might compare favorably with continuous MR. While it is known that continuous MR has deleterious effects on bone in mice, including loss of both trabecular and cortical bone, we considered that mice undergoing IMR might retain more bone mass. Here, we report that, as compared with continuous MR, IMR results in a preservation of both trabecular and cortical bone, as well as a dramatic reduction in the accumulation of marrow fat. Consistent with such findings, mechanical testing revealed that the bones of intermittently methionine-restricted mice are significantly stronger than those of mice subjected to the continuous intervention. Finally, static histomorphometric analyses suggest that IMR likely results in more bone mass than that produced by continuous MR, primarily by increasing the number of osteoblasts. Together, our results demonstrate that the more practicable intermittent form of MR not only confers similar metabolic health benefits to the continuous intervention but does so without markedly deleterious effects on either the amount or strength of bone. These data provide further support for the use of IMR in humans.
    DOI:  https://doi.org/10.59368/agingbio.20230019
  15. Genes (Basel). 2024 Feb 20. pii: 261. [Epub ahead of print]15(3):
      Until very recently, the major use, for gene therapy, specifically of linear or circular DNA, such as plasmids, was as ancillary products for viral vectors' production or as a genetic template for mRNA production. Thanks to targeted and more efficient physical or chemical delivery techniques and to the refinement of their structure, non-viral plasmid DNA are now under intensive consideration as pharmaceutical drugs. Plasmids traditionally carry an antibiotic resistance gene for providing the selection pressure necessary for maintenance in a bacterial host. Nearly a dozen different antibiotic-free gene vectors have now been developed and are currently assessed in preclinical assays and phase I/II clinical trials. Their reduced size leads to increased transfection efficiency and prolonged transgene expression. In addition, associating non-viral gene vectors and DNA transposons, which mediate transgene integration into the host genome, circumvents plasmid dilution in dividing eukaryotic cells which generate a loss of the therapeutic gene. Combining these novel molecular tools allowed a significantly higher yield of genetically engineered T and Natural Killer cells for adoptive immunotherapies due to a reduced cytotoxicity and increased transposition rate. This review describes the main progresses accomplished for safer, more efficient and cost-effective gene and cell therapies using non-viral approaches and antibiotic-free gene vectors.
    Keywords:  CAR-NK cells; CAR-T cells; antibiotic-free gene vectors; clinical trials; non-viral gene therapy; plasmids; transposons
    DOI:  https://doi.org/10.3390/genes15030261
  16. Mar Drugs. 2024 Mar 08. pii: 127. [Epub ahead of print]22(3):
      The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated β-galactosidase (SA-β-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.
    Keywords:  Corydalis heterocarpa; LRSAM1; anti-aging; autophagy; cellular senescence
    DOI:  https://doi.org/10.3390/md22030127
  17. Biomolecules. 2024 Feb 22. pii: 263. [Epub ahead of print]14(3):
      Telomeres act as the protective caps of eukaryotic linear chromosomes; thus, proper telomere maintenance is crucial for genome stability. Successful telomere replication is a cornerstone of telomere length regulation, but this process can be fraught due to the many intrinsic challenges telomeres pose to the replication machinery. In addition to the famous "end replication" problem due to the discontinuous nature of lagging strand synthesis, telomeres require various telomere-specific steps for maintaining the proper 3' overhang length. Bulk telomere replication also encounters its own difficulties as telomeres are prone to various forms of replication roadblocks. These roadblocks can result in an increase in replication stress that can cause replication forks to slow, stall, or become reversed. Ultimately, this leads to excess single-stranded DNA (ssDNA) that needs to be managed and protected for replication to continue and to prevent DNA damage and genome instability. RPA and CST are single-stranded DNA-binding protein complexes that play key roles in performing this task and help stabilize stalled forks for continued replication. The interplay between RPA and CST, their functions at telomeres during replication, and their specialized features for helping overcome replication stress at telomeres are the focus of this review.
    Keywords:  CST; CTC1; RPA; STN1; TEN1; replication stress; single-stranded DNA; telomere length maintenance; telomere replication
    DOI:  https://doi.org/10.3390/biom14030263
  18. Bone. 2024 Mar 21. pii: S8756-3282(24)00065-6. [Epub ahead of print]183 117076
      The skeleton serves as a supportive and protective organ for the body. As individuals age, their bone tissue undergoes structural, cellular, and molecular changes, including the accumulation of senescent cells. Extracellular vesicles (EVs) play a crucial role in aging through the cellular secretome and have been found to induce or accelerate age-related dysfunction in bones and to contribute further via the circulatory system to the aging of phenotypes of other bodily systems. However, the extent of these effects and their underlying mechanisms remain unclear. Therefore, this paper attempts to give an overview of the current understanding of age-related alteration in EVs derived from bones. The role of EVs in mediating communications among bone-related cells and other body parts is discussed, and the significance of bones in the whole-body aging process is highlighted. Ultimately, it is hoped that gaining a clearer understanding of the relationship between EVs and aging mechanisms may serve as a basis for new treatment strategies for age-related degenerative diseases in the skeleton and other systems.
    Keywords:  Aging; Bone metabolism; Cellular senescence; Extracellular vesicles
    DOI:  https://doi.org/10.1016/j.bone.2024.117076
  19. Med Sci (Paris). 2024 Mar;40(3): 275-282
      Cells can be reprogrammed into senescence to adapt to a variety of stresses, most often affecting the genome integrity. Senescent cells accumulate with age or upon various insults in almost all tissues, and contribute to the development of several age-associated pathologies. Studying the molecular pathways involved in senescence induction, maintenance, or escape is challenged by the heterogeneity in the level of commitment to senescence, and by the pollution of senescent cell populations by proliferating pre- or post-senescent cells. We coped with these difficulties by developing a protocol for sorting senescent cells by flow cytometry, based on three major senescence markers : the SA-β-Galactosidase activity, the size of the cells, and their granularity reflecting the accumulation of aggregates, lysosomes, and altered mitochondria. We address the issues related to sorting senescent cells, the pitfalls to avoid, and propose solutions for sorting viable cells expressing senescent markers at different extents.
    DOI:  https://doi.org/10.1051/medsci/2024011
  20. Neurobiol Aging. 2024 Feb 27. pii: S0197-4580(24)00047-2. [Epub ahead of print]138 28-35
      Astrocytes play an important role in neuroinflammation by producing proinflammatory molecules. In response to various stressful stimuli, astrocytes can become senescent or reactive, both are present in age-associated cognitive impairment and other neurodegenerative diseases, and contribute to neuroinflammation. However, there are no studies that compare the cytokines secreted by these types of astrocytes in the brain during aging. Hence, we aimed to broaden the picture of the secretory profiles and to differentiate the variability between them. Therefore, a systematic review was conducted following the guidelines of the "Reporting Items for Systematic Review and Meta-Analyses". Only three studies that met the inclusion terms evaluated age-related cytokine secretion, however, no evaluation of senescence or gliosis was performed. Consequently, to increase the spectrum of the review, studies where those phenotypes were induced and cytokines determined were included. Although some cytokines were common for gliosis and senescence, some interesting differences were also found. The dissimilarities in cytokines secretion between these phenotypes could be studied in the future as potential markers.
    Keywords:  Astrocytes; Cytokines; Reactive Gliosis; Senescence
    DOI:  https://doi.org/10.1016/j.neurobiolaging.2024.02.012
  21. Mol Nutr Food Res. 2024 Mar 25. e2300739
      Age-related cognitive decline is primarily attributed to the progressive weakening of synaptic function and loss of synapses, while age-related gut microbial dysbiosis is known to impair synaptic plasticity and cognitive behavior by metabolic alterations. To improve the health of the elderly, the protective mechanisms of Oudemansiella raphanipes polysaccharide (ORP-1) against age-related cognitive decline are investigated. The results demonstrate that ORP-1 and its gut microbiota-derived metabolites SCFAs restore a healthy gut microbial population to handle age-related gut microbiota dysbiosis mainly by increasing the abundance of beneficial bacteria Dubosiella, Clostridiales, and Prevotellaceae and reducing the abundance of harmful bacteria Desulfovibrio, strengthen intestinal barrier integrity by abolishing age-related alterations of tight junction (TJ) and mucin 2 (MUC2) proteins expression, diminish age-dependent increase in circulating inflammatory factors, ameliorate cognitive decline by reversing memory- and synaptic plasticity-related proteins levels, and restrain hyperactivation of microglia-mediated synapse engulfment and neuroinflammation. These findings expand the understanding of prebiotic-microbiota-host interactions.
    Keywords:  Oudemansiella raphanipes polysaccharide ORP‐1; age‐related cognitive decline; gut microbiota; intestinal barrier function; microbiota‐gut‐brain axis
    DOI:  https://doi.org/10.1002/mnfr.202300739
  22. Noncoding RNA. 2024 Mar 14. pii: 17. [Epub ahead of print]10(2):
      MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.
    Keywords:  RIBOTAC; microRNA; small molecules; targeted degradation; therapeutics
    DOI:  https://doi.org/10.3390/ncrna10020017