bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2024–07–07
thirty-six papers selected by
Kıvanç Görgülü, Technical University of Munich



  1. J Cachexia Sarcopenia Muscle. 2024 Jul 04.
       BACKGROUND: Cachexia, a syndrome with high prevalence in non-small cell lung cancer patients, impairs quality of life and reduces tolerance and responsiveness to cancer therapy resulting in decreased survival. Optimal nutritional care is pivotal in the treatment of cachexia and a recommended cornerstone of multimodal therapy. Here, we investigated the therapeutic effect of an intervention diet consisting of a specific combination of high protein, leucine, fish oil, vitamin D, galacto-oligosaccharides, and fructo-oligosaccharides on the development and progression of cachexia in an orthotopic lung cancer mouse model.
    METHODS: Eleven-week-old male 129S2/Sv mice were orthotopically implanted with 344P lung epithelial tumour cells or vehicle (control). Seven days post-implantation tumour-bearing (TB) mice were allocated to either intervention- or isocaloric control diet. Cachexia was defined as 5 days of consecutive body weight loss, after which mice were euthanized for tissue analyses.
    RESULTS: TB mice developed cachexia accompanied by significant loss of skeletal muscle mass and epididymal fat mass compared with sham operated mice. The cachectic endpoint was significantly delayed (46.0 ± 15.2 vs. 34.7 ± 11.4 days), and the amount (-1.57 ± 0.62 vs. -2.13 ± 0.57 g) and progression (-0.26 ± 0.14 vs. -0.39 ± 0.11 g/day) of body weight loss were significantly reduced by the intervention compared with control diet. Moreover, systemic inflammation (pentraxin-2 plasma levels) and alterations in molecular markers for proteolysis and protein synthesis, indicative of muscle atrophy signalling in TB-mice, were suppressed in skeletal muscle by the intervention diet.
    CONCLUSIONS: Together, these data demonstrate the potential of this multinutrient intervention, targeting multiple components of cachexia, as integral part of lung cancer management.
    Keywords:  Cachexia; Intervention; Lung cancer; Muscle wasting; Nutrition
    DOI:  https://doi.org/10.1002/jcsm.13520
  2. Gut. 2024 Jul 01. pii: gutjnl-2024-332225. [Epub ahead of print]
       OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy because it is often diagnosed at a late-stage. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor implicated in the progression of various cancer types. However, its role in KRAS-driven pancreatic tumourigenesis remains unclear.
    DESIGN: We performed studies with LSL-Kras G12D; Ptf1a-Cre ERT (KCERT) mice or LSL-KrasG12D; LSL-Trp53R172H ; Pdx1-Cre (KPC) mice crossed with conditional disruption of STAT5 or completed deficiency interleukin (IL)-22. Pancreatitis was induced in mice by administration of cerulein. Pharmacological inhibition of STAT5 on PDAC prevention was studied in the orthotopic transplantation and patient-derived xenografts PDAC model, and KPC mice.
    RESULTS: The expression and phosphorylation of STAT5 were higher in human PDAC samples than control samples and high levels of STAT5 in tumour cells were associated with a poorer prognosis. The loss of STAT5 in pancreatic cells substantially reduces the KRAS mutation and pancreatitis-derived acinar-to-ductal metaplasia (ADM) and PDAC lesions. Mechanistically, we discovered that STAT5 binds directly to the promoters of ADM mediators, hepatocyte nuclear factor (HNF) 1β and HNF4α. Furthermore, STAT5 plays a crucial role in maintaining energy metabolism in tumour cells during PDAC progression. IL-22 signalling induced by chronic inflammation enhances KRAS-mutant-mediated STAT5 phosphorylation. Deficiency of IL-22 signalling slowed the progression of PDAC and ablated STAT5 activation.
    CONCLUSION: Collectively, our findings identified pancreatic STAT5 activation as a key downstream effector of oncogenic KRAS signalling that is critical for ADM initiation and PDAC progression, highlighting its potential therapeutic vulnerability.
    Keywords:  ENERGY METABOLISM; INFLAMMATION; PANCREATIC CANCER
    DOI:  https://doi.org/10.1136/gutjnl-2024-332225
  3. bioRxiv. 2024 Jun 17. pii: 2024.06.14.598891. [Epub ahead of print]
      Cachexia is a wasting syndrome comprised of adipose, muscle, and weight loss observed in cancer patients. Tumor loss-of-function mutations in STK11/LKB1 , a regulator of the energy sensor AMP-activated protein kinase, induce cancer cachexia (CC) in preclinical models and are associated with cancer-related weight loss in NSCLC patients. Here we characterized the relevance of the NSCLC-associated cachexia factor growth differentiation factor 15 (GDF15) in several patient-derived and genetically engineered STK11/LKB1 -mutant NSCLC cachexia lines. Both tumor mRNA expression and serum concentrations of tumor-derived GDF15 were significantly elevated in multiple mice transplanted with patient-derived STK11/LKB1 -mutated NSCLC lines. GDF15 neutralizing antibody administered to mice transplanted with patient- or mouse-derived STK11/LKB1 -mutated NSCLC lines suppressed cachexia-associated adipose loss, muscle atrophy, and changes in body weight. The silencing of GDF15 in multiple human NSCLC lines was also sufficient to eliminate in vivo circulating GDF15 levels and abrogate cachexia induction, suggesting that tumor and not host tissues represent a key source of GDF15 production in these cancer models. Finally, reconstitution of wild-type STK11/LKB1 in a human STK11/LKB1 loss-of-function NSCLC line that normally induces cachexia in vivo correlated with the absence of tumor-secreted GDF15 and rescue from the cachexia phenotype. The current data provide evidence for tumor-secreted GDF15 as a conduit and a therapeutic target through which NSCLCs with STK11/LKB1 loss-of-function mutations promote cachexia-associated wasting.
    DOI:  https://doi.org/10.1101/2024.06.14.598891
  4. Cancer Discov. 2024 Jul 03.
      Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer associated fibroblasts (CAFs). The mechanisms underlying this conversion, including regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to target CAFs therapeutically have so far failed. Here, we show that signals from epithelial cells expressing oncogenic KRAS -a hallmark pancreatic cancer mutation- activate fibroblast autocrine signaling, which drives expression of the cytokine interleukin-33 (IL-33). Stromal IL-33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces IL-33 secretion. Using compartment-specific IL-33 knockout mice, we observed that lack of stromal IL-33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells and lymphocytes. Notably, loss of stromal IL-33 leads to an increase in CD8+ T cell infiltration and activation, and, ultimately, reduced tumor growth.
    DOI:  https://doi.org/10.1158/2159-8290.CD-24-0100
  5. Sci Adv. 2024 Jul 05. 10(27): eadm9071
      Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer, a disease with dismal overall survival. Advances in treatment are hindered by a lack of preclinical models. Here, we show how a personalized organotypic "avatar" created from resected tissue allows spatial and temporal reporting on a complete in situ tumor microenvironment and mirrors clinical responses. Our perfusion culture method extends tumor slice viability, maintaining stable tumor content, metabolism, stromal composition, and immune cell populations for 12 days. Using multiplexed immunofluorescence and spatial transcriptomics, we identify immune neighborhoods and potential for immunotherapy. We used avatars to assess the impact of a preclinically validated metabolic therapy and show recovery of stromal and immune phenotypes and tumor redifferentiation. To determine clinical relevance, we monitored avatar response to gemcitabine treatment and identify a patient avatar-predictable response from clinical follow-up. Thus, avatars provide valuable information for syngeneic testing of therapeutics and a truly personalized therapeutic assessment platform for patients.
    DOI:  https://doi.org/10.1126/sciadv.adm9071
  6. Glia. 2024 Jul 03.
      The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.
    Keywords:  Schwann cells; axon sprouting; cell reprogramming; chronic pancreatitis; glial cell‐derived neurotrophic factor; pancreatic ductal adenocarcinoma; sympathetic nervous system
    DOI:  https://doi.org/10.1002/glia.24586
  7. J Mol Biol. 2024 Jun 27. pii: S0022-2836(24)00293-6. [Epub ahead of print] 168691
      Autophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied. This review focuses on the phospholipid composition of the phagophore membrane and the mechanisms that supply lipids to expand this unique organelle.
    Keywords:  ATG2; ATG9; autophagy; isolation membrane; phospholipids
    DOI:  https://doi.org/10.1016/j.jmb.2024.168691
  8. Nat Cell Biol. 2024 Jul 05.
      Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.
    DOI:  https://doi.org/10.1038/s41556-024-01457-0
  9. Nat Mater. 2024 Jul 04.
      Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.
    DOI:  https://doi.org/10.1038/s41563-024-01908-x
  10. Cold Spring Harb Perspect Med. 2024 Jul 01. pii: a041548. [Epub ahead of print]
      Lipids have essential functions as structural components of cellular membranes, as efficient energy storage molecules, and as precursors of signaling mediators. While deregulated glucose and amino acid metabolism in cancer have received substantial attention, the roles of lipids in the metabolic reprogramming of cancer cells are less well understood. However, since the first description of de novo fatty acid biosynthesis in cancer tissues almost 70 years ago, numerous studies have investigated the complex functions of altered lipid metabolism in cancer. Here, we will summarize the mechanisms by which oncogenic signaling pathways regulate fatty acid and cholesterol metabolism to drive rapid proliferation and protect cancer cells from environmental stress. The review also discusses the role of fatty acid metabolism in metabolic plasticity required for the adaptation to changing microenvironments during cancer progression and the connections between fatty acid and cholesterol metabolism and ferroptosis.
    DOI:  https://doi.org/10.1101/cshperspect.a041548
  11. bioRxiv. 2024 Jun 20. pii: 2024.06.19.599770. [Epub ahead of print]
      Cell corpses must be cleared in an efficient manner to maintain tissue homeostasis and regulate immune responses. Ubiquitin-like Atg8/LC3 family proteins promote the degradation of membranes and internal cargo during both macroautophagy and corpse clearance, raising the question how macroautophagy contributes to corpse clearance. Studying the clearance of non-apoptotic dying polar bodies in Caenorhabditis elegans embryos, we show that the LC3 ortholog LGG-2 is enriched in the polar body phagolysosome independent of membrane association or autophagosome formation. We demonstrate that ATG-16.1 and ATG-16.2, which promote membrane association of lipidated Atg8/LC3 proteins, redundantly promote polar body membrane breakdown in phagolysosomes independent of their role in macroautophagy. We also show that the lipid scramblase ATG-9 is needed for autophagosome formation in early embryos but is dispensable for timely polar body membrane breakdown or protein cargo degradation. These findings demonstrate that macroautophagy is not required to promote polar body degradation, in contrast to recent findings with apoptotic corpse clearance in C. elegans embryos. Determining how membrane association of Atg8/LC3 promotes the breakdown of different types of cell corpses in distinct cell types or metabolic states is likely to give insights into the mechanisms of immunoregulation during normal development, physiology, and disease.
    DOI:  https://doi.org/10.1101/2024.06.19.599770
  12. J Cell Biol. 2024 Sep 02. pii: e202311126. [Epub ahead of print]223(9):
      Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.
    DOI:  https://doi.org/10.1083/jcb.202311126
  13. Cell Death Dis. 2024 Jul 03. 15(7): 477
      Mitochondrial dysfunction can elicit multiple inflammatory pathways, especially when apoptotic caspases are inhibited. Such an inflammatory program is negatively regulated by the autophagic disposal of permeabilized mitochondria. Recent data demonstrate that the ubiquitination of mitochondrial proteins is essential for NEMO-driven NF-kB activation downstream of mitochondrial permeabilization.
    DOI:  https://doi.org/10.1038/s41419-024-06868-3
  14. EMBO Rep. 2024 Jul 05.
      Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
    Keywords:  Annexin A2; F-actin; Plasma Membrane Repair; Pore-forming Toxin; Septin
    DOI:  https://doi.org/10.1038/s44319-024-00195-6
  15. Proc Natl Acad Sci U S A. 2024 Jul 09. 121(28): e2401579121
      Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.
    Keywords:  activity-based sensing; antioxidant regulation; cancer metabolism; fluorescent iron probe; transition metal signaling
    DOI:  https://doi.org/10.1073/pnas.2401579121
  16. Trends Biochem Sci. 2024 Jun 29. pii: S0968-0004(24)00147-6. [Epub ahead of print]
      Migrasomes, newly identified organelles, play crucial roles in intercellular communication, contributing to organ development and angiogenesis. These vesicles, forming on retraction fibers of migrating cells, showcase a sophisticated architecture. Recent research reveals that migrasome biogenesis is a complicated and highly regulated process. This review summarizes the mechanisms governing migrasome formation, proposing a model in which biogenesis is understood through the lens of membrane microdomain assembly. It underscores the critical interplay between biochemistry and biophysics. The biogenesis unfolds in three distinct stages: nucleation, maturation, and expansion, each characterized by unique morphological, biochemical, and biophysical features. We also explore the broader implications of migrasome research in membrane biology and outline key unanswered questions that represent important directions for future investigation.
    Keywords:  cell-to-cell communication; lipid phase separation; membrane dynamics; microdomain; tetraspanins
    DOI:  https://doi.org/10.1016/j.tibs.2024.06.004
  17. JAMA Oncol. 2024 Jul 03.
       Importance: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with increasing incidence. The majority of PDACs are incurable at presentation, but population-based screening is not recommended. Surveillance of high-risk individuals for PDAC may lead to early detection, but the survival benefit is unproven.
    Objective: To compare the survival of patients with surveillance-detected PDAC with US national data.
    Design, Setting, and Participants: This comparative cohort study was conducted in multiple US academic medical centers participating in the Cancer of the Pancreas Screening program, which screens high-risk individuals with a familial or genetic predisposition for PDAC. The comparison cohort comprised patients with PDAC matched for age, sex, and year of diagnosis from the Surveillance, Epidemiology, and End Results (SEER) program. The Cancer of the Pancreas Screening program originated in 1998, and data collection was done through 2021. The data analysis was performed from April 29, 2022, through April 10, 2023.
    Exposures: Endoscopic ultrasonography or magnetic resonance imaging performed annually and standard-of-care surgical and/or oncologic treatment.
    Main Outcomes and Measures: Stage of PDAC at diagnosis, overall survival (OS), and PDAC mortality were compared using descriptive statistics and conditional logistic regression, Cox proportional hazards regression, and competing risk regression models. Sensitivity analyses and adjustment for lead-time bias were also conducted.
    Results: A total of 26 high-risk individuals (mean [SD] age at diagnosis, 65.8 [9.5] years; 15 female [57.7%]) with PDAC were compared with 1504 SEER control patients with PDAC (mean [SD] age at diagnosis, 66.8 [7.9] years; 771 female [51.3%]). The median primary tumor diameter of the 26 high-risk individuals was smaller than in the control patients (2.5 [range, 0.6-5.0] vs 3.6 [range, 0.2-8.0] cm, respectively; P < .001). The high-risk individuals were more likely to be diagnosed with a lower stage (stage I, 10 [38.5%]; stage II, 8 [30.8%]) than matched control patients (stage I, 155 [10.3%]; stage II, 377 [25.1%]; P < .001). The PDAC mortality rate at 5 years was lower for high-risk individuals than control patients (43% vs 86%; hazard ratio, 3.58; 95% CI, 2.01-6.39; P < .001), and high-risk individuals lived longer than matched control patients (median OS, 61.7 [range, 1.9-147.3] vs 8.0 [range, 1.0-131.0] months; 5-year OS rate, 50% [95% CI, 32%-80%] vs 9% [95% CI, 7%-11%]).
    Conclusions and Relevance: These findings suggest that surveillance of high-risk individuals may lead to detection of smaller, lower-stage PDACs and improved survival.
    DOI:  https://doi.org/10.1001/jamaoncol.2024.1930
  18. Sci Adv. 2024 Jul 05. 10(27): eadl1197
    Australian Pancreatic Cancer Matrix Atlas (APMA)
      Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.
    DOI:  https://doi.org/10.1126/sciadv.adl1197
  19. Pancreatology. 2024 Jun 12. pii: S1424-3903(24)00659-8. [Epub ahead of print]
       BACKGROUND OBJECTIVES: The aim of this study was to determine the role of site-specific metastatic patterns over time and assess factors associated with extended survival in metastatic PDAC. Half of all patients with pancreatic ductal adenocarcinoma (PDAC) present with metastatic disease. The site of metastasis plays a crucial role in clinical decision making due to its prognostic value.
    METHODS: We examined 56,757 stage-IV PDAC patients from the National Cancer Database (2016-2019), categorizing them by metastatic site: multiple, liver, lung, brain, bone, carcinomatosis, or other. The site-specific prognostic value was assessed using log-rank tests while time-varying effects were assessed by Aalen's linear hazards model. Factors associated with extended survival (>3years) were assessed with logistic regression.
    RESULTS: Median overall survival (mOS) in patients with distant lymph node-only metastases (9.0 months) and lung-only metastases (8.1 months) was significantly longer than in patients with liver-only metastases (4.6 months, p < 0.001). However, after six months, the metastatic site lost prognostic value. Logistic regression identified extended survivors (3.6 %) as more likely to be younger, Hispanic, privately insured, Charlson-index <2, having received chemotherapy, or having undergone primary or distant site surgery (all p < 0.001).
    CONCLUSION: While synchronous liver metastases are associated with worse outcomes than lung-only and lymph node-only metastases, this predictive value is diminished after six months. Therefore, treatment decisions beyond this time should not primarily depend on the metastatic site. Extended survival is possible in a small subset of patients with favorable tumor biology and good conditional status, who are more likely to undergo aggressive therapies.
    Keywords:  Extended survival; Metastatic disease; Pancreas; Pancreatic ductal adenocarcinoma; Sites of metastasis
    DOI:  https://doi.org/10.1016/j.pan.2024.06.004
  20. Methods Mol Biol. 2024 ;2814 133-147
      Activation processes at the plasma membrane have been studied with life-cell imaging using GFP fused to a protein that binds to a component of the activation process. In this way, PIP3 formation has been monitored with CRAC-GFP, Ras-GTP with RBD-Raf-GFP, and Rap-GTP with Ral-GDS-GFP. The fluorescent sensors translocate from the cytoplasm to the plasma membrane upon activation of the process. Although this translocation assay can provide very impressive images and movies, the method is not very sensitive, and amount of GFP-sensor at the plasma membrane is not linear with the amount of activator. The fluorescence in pixels at the cell boundary is partly coming from the GFP-sensor that is bound to the activated membrane and partly from unbound GFP-sensor in the cytosolic volume of that boundary pixel. The variable and unknown amount of cytosol in boundary pixels causes the low sensitivity and nonlinearity of the GFP-translocation assay. Here we describe a method in which the GFP-sensor is co-expressed with cytosolic-RFP. For each boundary pixels, the RFP fluorescence is used to determine the amount of cytosol of that pixel and is subtracted from the GFP fluorescence of that pixel yielding the amount of GFP-sensor that is specifically associated with the plasma membrane in that pixel. This GRminusRD method using GFP-sensor/RFP is at least tenfold more sensitive, more reproducible, and linear with activator compared to GFP-sensor alone.
    Keywords:  Activation membrane proteins; Cytosolic-RFP; Dictyostelium; GFP-sensor; PIP3; Rap; Ras
    DOI:  https://doi.org/10.1007/978-1-0716-3894-1_10
  21. Elife. 2024 Jul 02. pii: RP90551. [Epub ahead of print]12
      While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
    Keywords:  cell biology; cell migration; cell size; cell volume; human; neutrophil; physical forces; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.90551
  22. Biophys J. 2024 Jul 02. pii: S0006-3495(24)00441-7. [Epub ahead of print]
      Proton circuits within biological membranes, the foundation of natural bioenergetic systems, are significantly influenced by the lipid compositions of different biological membranes. In this study, we investigate the influence of mixed lipid membrane composition on the proton transfer (PT) properties on the surface of the membrane. We track the excited-state PT (ESPT) process from a tethered probe to the membrane with time-scales and length-scales of PT relevant to bioenergetic systems. Two processes can happen during ESPT: the initial PT from the probe to the membrane at short timescales, followed by diffusion of dissociated protons around the probe on the membrane, and the possible geminate recombination with the probe at longer timescales. Here, we use membranes composed of mixtures of phosphatidylcholine (PC) and phosphatidic acid (PA). We show that the changes in the ESPT properties are not monotonous with the concentration of the lipid mixture; at low concentration of PA in PC, we find that the membrane is a poor proton acceptor. Molecular dynamics simulations indicate that the membrane is more structured at this specific lipid mixture with the least defects. Accordingly, we suggest that the structure of the membrane is an important factor in facilitating PT. We further show that the composition of the membrane affects the geminate proton diffusion around the probe, whereas, on a time-scale of tens of nanoseconds, the dissociated proton is mostly lateral restricted to the membrane plane in PA membranes, while in PC, the diffusion is less restricted by the membrane.
    Keywords:  Lateral diffusion; Membrane biophysics; Membranes; Photoacids; Proton transport
    DOI:  https://doi.org/10.1016/j.bpj.2024.07.002
  23. Cancer Immunol Res. 2024 Jul 03.
      Chimeric antigen receptor (CAR) T-cell therapy has resulted in remarkable clinical success in the treatment of B-cell malignancies. However, its clinical efficacy in solid tumors is limited, primarily by target antigen heterogeneity. To overcome antigen heterogeneity, we developed CAR T cells that overexpress LIGHT, a ligand of both LTβR on cancer cells and HVEM on immune cells. LIGHT-expressing CAR T cells displayed both antigen-directed cytotoxicity mediated by the CAR and antigen-independent killing mediated through the interaction of LIGHT with LTβR on cancer cells. Moreover, CAR T cells expressing LIGHT had immunostimulatory properties that improved the cells' proliferation and cytolytic profile. These data indicate that LIGHT-expressing CAR T cells may provide a way to eliminate antigen-negative tumor cells to prevent antigen-negative disease relapse.
    DOI:  https://doi.org/10.1158/2326-6066.CIR-24-0246
  24. Curr Opin Cell Biol. 2024 Jul 03. pii: S0955-0674(24)00073-5. [Epub ahead of print]89 102394
      This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.
    DOI:  https://doi.org/10.1016/j.ceb.2024.102394
  25. Nat Commun. 2024 Jul 05. 15(1): 5646
      Investigating ligand-protein complexes is essential in the areas of chemical biology and drug discovery. However, detailed information on key reagents such as fluorescent tracers and associated data for the development of widely used bioluminescence resonance energy transfer (BRET) assays including NanoBRET, time-resolved Förster resonance energy transfer (TR-FRET) and fluorescence polarization (FP) assays are not easily accessible to the research community. We created tracerDB, a curated database of validated tracers. This resource provides an open access knowledge base and a unified system for tracer and assay validation. The database is freely available at https://www.tracerdb.org/ .
    DOI:  https://doi.org/10.1038/s41467-024-49896-5
  26. Cold Spring Harb Perspect Biol. 2024 Jul 01. pii: a041653. [Epub ahead of print]
      The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.
    DOI:  https://doi.org/10.1101/cshperspect.a041653
  27. Nat Methods. 2024 Jul 04.
      The volume of public proteomics data is rapidly increasing, causing a computational challenge for large-scale reanalysis. Here, we introduce quantms ( https://quant,ms.org/ ), an open-source cloud-based pipeline for massively parallel proteomics data analysis. We used quantms to reanalyze 83 public ProteomeXchange datasets, comprising 29,354 instrument files from 13,132 human samples, to quantify 16,599 proteins based on 1.03 million unique peptides. quantms is based on standard file formats improving the reproducibility, submission and dissemination of the data to ProteomeXchange.
    DOI:  https://doi.org/10.1038/s41592-024-02343-1
  28. Curr Opin Clin Nutr Metab Care. 2024 Jul 05.
       PURPOSE OF REVIEW: Existing definitions of clinically important weight loss in patients with cancer do not specifically address weight loss in patients who are obese at presentation. This review explores the clinical impact of weight loss and depletion of the skeletal muscle mass (i.e., criteria defining cancer cachexia), in patients with obesity.
    RECENT FINDINGS: Overweight and obese BMI values are shown by many recent studies to pose a survival advantage in patients with cancers of advanced stage, when compared with BMI in normal and underweight ranges. The classification of cancer-associated weight loss has evolved, and current grading schemes evaluate the impact of weight across the range of BMI values. Weight loss is associated with mortality in patients with BMI more than 30 kg/m2, however this is to a much lesser degree than in patients with lower BMI values. Diagnostic imaging permits the precise assessment of skeletal muscle index (SMI) in patients with cancer, and it has been clearly shown that while usually quite muscular, obese patients can have profound muscle depletion (i.e., sarcopenia), independent of the presence of weight loss. Muscle depletion associates strongly with mortality in obese patients, as well as with complications of cancer surgery and systemic therapy.
    SUMMARY: It would seem contradictory to diagnose concurrent obesity and cachexia, as these terms represent opposite ends of the weight spectrum. Weight loss can occur in anyone with cancer, however its priority for clinical management may be lesser in obese versus low body weight individuals. Sarcopenic obesity is strongly associated with a poor clinical outcome and deserves further research, diagnosis in clinical practice, and new strategies for mitigation.
    DOI:  https://doi.org/10.1097/MCO.0000000000001054
  29. Cancer Lett. 2024 Jul 02. pii: S0304-3835(24)00492-0. [Epub ahead of print] 217097
      Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.
    Keywords:  CXCR4; TFF1; Trefoil factor; apoptosis; chemoresistance; gemcitabine resistance
    DOI:  https://doi.org/10.1016/j.canlet.2024.217097
  30. Biomaterials. 2024 Jun 24. pii: S0142-9612(24)00216-3. [Epub ahead of print]311 122682
      Cell migration during many fundamental biological processes including metastasis requires cells to traverse tissue with heterogeneous mechanical cues that direct migration as well as determine force and energy requirements for motility. However, the influence of discrete structural and mechanical cues on migration remains challenging to determine as they are often coupled. Here, we decouple the pro-invasive cues of collagen fiber alignment and tension to study their individual impact on migration. When presented with both cues, cells preferentially travel in the axis of tension against fiber alignment. Computational and experimental data show applying tension perpendicular to alignment increases potential energy stored within collagen fibers, lowering requirements for cell-induced matrix deformation and energy usage during migration compared to motility in the direction of fiber alignment. Energy minimization directs migration trajectory, and tension can facilitate migration against fiber alignment. These findings provide a conceptual understanding of bioenergetics during migration through a fibrous matrix.
    DOI:  https://doi.org/10.1016/j.biomaterials.2024.122682
  31. Acta Biomater. 2024 Jul 03. pii: S1742-7061(24)00360-X. [Epub ahead of print]
      Mutation in oncogene KRas plays a crucial role in the occurrence and progression of numerous malignant tumors. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. We hypothesize that oncogene KRas mutations are intrinsic to alterations in cellular mechanics that promote malignant tumor generation and progression. Here, we demonstrate the use of optical tweezers coupled with a confocal fluorescence imaging system and gene interference technique to reveal that the mutant KRas protein can be transported between homogeneous and heterogeneous tumor cells by tunneling nanotubes (TNTs), resulting in a significant reduction of membrane tension and acceleration of membrane phospholipid flow in the recipient cells. Simultaneously, the changes in membrane mechanical properties of the tumor cells also enhance the metastatic and invasive ability of the tumors, which further contribute to the deterioration of the tumors. This finding helps to clarify the association between oncogene mutations and changes in the mechanical properties of tumor cells, which provides a theoretical basis for the development of cancer treatment strategies. STATEMENT OF SIGNIFICANCE: Here, we present a laser confocal fluorescence system integrated with optical tweezers to observe the transfer of mutant KRasG12D protein from mutant cells to wild-type cells through TNTs. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. Our results demonstrate a significant decrease in membrane tension and an increase in membrane phospholipid flow in recipient cells. These alterations in mechanical properties augment the migration and invasive capabilities of tumor cells, contributing to tumor malignancy. Our findings propose that cellular mechanical properties could serve as new markers for tumor development, and targeting membrane tension may hold potential as a therapeutic strategy.
    Keywords:  membrane mechanical properties; oncogenic KRas; optical tweezers; tumor deterioration; tunneling nanotubes
    DOI:  https://doi.org/10.1016/j.actbio.2024.06.046
  32. Heliyon. 2024 Jun 15. 10(11): e32571
      Cancer patients undergoing chemotherapy are susceptible to various bacterial infections, necessitating prompt and precise antimicrobial treatment with antibiotics. Ciprofloxacin is a clinically utilized broad-spectrum antimicrobial agent known for its robust antiseptic activity. While ferroptosis, an oxidative form of cell death, has garnered attention as a promising avenue in cancer therapy, the potential impact of ciprofloxacin on the anticancer effects of ferroptosis remains unclear. This study seeks to investigate the potential influence of antibiotics on ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here, we report a previously unrecognized role of ciprofloxacin in inhibiting ferroptosis in human PDAC cells. Mechanistically, ciprofloxacin suppresses erastin-induced endoplasmic reticulum (ER) stress through the activating transcription factor 6 (ATF6) and ER to nucleus signaling 1 (ERN1) pathway. Excessive ER stress activation can trigger glutathione peroxidase 4 (GPX4) degradation through autophagic mechanisms. In contrast, ciprofloxacin enhances the protein stability of GPX4, a crucial regulator that suppresses ferroptosis by inhibiting lipid peroxidation. Thus, our study demonstrates the anti-ferroptotic role of ciprofloxacin, highlighting the importance of careful consideration when contemplating the combination of ciprofloxacin with specific ferroptosis inducers in PDAC patients.
    Keywords:  Autophagy; Ciprofloxacin; ER stress; Ferroptosis; PDAC
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e32571