bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2024–01–28
37 papers selected by
Kıvanç Görgülü, Technical University of Munich



  1. Gut. 2024 Jan 23. pii: gutjnl-2023-329839. [Epub ahead of print]
       OBJECTIVE: The optimal therapeutic response in cancer patients is highly dependent upon the differentiation state of their tumours. Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer that harbours distinct phenotypic subtypes with preferential sensitivities to standard therapies. This study aimed to investigate intratumour heterogeneity and plasticity of cancer cell states in PDA in order to reveal cell state-specific regulators.
    DESIGN: We analysed single-cell expression profiling of mouse PDAs, revealing intratumour heterogeneity and cell plasticity and identified pathways activated in the different cell states. We performed comparative analysis of murine and human expression states and confirmed their phenotypic diversity in specimens by immunolabeling. We assessed the function of phenotypic regulators using mouse models of PDA, organoids, cell lines and orthotopically grafted tumour models.
    RESULTS: Our expression analysis and immunolabeling analysis show that a mucus production programme regulated by the transcription factor SPDEF is highly active in precancerous lesions and the classical subtype of PDA - the most common differentiation state. SPDEF maintains the classical differentiation and supports PDA transformation in vivo. The SPDEF tumour-promoting function is mediated by its target genes AGR2 and ERN2/IRE1β that regulate mucus production, and inactivation of the SPDEF programme impairs tumour growth and facilitates subtype interconversion from classical towards basal-like differentiation.
    CONCLUSIONS: Our findings expand our understanding of the transcriptional programmes active in precancerous lesions and PDAs of classical differentiation, determine the regulators of mucus production as specific vulnerabilities in these cell states and reveal phenotype switching as a response mechanism to inactivation of differentiation states determinants.
    Keywords:  MUCUS; PANCREATIC CANCER; PRE-MALIGNANCY - GI TRACT
    DOI:  https://doi.org/10.1136/gutjnl-2023-329839
  2. Cold Spring Harb Perspect Med. 2024 Jan 22. pii: a041539. [Epub ahead of print]
      Macroautophagy (autophagy hereafter) is an intracellular nutrient scavenging pathway induced by starvation and other stressors whereby cellular components such as organelles are captured in double-membrane vesicles (autophagosomes), whereupon their contents are degraded through fusion with lysosomes. Two main purposes of autophagy are to recycle the intracellular breakdown products to sustain metabolism and survival during starvation and to eliminate damaged or excess cellular components to suppress inflammation and maintain homeostasis. In contrast to most normal cells and tissues in the fed state, tumor cells up-regulate autophagy to promote their growth, survival, and malignancy. This tumor-cell-autonomous autophagy supports elevated metabolic demand and suppresses tumoricidal activation of the innate and adaptive immune responses. Tumor-cell-nonautonomous (e.g., host) autophagy also supports tumor growth by maintaining essential tumor nutrients in the circulation and tumor microenvironment and by suppressing an antitumor immune response. In the setting of cancer therapy, autophagy is a resistance mechanism to chemotherapy, targeted therapy, and immunotherapy. Thus, tumor and host autophagy are protumorigenic and autophagy inhibition is being examined as a novel therapeutic approach to treat cancer.
    DOI:  https://doi.org/10.1101/cshperspect.a041539
  3. Nat Metab. 2024 Jan 24.
      Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
    DOI:  https://doi.org/10.1038/s42255-023-00963-z
  4. Clin J Oncol Nurs. 2024 Jan 18. 28(1): 95-100
      Cancer cachexia is characterized by metabolic dysregulation, inflammation, and reduced food intake, and it results in loss of skeletal muscle. Although cachexia is pervasive in patients with advanced cancer, comprehensive cac.
    Keywords:  anorexia; cachexia; malnutrition; nutrition impact symptoms; sarcopenia
    DOI:  https://doi.org/10.1188/24.CJON.95-100
  5. Nat Aging. 2024 Jan 24.
      Senescent cells, which accumulate in organisms over time, contribute to age-related tissue decline. Genetic ablation of senescent cells can ameliorate various age-related pathologies, including metabolic dysfunction and decreased physical fitness. While small-molecule drugs that eliminate senescent cells ('senolytics') partially replicate these phenotypes, they require continuous administration. We have developed a senolytic therapy based on chimeric antigen receptor (CAR) T cells targeting the senescence-associated protein urokinase plasminogen activator receptor (uPAR), and we previously showed these can safely eliminate senescent cells in young animals. We now show that uPAR-positive senescent cells accumulate during aging and that they can be safely targeted with senolytic CAR T cells. Treatment with anti-uPAR CAR T cells improves exercise capacity in physiological aging, and it ameliorates metabolic dysfunction (for example, improving glucose tolerance) in aged mice and in mice on a high-fat diet. Importantly, a single administration of these senolytic CAR T cells is sufficient to achieve long-term therapeutic and preventive effects.
    DOI:  https://doi.org/10.1038/s43587-023-00560-5
  6. bioRxiv. 2024 Jan 08. pii: 2024.01.08.574656. [Epub ahead of print]
      Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in processes such as lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis . This process lowers the membrane tension in the area when the lipid flow reaches equilibrium. We examine the thermodynamic basis and experimental evidence of lipid osmosis and the corresponding osmotic membrane tension . We predict that lipid osmosis can drive lipid flows between different membrane regions through lipid transfer proteins, scramblases, or other similar barriers that selectively pass lipids but not membrane proteins. We also speculate on the biological functions of lipid osmosis. Finally, we explore other driving forces for lipid transfer and describe potential methods and systems to further test our theory.
    DOI:  https://doi.org/10.1101/2024.01.08.574656
  7. BJS Open. 2024 Jan 03. pii: zrad125. [Epub ahead of print]8(1):
       BACKGROUND: The minimum number of examined lymph nodes (ELN) required for adequate staging and best prediction of survival has not been established in pancreatic ductal adenocarcinoma (PDAC). The aim of the study was to investigate the influence of ELN on staging and survival in PDAC.
    METHODS: Patients undergoing partial or total pancreatectomy for PDAC at two European university hospitals between 2007 and 2018 were retrospectively reviewed. Multivariate Cox regression model and survival analyses were performed to verify adequate staging.
    RESULTS: Overall 341 (73 per cent) patients showed lymph node metastasis (N1/N2), whereas 125 (27 per cent) patients had no lymph node involvement (N0). With increasing number of ELN, the proportion of positive lymph nodes increased. The minimum number of ELN needed to detect lymph node involvement was 21. In multivariate analysis, examination of <21 lymph nodes was a significant negative predictor for survival. Examination of ≥21 ELN reversed this effect and ruled out possible misclassification.
    CONCLUSION: The number of ELN affects survival in PDAC. Possible misclassification was identified when <21 lymph nodes were examined. Therefore, at least 21 lymph nodes must be examined to avoid false lymph node classification in all types of resection.
    DOI:  https://doi.org/10.1093/bjsopen/zrad125
  8. Nat Cancer. 2024 Jan 24.
      Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here, we identify a disintegrin and metalloproteinase domain (ADAM)9 as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor 1 (PAI-1), which functions as a selective autophagy receptor in conjunction with light chain 3 (LC3), triggering lysosomal degradation of KRAS. Suppression of ADAM9 by a small-molecule inhibitor restricts disease progression in spontaneous models, and combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.
    DOI:  https://doi.org/10.1038/s43018-023-00720-x
  9. Gastroenterology. 2024 Jan 18. pii: S0016-5085(24)00049-0. [Epub ahead of print]
       BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease characterized by a spatially heterogenous tumor microenvironment (TME). Within the PDA microenvironment, cells organize into communities where cell fate is influenced by neighboring cells of diverse ontogeny and function. However, it remains unclear how cell neighborhoods in the TME evolve with treatment and impact clinical outcomes.
    METHODS: Here, using automated chromogenic multiplex immunohistochemistry (mIHC) and unsupervised computational image analysis of human PDA tumors, we investigated cell neighborhoods in surgically resected tumors from patients with chemotherapy-naïve PDA (n = 59) and neoadjuvant chemotherapy-treated PDA (n = 57). Single cells were defined by lineage markers (CD3, CD8, Foxp3, CD68, CK19), proliferation (Ki67) and neighboring cells.
    RESULTS: Distinct intra-tumoral immune and tumor cell subsets defined by neighboring cells. Higher content of stromal-associated macrophages was seen in chemotherapy-naive tumors from long-term survivors (LTS, OS > 3 years) compared to short-term survivors (STS, OS < 1 year), whereas immune-excluded tumor cells were higher in STS. Chemotherapy-treated versus -naïve tumors showed lower content of tumor-associated T cells and macrophages but similar densities of stromal-associated immune cells. However, proliferating tumor cell subsets with immune rich neighborhoods were higher in chemotherapy-treated tumors. In a blinded analysis of tumors from patients treated with neoadjuvant chemotherapy, a composite index comprising lower quantities of immune-excluded tumor cells and higher spatially distinct immune cell subsets associated with prolonged survival.
    CONCLUSIONS: Together, these data provide new insights into discrete cell communities in PDA and show their clinical relevance.
    Keywords:  biomarkers; immune cells; inflammation; pancreatic cancer; tumor microenvironment
    DOI:  https://doi.org/10.1053/j.gastro.2024.01.013
  10. Nat Cancer. 2024 Jan 24.
      Chemotherapy often generates intratumoral senescent cancer cells that strongly modify the tumor microenvironment, favoring immunosuppression and tumor growth. We discovered, through an unbiased proteomics screen, that the immune checkpoint inhibitor programmed cell death 1 ligand 2 (PD-L2) is highly upregulated upon induction of senescence in different types of cancer cells. PD-L2 is not required for cells to undergo senescence, but it is critical for senescent cells to evade the immune system and persist intratumorally. Indeed, after chemotherapy, PD-L2-deficient senescent cancer cells are rapidly eliminated and tumors do not produce the senescence-associated chemokines CXCL1 and CXCL2. Accordingly, PD-L2-deficient pancreatic tumors fail to recruit myeloid-derived suppressor cells and undergo regression driven by CD8 T cells after chemotherapy. Finally, antibody-mediated blockade of PD-L2 strongly synergizes with chemotherapy causing remission of mammary tumors in mice. The combination of chemotherapy with anti-PD-L2 provides a therapeutic strategy that exploits vulnerabilities arising from therapy-induced senescence.
    DOI:  https://doi.org/10.1038/s43018-023-00712-x
  11. Nat Commun. 2024 Jan 20. 15(1): 627
      Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.
    DOI:  https://doi.org/10.1038/s41467-024-44924-w
  12. Cancer Lett. 2024 Jan 24. pii: S0304-3835(24)00030-2. [Epub ahead of print] 216636
      Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous tumor comprising pancreatic cancer cells, fibroblasts, immune cells, vascular epithelial cells, and other cells in the mesenchymal tissue. PDAC is difficult to treat because of the complexity of the tissue components; therefore, achieving therapeutic effects with a single therapeutic method or target is problematic. Recently, precision therapy has provided new directions and opportunities for treating PDAC using genetic information from an individual's disease to guide treatment. It selects and applies appropriate therapeutic methods for each patient, with an aim to minimize medical damage and costs, while maximizing patient benefits. Molecular targeted therapy is effective in most clinical studies; however, it has been ineffective in large-scale randomized controlled trials of PDAC, mainly because the enrolled populations were not stratified on a molecular basis. Molecular stratification allows the identification of the PDAC population being treated, optimizing therapeutic effect. However, a systematic review of precision therapies for patients with highly heterogeneous PDAC backgrounds has not been conducted. Here, we review the molecular background and current potential therapeutic targets related to PDAC and provide new directions for PDAC precision therapy.
    Keywords:  Cancer cells; Pancreatic ductal adenocarcinoma; Precision therapy; Stromal tissues
    DOI:  https://doi.org/10.1016/j.canlet.2024.216636
  13. Nat Methods. 2024 Jan 26.
      Analysis across a growing number of single-cell perturbation datasets is hampered by poor data interoperability. To facilitate development and benchmarking of computational methods, we collect a set of 44 publicly available single-cell perturbation-response datasets with molecular readouts, including transcriptomics, proteomics and epigenomics. We apply uniform quality control pipelines and harmonize feature annotations. The resulting information resource, scPerturb, enables development and testing of computational methods, and facilitates comparison and integration across datasets. We describe energy statistics (E-statistics) for quantification of perturbation effects and significance testing, and demonstrate E-distance as a general distance measure between sets of single-cell expression profiles. We illustrate the application of E-statistics for quantifying similarity and efficacy of perturbations. The perturbation-response datasets and E-statistics computation software are publicly available at scperturb.org. This work provides an information resource for researchers working with single-cell perturbation data and recommendations for experimental design, including optimal cell counts and read depth.
    DOI:  https://doi.org/10.1038/s41592-023-02144-y
  14. Nat Commun. 2024 Jan 20. 15(1): 631
      Lipid droplets (LDs) are dynamic lipid storage organelles that can be degraded by autophagy machinery to release neutral lipids, a process called lipophagy. However, specific receptors and regulation mechanisms for lipophagy remain largely unknown. Here, we identify that ATG14, the core unit of the PI3KC3-C1 complex, also targets LD and acts as an autophagic receptor that facilitates LD degradation. A negative regulator, Syntaxin18 (STX18) binds ATG14, disrupting the ATG14-ATG8 family members interactions and subverting the PI3KC3-C1 complex formation. Knockdown of STX18 activates lipophagy dependent on ATG14 not only as the core unit of PI3KC3-C1 complex but also as the autophagic receptor, resulting in the degradation of LD-associated anti-viral protein Viperin. Furthermore, coronavirus M protein binds STX18 and subverts the STX18-ATG14 interaction to induce lipophagy and degrade Viperin, facilitating virus production. Altogether, our data provide a previously undescribed mechanism for additional roles of ATG14 in lipid metabolism and virus production.
    DOI:  https://doi.org/10.1038/s41467-024-44978-w
  15. Geroscience. 2024 Jan 24.
      Declines in physiological function with aging are strongly linked to age-related diseases. Lifelong voluntary aerobic exercise (LVAE) preserves physiological function with aging, possibly by increasing cellular quality control processes, but the circulating molecular transducers mediating these processes are incompletely understood. The plasma metabolome may predict biological aging and is impacted by a single bout of aerobic exercise. Here, we conducted an ancillary analysis using plasma samples, and physiological function data, from previously reported studies of LVAE in male C57BL/6N mice randomized to LVAE (wheel running) or sedentary (SED) (n = 8-9/group) to determine if LVAE alters the plasma metabolome and whether these changes correlated with preservation of physiological function with LVAE. Physical function (grip strength, coordination, and endurance) was assessed at 3 and 18 months of age; vascular endothelial function and the plasma metabolome were assessed at 19 months. Physical function was preserved (%decline; mean ± SEM) with LVAE vs SED (all p < 0.05)-grip strength, 0.4 ± 1.7% vs 12 ± 4.0%; coordination, 10 ± 4% vs 73 ± 10%; endurance, 1 ± 15% vs 61 ± 5%. Vascular endothelial function with LVAE (88.2 ± 2.0%) was higher than SED (79.1 ± 2.5%; p = 0.03) and similar to the young controls (91.4 ± 2.9%). Fifteen metabolites were different with LVAE compared to SED (FDR < 0.05) and correlated with the preservation of physiological function. Plasma spermidine, a polyamine that increases cellular quality control (e.g., autophagy), correlated with all assessed physiological indices. Autophagy (LC3A/B abundance) was higher in LVAE skeletal muscle compared to SED (p < 0.01) and inversely correlated with plasma spermidine (r =  - 0.5297; p = 0.054). These findings provide novel insight into the circulating molecular transducers by which LVAE may preserve physiological function with aging.
    Keywords:  Aging; Autophagy; Endothelial function; Metabolomics; Physical function; Skeletal muscle; Spermidine
    DOI:  https://doi.org/10.1007/s11357-024-01062-x
  16. Cancer Sci. 2024 Jan 22.
      Cancer cachexia is a complex, multifaceted condition that negatively impacts the health, treatment efficacy, and economic status of cancer patients. The management of cancer cachexia is an essential clinical need. Cancer cachexia is currently defined mainly according to the severity of weight loss and sarcopenia (i.e., macrosymptoms). However, such macrosymptoms may be insufficient to give clinicians clues on how to manage this condition as these symptoms appear at the late stage of cancer. We need to understand earlier events during the progression of cancer cachexia so as not to miss a clinical opportunity to control this complex syndrome. Recent research indicates that cancer-induced changes in the host are much wider than previously recognized, including disruption of liver function and the immune system. Furthermore, such changes are observed before the occurrence of visible distant metastases (i.e., in early, localized cancers). In light of these findings, we propose to expand the definition of cancer cachexia to include all cancer-induced changes to host physiology, including changes caused by early, localized cancers. This new definition of cancer cachexia can provide a new perspective on this topic, which can stimulate the research and development of novel cancer cachexia therapies.
    Keywords:  cancer cachexia; immunosuppression; liver; metabolism; multiomics
    DOI:  https://doi.org/10.1111/cas.16078
  17. Mol Cell. 2024 Jan 13. pii: S1097-2765(23)01121-8. [Epub ahead of print]
      Phase separation is a vital mechanism that mediates the formation of biomolecular condensates and their functions. Necroptosis is a lytic form of programmed cell death mediated by RIPK1, RIPK3, and MLKL downstream of TNFR1 and has been implicated in mediating many human diseases. However, whether necroptosis is regulated by phase separation is not yet known. Here, we show that upon the induction of necroptosis and recruitment by the adaptor protein TAX1BP1, PARP5A and its binding partner RNF146 form liquid-like condensates by multivalent interactions to perform poly ADP-ribosylation (PARylation) and PARylation-dependent ubiquitination (PARdU) of activated RIPK1 in mouse embryonic fibroblasts. We show that PARdU predominantly occurs on the K376 residue of mouse RIPK1, which promotes proteasomal degradation of kinase-activated RIPK1 to restrain necroptosis. Our data demonstrate that PARdU on K376 of mouse RIPK1 provides an alternative cell death checkpoint mediated by phase separation-dependent control of necroptosis by PARP5A and RNF146.
    Keywords:  PARP5A; PARylation; RIPK1; RNF146; necroptosis; phase separation; ubiquitination
    DOI:  https://doi.org/10.1016/j.molcel.2023.12.041
  18. Am J Physiol Regul Integr Comp Physiol. 2024 Jan 22.
       INTRODUCTION: Cachexia is a muscle wasting syndrome commonly observed in patients with cancer, which can significantly worsen clinical outcomes. Due to a global rise in obesity, the coexistence of cachexia in obese individuals poses unique challenges, with the impact of excessive adiposity on cachexia severity and underlying pathophysiology not well-defined. Understanding the interplay between cachexia and obesity is crucial for improving diagnosis and treatment strategies for these patients; therefore, the present study examined differences in cachexia between lean and obese mice bearing Lewis-Lung Carcinoma (LLC) tumors.
    METHODS: Nine-week-old, male C57Bl6J mice were placed on either a chow or high fat diet (HFD) for nine weeks. Following the diet intervention, mice were inoculated with LLC or vehicle.
    RESULTS: Markers of cachexia, such as body and muscle loss, were noted in both Chow and HFD groups with tumors. Tumor weight of HFD animals was greater than that of Chow. LLC tumors reduced gastrocnemius, plantaris, and soleus mass, regardless of diet. The tibialis anterior and plantaris mass, and cross-sectional area of Type IIb/x fibers in the gastrocnemius were not different between, HFD+Chow, HFD+Tumor and Chow-Tumor. Using RNAseq of the plantaris muscle from Chow+Tumor and HFD+Tumor groups, we identified ~400 differentially expressed genes. Bioinformatic analysis identified changes in lipid metabolism, mitochondria, bioenergetics, and proteasome degradation.
    CONCLUSION: Atrophy was not greater despite larger tumor burden in animals fed an HFD, and RNAseq data suggests partial protection is mediated through differences in mitochondrial function and protein degradation, which may serve as future mechanistic targets.
    Keywords:  RNA sequencing; high fat diet; mitochondria; proteasome; skeletal muscle
    DOI:  https://doi.org/10.1152/ajpregu.00208.2023
  19. Nat Biotechnol. 2024 Jan 25.
      The utility of genetically encoded biosensors for sensing the activity of signaling proteins has been hampered by a lack of strategies for matching sensor sensitivity to the physiological concentration range of the target. Here we used computational protein design to generate intracellular sensors of Ras activity (LOCKR-based Sensor for Ras activity (Ras-LOCKR-S)) and proximity labelers of the Ras signaling environment (LOCKR-based, Ras activity-dependent Proximity Labeler (Ras-LOCKR-PL)). These tools allow the detection of endogenous Ras activity and labeling of the surrounding environment at subcellular resolution. Using these sensors in human cancer cell lines, we identified Ras-interacting proteins in oncogenic EML4-Alk granules and found that Src-Associated in Mitosis 68-kDa (SAM68) protein specifically enhances Ras activity in the granules. The ability to subcellularly localize endogenous Ras activity should deepen our understanding of Ras function in health and disease and may suggest potential therapeutic strategies.
    DOI:  https://doi.org/10.1038/s41587-023-02107-w
  20. Cancer Discov. 2024 Jan 25. OF1-OF22
      The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
    SIGNIFICANCE: Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell-based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.
    DOI:  https://doi.org/10.1158/2159-8290.CD-23-0434
  21. bioRxiv. 2024 Jan 05. pii: 2024.01.04.574225. [Epub ahead of print]
      Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.
    DOI:  https://doi.org/10.1101/2024.01.04.574225
  22. Nat Cancer. 2024 Jan 25.
      Metastasis formation is a complex process, involving multiple crucial steps, which are controlled by different regulatory mechanisms. In this context, the contribution of cancer metabolism to the metastatic cascade is being increasingly recognized. This Review focuses on changes in lipid metabolism that contribute to metastasis formation in solid tumors. We discuss the molecular mechanisms by which lipids induce a pro-metastatic phenotype and explore the role of lipids in response to oxidative stress and as signaling molecules. Finally, we reflect on potential avenues to target lipid metabolism to improve the treatment of metastatic cancers.
    DOI:  https://doi.org/10.1038/s43018-023-00702-z
  23. Nat Aging. 2024 Jan 24.
      Sterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age. TXNRD1's role in regulating tissue aging has been attributed to its enzymatic role in cellular redox regulation. Here, we show that TXNRD1 drives the SASP and inflammaging through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway independently of its enzymatic activity. TXNRD1 localizes to cytoplasmic chromatin fragments and interacts with cGAS in a senescence-status-dependent manner, which is necessary for the SASP. TXNRD1 enhances the enzymatic activity of cGAS. TXNRD1 is required for both the tumor-promoting and immune surveillance functions of senescent cells, which are mediated by the SASP in vivo in mouse models. Treatment of aged mice with a TXNRD1 inhibitor that disrupts its interaction with cGAS, but not with an inhibitor of its enzymatic activity alone, downregulated markers of inflammaging in several tissues. In summary, our results show that TXNRD1 promotes the SASP through the innate immune response, with implications for inflammaging. This suggests that the TXNRD1-cGAS interaction is a relevant target for selectively suppressing inflammaging.
    DOI:  https://doi.org/10.1038/s43587-023-00564-1
  24. Trends Pharmacol Sci. 2024 Jan 19. pii: S0165-6147(24)00002-6. [Epub ahead of print]
      B cell leukemia/lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics were reported to selectively kill senescent cells and improve age-related diseases. Defining why these cells show increased sensitivity to these molecules will help to identify new pharmacological compounds with senolytic activity. Here, we discuss how recent research findings provide new clues to understand this vulnerability.
    Keywords:  BCL2; MOMP; aging; cellular senescence; senolytics
    DOI:  https://doi.org/10.1016/j.tips.2024.01.002
  25. J Natl Cancer Inst. 2024 Jan 25. pii: djae017. [Epub ahead of print]
      Although the National Institutes of Health is renowned for being the largest funder of biomedical research in the world, the research and associated career development programs on its own campuses are relatively unknown. These intramural programs provide many outstanding and programmatically unique opportunities for research-intensive careers and training in cancer biology, prevention, diagnosis, and therapeutics. Their complementary foci, structures, and review mechanisms make the extramural and intramural cancer research contributions of the National Institutes of Health the perfect partners in the quest to rid the world of cancer as we know it.
    DOI:  https://doi.org/10.1093/jnci/djae017
  26. bioRxiv. 2024 Jan 09. pii: 2024.01.08.574722. [Epub ahead of print]
      Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are linked to many diseases, including cancer and neurodegenerative disorders, determining the function of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus Thermophilus (GshF). GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes revealed metabolic liabilities under compartmentalized GSH depletion. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the role of GSH availability in physiology and disease.
    DOI:  https://doi.org/10.1101/2024.01.08.574722
  27. PLoS One. 2024 ;19(1): e0291185
      Since computed tomography (CT) is a part of standard diagnostic protocol in pancreatic ductal adenocarcinoma (PDAC), we have evaluated the value of CT for sarcopenia screening in patients with PDAC, intending to expand the diagnostic value of tomographic studies. In our study, we included 177 patients with available CT images. Two groups were formed: Group 1 consisted of 117 patients with PDAC in various locations and stages and Group 2, or the control group, consisted of 60 "nominally healthy" patients with other somatic non-oncological diseases. The body mass index (BMI) was defined as a ratio of patient's weight to the square of their height (kg/m2). CT-based body composition analysis was performed using commercially available software with evaluation of sarcopenia using skeletal muscle index (SMI, cm2/m2). Based on the SMI values, sarcopenia was found in 67.5% of patients (79 out of 117) in the first patient group. It was found more frequently in males (42 out of 56; 75%) than in females (37 out of 61; 60.6%). Additionally, we observed a decrease in muscle mass (hidden sarcopenia) in 79.7% in patients with a normal BMI. Even in overweight patients, sarcopenia was found in 50% (sarcopenic obesity). In patients with reduced BMI sarcopenia was found in all cases (100%). Statistically significant difference of SMI between two groups was revealed for both sexes (p = 0,0001), with no significant difference between groups in BMI. BMI is an inaccurate value for the assessment of body composition as it does not reflect in the details the human body structure. As SMI may correlate with the prognosis, decreased muscle mass- especially "hidden" sarcopenia or sarcopenic obesity- should be reported. The use of CT-based evaluation of sarcopenia and sarcopenic obesity will allow for a better treatment response assessment in patients with cancer cachexia.
    DOI:  https://doi.org/10.1371/journal.pone.0291185
  28. Nat Commun. 2024 Jan 22. 15(1): 672
      There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.
    DOI:  https://doi.org/10.1038/s41467-024-44861-8
  29. Cancer Cell. 2024 Jan 17. pii: S1535-6108(24)00008-4. [Epub ahead of print]
      Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR-T cells express CD39 and CD73, which mediate proximal steps in Ado generation. Here, we sought to enhance CAR-T cell potency by knocking out CD39, CD73, or adenosine receptor 2a (A2aR) but observed only modest effects. In contrast, overexpression of Ado deaminase (ADA-OE), which metabolizes Ado to inosine (INO), induced stemness and enhanced CAR-T functionality. Similarly, CAR-T cell exposure to INO augmented function and induced features of stemness. INO induced profound metabolic reprogramming, diminishing glycolysis, increasing mitochondrial and glycolytic capacity, glutaminolysis and polyamine synthesis, and reprogrammed the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR-T cell products meeting criteria for clinical dosing. These results identify INO as a potent modulator of CAR-T cell metabolism and epigenetic stemness programming and deliver an enhanced potency platform for cell manufacturing.
    DOI:  https://doi.org/10.1016/j.ccell.2024.01.002
  30. J Biomed Sci. 2024 Jan 20. 31(1): 11
      Liquid-liquid phase separation (LLPS) in biology describes a process by which proteins form membraneless condensates within a cellular compartment when conditions are met, including the concentration and posttranslational modifications of the protein components, the condition of the aqueous solution (pH, ionic strength, pressure, and temperature), and the existence of assisting factors (such as RNAs or other proteins). In these supramolecular liquid droplet-like inclusion bodies, molecules are held together through weak intermolecular and/or intramolecular interactions. With the aid of LLPS, cells can assemble functional sub-units within a given cellular compartment by enriching or excluding specific factors, modulating cellular function, and rapidly responding to environmental or physiological cues. Hence, LLPS is emerging as an important means to regulate biology and physiology. Yet, excessive inclusion body formation by, for instance, higher-than-normal concentrations or mutant forms of the protein components could result in the conversion from dynamic liquid condensates into more rigid gel- or solid-like aggregates, leading to the disruption of the organelle's function followed by the development of human disorders like neurodegenerative diseases. In summary, well-controlled formation and de-formation of LLPS is critical for normal biology and physiology from single cells to individual organisms, whereas abnormal LLPS is involved in the pathophysiology of human diseases. In turn, targeting these aggregates or their formation represents a promising approach in treating diseases driven by abnormal LLPS including those neurodegenerative diseases that lack effective therapies.
    Keywords:  Condensates; Inclusion bodies; Liquid–liquid phase separation (LLPS); Pathogenic LLPS; Targeting LLPS
    DOI:  https://doi.org/10.1186/s12929-024-00993-z
  31. Res Sq. 2024 Jan 10. pii: rs.3.rs-3640969. [Epub ahead of print]
      Cells migrating in confinement experience mechanical challenges whose consequences on cell migration machinery remain only partially understood. Here, we demonstrate that a pool of the cytokinesis regulatory protein anillin is retained during interphase in the cytoplasm of different cell types. Confinement induces recruitment of cytoplasmic anillin to plasma membrane at the poles of migrating cells, which is further enhanced upon nuclear envelope (NE) rupture(s). Rupture events also enable the cytoplasmic egress of predominantly nuclear RhoGEF Ect2. Anillin and Ect2 redistributions scale with microenvironmental stiffness and confinement, and are observed in confined cells in vitro and in invading tumor cells in vivo. Anillin, which binds actomyosin at the cell poles, and Ect2, which activates RhoA, cooperate additively to promote myosin II contractility, and promote efficient invasion and extravasation. Overall, our work provides a mechanistic understanding of how cytokinesis regulators mediate RhoA/ROCK/myosin II-dependent mechanoadaptation during confined migration and invasive cancer progression.
    DOI:  https://doi.org/10.21203/rs.3.rs-3640969/v1
  32. FEBS Lett. 2024 Jan 24.
      Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
    Keywords:  disease; fatty acids; mammals; metabolism; stress; yeast; β-oxidation
    DOI:  https://doi.org/10.1002/1873-3468.14809
  33. bioRxiv. 2024 Jan 01. pii: 2023.12.31.573774. [Epub ahead of print]
      Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA production and consumption are highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. In this work, we engineer an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). We biochemically characterize the sensor and demonstrate its selectivity for acetyl-CoA over other CoA species. We then deploy the biosensor in E. coli and HeLa cells to demonstrate its utility in living cells. In E. coli , we show that the biosensor enables detection of rapid changes in acetyl-CoA levels. In human cells, we show that the biosensor enables subcellular detection and reveals the compartmentalization of acetyl-CoA metabolism.
    DOI:  https://doi.org/10.1101/2023.12.31.573774
  34. Elife. 2024 Jan 22. pii: e84282. [Epub ahead of print]13
      Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question. We report that loss of the Sit4 protein phosphatase in yeast increases mitochondrial membrane potential, both through inducing the electron transport chain and the phosphate starvation response. Indeed, a similarly elevated mitochondrial membrane potential is also elicited simply by phosphate starvation or by abrogation of the Pho85-dependent phosphate sensing pathway. This enhanced membrane potential is primarily driven by an unexpected activity of the ADP/ATP carrier. We also demonstrate that this connection between phosphate limitation and enhancement of mitochondrial membrane potential is observed in primary and immortalized mammalian cells as well as in Drosophila. These data suggest that mitochondrial membrane potential is subject to environmental stimuli and intracellular signaling regulation and raise the possibility for therapeutic enhancement of mitochondrial function even in defective mitochondria.
    Keywords:  D. melanogaster; S. cerevisiae; cell biology; human
    DOI:  https://doi.org/10.7554/eLife.84282
  35. Cancers (Basel). 2024 Jan 19. pii: 436. [Epub ahead of print]16(2):
      Pancreatic cancer is one of the most lethal gastrointestinal malignancies. Despite advances in cross-sectional imaging, chemotherapy, radiation therapy, and surgical techniques, the 5-year overall survival is only 12%. With the advent and rapid adoption of AI across all industries, we present a review of applications of DL in the care of patients diagnosed with PC. A review of different DL techniques with applications across diagnosis, management, and monitoring is presented across the different pathological subtypes of pancreatic cancer. This systematic review highlights AI as an emerging technology in the care of patients with pancreatic cancer.
    Keywords:  artificial intelligence; deep learning; pancreatic cancer
    DOI:  https://doi.org/10.3390/cancers16020436
  36. Nat Cell Biol. 2024 Jan 22.
      Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.
    DOI:  https://doi.org/10.1038/s41556-023-01339-x
  37. medRxiv. 2024 Jan 11. pii: 2024.01.10.24301114. [Epub ahead of print]
      Obesity is a leading risk factor for cancer, but whether obesity is linked to specific genomic subtypes of cancer is unknown. Here, we examined the relationship between obesity and tumor genotype in two large clinicogenomic corpora. Obesity was associated with specific driver mutations in lung adenocarcinoma, endometrial carcinoma, and cancers of unknown primary, independent of clinical covariates and genetic ancestry. Obesity is therefore a putative driver of etiologic heterogeneity across cancers.
    DOI:  https://doi.org/10.1101/2024.01.10.24301114