bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2023–05–28
thirty-two papers selected by
Kıvanç Görgülü, Technical University of Munich



  1. Nature. 2023 May 24.
      Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.
    DOI:  https://doi.org/10.1038/s41586-023-06114-4
  2. J Hematol Oncol. 2023 May 22. 16(1): 54
      Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
    Keywords:  Cachexia; Cancer; Multi-organ; Muscle wasting; Sarcopenia; Treatment
    DOI:  https://doi.org/10.1186/s13045-023-01454-0
  3. Mol Cell Proteomics. 2023 May 18. pii: S1535-9476(23)00086-5. [Epub ahead of print] 100575
      Pancreatic cancer, most cases being pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancers with a median survival time of less than 6 months. Therapeutic options are very limited for PDAC patients, and surgery is still the most effective treatment, making improvements in early diagnosis critical. One typical characteristic of PDAC is the desmoplastic reaction of its stroma microenvironment, which actively interacts with cancer cells to orchestrate key components in tumorigenesis, metastasis, and chemoresistance. Global exploration of cancer-stroma crosstalk is essential to decipher PDAC biology and design intervention strategies. Over the past decade, the dramatic improvement of proteomics technologies has enabled profiling of proteins, post-translational modifications (PTMs), and their protein complexes at unprecedented sensitivity and dimensionality. Here, starting with our current understanding of PDAC characteristics, including precursor lesions, progression models, tumor microenvironment, and therapeutic advancements, we describe how proteomics contributes to the functional and clinical exploration of PDAC, providing insights into PDAC carcinogenesis, progression, and chemoresistance. We summarize recent achievements enabled by proteomics to systematically investigate PTMs-mediated intracellular signaling in PDAC, cancer-stroma interactions, and potential therapeutic targets revealed by these functional studies. We also highlight proteomic profiling of clinical tissue and plasma samples to discover and verify useful biomarkers that can aid early detection and molecular classification of patients. In addition, we introduce spatial proteomic technology and its applications in PDAC for deconvolving tumor heterogeneity. Finally, we discuss future prospects of applying new proteomic technologies in comprehensively understanding PDAC heterogeneity and intercellular signaling networks. Importantly, we expect advances in clinical functional proteomics for exploring mechanisms of cancer biology directly by high-sensitivity functional proteomic approaches starting from clinical samples.
    DOI:  https://doi.org/10.1016/j.mcpro.2023.100575
  4. Mol Cancer. 2023 05 20. 22(1): 86
       BACKGROUND: The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC.
    METHODS: Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models.
    RESULTS: PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC.
    CONCLUSIONS: Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.
    Keywords:  KRAS; LUAD; MYC; PDAC; PITPNC1; Therapy; mTOR
    DOI:  https://doi.org/10.1186/s12943-023-01788-w
  5. Physiology (Bethesda). 2023 Jul 01. 38(4): 0
      Proliferating cancer cells secrete a multitude of factors impacting metabolism, interorgan communication, and tumor progression. The distribution of tumor-derived factors to distant organs occurs via the circulation, which provides an extensive reactive surface lined by endothelial cells. Primary tumor-derived proteins impact cancer progression by modulating endothelial cell activation at the (pre-)metastatic niche, which affects tumor cell dissemination as well as the outgrowth of seeded metastatic cells into overt tumors. In addition, new insight indicates that endothelial cell signaling contributes to metabolic symptoms of cancer, including cancer-associated cachexia, opening a new field of vascular metabolism research. This review addresses how tumor-derived factors systemically affect endothelial cell signaling and activation and impact distant organs as well as tumor progression.
    Keywords:  angiocrine signaling; cachexia; metastasis; systemic signaling; vascular endothelium
    DOI:  https://doi.org/10.1152/physiol.00001.2023
  6. Nature. 2023 May 24.
      The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.
    DOI:  https://doi.org/10.1038/s41586-023-06089-2
  7. Semin Cancer Biol. 2023 May 22. pii: S1044-579X(23)00081-0. [Epub ahead of print]
      Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer that is characterised by a prominent collagenous stromal reaction/desmoplasia surrounding tumour cells. Pancreatic stellate cells (PSCs) are responsible for the production of this stroma and have been shown to facilitate PDAC progression. Recently, extracellular vesicles (EVs), in particular, small extracellular vesicles (exosomes) have been a topic of interest in the field of cancer research for their emerging roles in cancer progression and diagnosis. EVs act as a form of intercellular communication by carrying their molecular cargo from one cell to another, regulating functions of the recipient cells. Although the knowledge of the bi-directional interactions between the PSCs and cancer cells that promote disease progression has advanced significantly over the past decade, studies on PSC-derived EVs in PDAC are currently rather limited. This review provides an overview of PDAC, pancreatic stellate cells and their interactions with cancer cells, as well as the currently known role of extracellular vesicles derived from PSCs in PDAC progression.
    Keywords:  Exosomes; Extracellular vesicles; Pancreatic cancer; Pancreatic stellate cells
    DOI:  https://doi.org/10.1016/j.semcancer.2023.05.007
  8. Nature. 2023 May 24.
      Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.
    DOI:  https://doi.org/10.1038/s41586-023-06090-9
  9. bioRxiv. 2023 May 11. pii: 2023.05.11.540429. [Epub ahead of print]
      Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.
    DOI:  https://doi.org/10.1101/2023.05.11.540429
  10. Nat Rev Mol Cell Biol. 2023 May 24.
      Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
    DOI:  https://doi.org/10.1038/s41580-023-00606-x
  11. PLoS Biol. 2023 May;21(5): e3002117
      There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.
    DOI:  https://doi.org/10.1371/journal.pbio.3002117
  12. Mol Cell. 2023 May 12. pii: S1097-2765(23)00321-0. [Epub ahead of print]
      Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.
    Keywords:  autophagy; autophagy initiation; lipid transfer; membrane-contact site; metabolism; protein metamorphosis
    DOI:  https://doi.org/10.1016/j.molcel.2023.04.026
  13. bioRxiv. 2023 May 09. pii: 2023.05.07.539744. [Epub ahead of print]
      Tumor angiogenesis is a cancer hallmark, and its therapeutic inhibition has provided meaningful, albeit limited, clinical benefit. While anti-angiogenesis inhibitors deprive the tumor of oxygen and essential nutrients, cancer cells activate metabolic adaptations to diminish therapeutic response. Despite these adaptations, angiogenesis inhibition incurs extensive metabolic stress, prompting us to consider such metabolic stress as an induced vulnerability to therapies targeting cancer metabolism. Metabolomic profiling of angiogenesis-inhibited intracranial xenografts showed universal decrease in tricarboxylic acid cycle intermediates, corroborating a state of anaplerotic nutrient deficit or stress. Accordingly, we show strong synergy between angiogenesis inhibitors (Avastin, Tivozanib) and inhibitors of glycolysis or oxidative phosphorylation through exacerbation of anaplerotic nutrient stress in intracranial orthotopic xenografted gliomas. Our findings were recapitulated in GBM xenografts that do not have genetically predisposed metabolic vulnerabilities at baseline. Thus, our findings cement the central importance of the tricarboxylic acid cycle as the nexus of metabolic vulnerabilities and suggest clinical path hypothesis combining angiogenesis inhibitors with pharmacological cancer interventions targeting tumor metabolism for GBM tumors.
    DOI:  https://doi.org/10.1101/2023.05.07.539744
  14. Nat Commun. 2023 May 25. 14(1): 3020
      The origins of wound myofibroblasts and scar tissue remains unclear, but it is assumed to involve conversion of adipocytes into myofibroblasts. Here, we directly explore the potential plasticity of adipocytes and fibroblasts after skin injury. Using genetic lineage tracing and live imaging in explants and in wounded animals, we observe that injury induces a transient migratory state in adipocytes with vastly distinct cell migration patterns and behaviours from fibroblasts. Furthermore, migratory adipocytes, do not contribute to scar formation and remain non-fibrogenic in vitro, in vivo and upon transplantation into wounds in animals. Using single-cell and bulk transcriptomics we confirm that wound adipocytes do not convert into fibrogenic myofibroblasts. In summary, the injury-induced migratory adipocytes remain lineage-restricted and do not converge or reprogram into a fibrosing phenotype. These findings broadly impact basic and translational strategies in the regenerative medicine field, including clinical interventions for wound repair, diabetes, and fibrotic pathologies.
    DOI:  https://doi.org/10.1038/s41467-023-38591-6
  15. Nat Cancer. 2023 May 22.
      The immune-specialized environment of the healthy brain is tightly regulated to prevent excessive neuroinflammation. However, after cancer development, a tissue-specific conflict between brain-preserving immune suppression and tumor-directed immune activation may ensue. To interrogate potential roles of T cells in this process, we profiled these cells from individuals with primary or metastatic brain cancers via integrated analyses on the single-cell and bulk population levels. Our analysis revealed similarities and differences in T cell biology between individuals, with the most pronounced differences observed in a subgroup of individuals with brain metastasis, characterized by accumulation of CXCL13-expressing CD39+ potentially tumor-reactive T (pTRT) cells. In this subgroup, high pTRT cell abundance was comparable to that in primary lung cancer, whereas all other brain tumors had low levels, similar to primary breast cancer. These findings indicate that T cell-mediated tumor reactivity can occur in certain brain metastases and may inform stratification for treatment with immunotherapy.
    DOI:  https://doi.org/10.1038/s43018-023-00566-3
  16. J Cell Sci. 2023 05 15. pii: jcs261216. [Epub ahead of print]136(10):
      Translation of mRNAs containing premature termination codons (PTCs) results in truncated protein products with deleterious effects. Nonsense-mediated decay (NMD) is a surveillance pathway responsible for detecting PTC containing transcripts. Although the molecular mechanisms governing mRNA degradation have been extensively studied, the fate of the nascent protein product remains largely uncharacterized. Here, we use a fluorescent reporter system in mammalian cells to reveal a selective degradation pathway specifically targeting the protein product of an NMD mRNA. We show that this process is post-translational and dependent on the ubiquitin proteasome system. To systematically uncover factors involved in NMD-linked protein quality control, we conducted genome-wide flow cytometry-based screens. Our screens recovered known NMD factors but suggested that protein degradation did not depend on the canonical ribosome-quality control (RQC) pathway. A subsequent arrayed screen demonstrated that protein and mRNA branches of NMD rely on a shared recognition event. Our results establish the existence of a targeted pathway for nascent protein degradation from PTC containing mRNAs, and provide a reference for the field to identify and characterize required factors.
    Keywords:  Nonsense-mediated decay; Quality control; Ubiquitin-proteasome pathway; mRNA
    DOI:  https://doi.org/10.1242/jcs.261216
  17. Nat Rev Cancer. 2023 May 22.
      Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
    DOI:  https://doi.org/10.1038/s41568-023-00574-6
  18. J Cachexia Sarcopenia Muscle. 2023 May 24.
       BACKGROUND: Although the adiponectin signalling exerts exercise-mimicking effects, whether this pathway contributes to the anti-ageing benefits of physical exercise has not been established yet.
    METHODS: Swim exercise training and wheel running were used to measure lifespan in the nematode Caenorhabditis elegans and skeletal muscle quality in mice, respectively. Muscle weight, muscle fibre cross-sectional area (CSA) and myonuclei number were used to evaluate muscle mass. RNA sequencing (RNA-Seq) analysis of skeletal muscle in exercised mice was used to study the underlying mechanisms. Western blot and immunofluorescence were performed to explore autophagy- and senescence-related markers.
    RESULTS: The C. elegans adiponectin receptor PAQR-1/AdipoR1, but not PAQR-2/AdipoR2, was activated (3.55-fold and 3.48-fold increases in p-AMPK on Days 1 and 6, respectively, P < 0.001), which was involved in lifespan extension in exercised worms. Exercise training increased skeletal muscle mass index (1.29-fold, P < 0.01), muscle weight (1.75-fold, P < 0.001), myonuclei number (1.33-fold, P < 0.05), muscle fibre CSA (1.39-fold, P < 0.05) and capillary abundance (2.19-fold, P < 0.001 for capillary density; 1.58-fold, P < 0.01 for capillary number) in aged mice. Physical exercise reduced protein (2.94-fold, P < 0.001) and mRNA levels (1.70-fold, P < 0.001) of p16INK4a , a marker for cellular senescence, in skeletal muscle of aged mice. These beneficial effects of exercise on skeletal muscle of mice were dependent on AdipoR1. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for differentially expressed genes in skeletal muscle between exercised mice with and without AdipoR1 knockdown by RNA-Seq analysis revealed that several KEGG pathways, such as 'AMPK signalling pathway' (P < 0.001), 'FOXO signalling pathway' (P < 0.001) and 'autophagy' (P < 0.001) were overrepresented. Knockdown of FoxO3a inhibited exercise-mediated beneficial effects on skeletal muscle quality of mice by inhibiting autophagy/mitophagy (3.81-fold reduction in LC3-II protein, P < 0.001; 1.53-fold reduction in BNIP3 protein, P < 0.05). Knockdown of daf-16, the FoxO homologue in C. elegans, reduced autophagy (2.77-fold and 2.06-fold reduction in GFP::LGG-1 puncta in seam cells and the intestine, respectively, P < 0.05) and blocked lifespan extension by exercise in worms.
    CONCLUSIONS: Our findings provide insights into how the AdipoR1 pathway has an impact on the anti-ageing benefits of exercise and implicate that activation of the AdipoR1 signalling may represent a potential therapeutic strategy for reducing age-related loss of skeletal muscle.
    Keywords:  AdipoR1; C. elegans; FOXO; autophagy; exercise; rodent; skeletal muscle loss
    DOI:  https://doi.org/10.1002/jcsm.13257
  19. HPB (Oxford). 2023 May 04. pii: S1365-182X(23)00135-1. [Epub ahead of print]
    Dutch Pancreatic Cancer Group
       BACKGROUND: Neoadjuvant treatment for pancreatic ductal adenocarcinoma (PDAC) has increased, necessitating histopathologic confirmation of cancer. This study evaluates the performance of endoscopic tissue acquisition (TA) procedures for borderline resectable and resectable PDAC.
    METHODS: Pathology reports of patients included in two nationwide randomized controlled trials (PREOPANC and PREOPANC-2) were reviewed. The primary outcome was sensitivity for malignancy (SFM), considering both "suspicious for" and "malignant" as positive. Secondary outcomes were rate of adequate sampling (RAS) and diagnoses other than PDAC.
    RESULTS: Overall, 892 endoscopic procedures were performed in 617 patients, including endoscopic ultrasonography (EUS)-guided TA in 550 (89.1%), endoscopic retrograde cholangiopancreatography (ERCP)-guided brush cytology in 188 (30.5%), and periampullary biopsies in 61 patients (9.9%). The SFM was 85.2% for EUS, 88.2% for repeat EUS, 52.7% for ERCP, and 37.7% for periampullary biopsies. The RAS ranged 94-100%. Diagnoses other than PDAC were other periampullary cancers in 24 (5.4%), premalignant disease in five (1.1%), and pancreatitis in three patients (0.7%).
    CONCLUSIONS: EUS-guided TA of patients with borderline resectable and resectable PDAC included in RCTs had an SFM above 85% for both first and repeat procedures, meeting international standards. Two percent had false positive result for malignancy and 5% had other (non-PDAC) periampullary cancers.
    Keywords:  biopsy; endoscopic retrograde cholangiopancreatography; endoscopic ultrasonography; neoadjuvant treatment; sensitivity
    DOI:  https://doi.org/10.1016/j.hpb.2023.04.018
  20. Elife. 2023 May 23. pii: e80653. [Epub ahead of print]12
      The shape and size of the human cell nucleus is highly variable amongst cell types and tissues. Changes in nuclear morphology are associated with disease, including cancer, as well as with premature and normal aging. Despite the very fundamental nature of nuclear morphology, the cellular factors that determine nuclear shape and size are not well understood. To identify regulators of nuclear architecture in a systematic and unbiased fashion, we performed a high-throughput imaging-based siRNA screen targeting 867 nuclear proteins including chromatin-associated proteins, epigenetic regulators, and nuclear envelope components. Using multiple morphometric parameters and eliminating cell cycle effectors, we identified a set of novel determinants of nuclear size and shape. Interestingly, most identified factors altered nuclear morphology without affecting the levels of lamin proteins, which are known prominent regulators of nuclear shape. In contrast, a major group of nuclear shape regulators were modifiers of repressive heterochromatin. Biochemical and molecular analysis uncovered a direct physical interaction of histone H3 with lamin A mediated via combinatorial histone modifications. Furthermore, disease-causing lamin A mutations that result in disruption of nuclear shape inhibited lamin A-histone H3 interactions. Finally, oncogenic histone H3.3 mutants defective for H3K27 methylation resulted in nuclear morphology abnormalities. Altogether, our results represent a systematic exploration of cellular factors involved in determining nuclear morphology and they identify the interaction of lamin A with histone H3 as an important contributor to nuclear morphology in human cells.
    Keywords:  cell biology; chromosomes; gene expression; human
    DOI:  https://doi.org/10.7554/eLife.80653
  21. Nature. 2023 May 24.
      
    Keywords:  Cancer; Cell biology; Molecular biology; Therapeutics
    DOI:  https://doi.org/10.1038/d41586-023-01648-z
  22. J Mol Med (Berl). 2023 May 20.
      With advancing age, the skeletal muscle phenotype is characterized by a progressive loss of mass, strength, and quality. This phenomenon, known as sarcopenia, has a negative impact on quality of life and increases the risk of morbidity and mortality in older adults. Accumulating evidence suggests that damaged and dysfunctional mitochondria play a critical role in the pathogenesis of sarcopenia. Lifestyle modifications, such as physical activity, exercise, and nutrition, as well as medical interventions with therapeutic agents, are effective in the management of sarcopenia and offer solutions to maintain and improve skeletal muscle health. Although a great deal of effort has been devoted to the identification of the best treatment option, these strategies are not sufficient to overcome sarcopenia. Recently, it has been reported that mitochondrial transplantation may be a possible therapeutic approach for the treatment of mitochondria-related pathological conditions such as ischemia, liver toxicity, kidney injury, cancer, and non-alcoholic fatty liver disease. Given the role of mitochondria in the function and metabolism of skeletal muscle, mitochondrial transplantation may be a possible option for the treatment of sarcopenia. In this review, we summarize the definition and characteristics of sarcopenia and molecular mechanisms associated with mitochondria that are known to contribute to sarcopenia. We also discuss mitochondrial transplantation as a possible option. Despite the progress made in the field of mitochondrial transplantation, further studies are needed to elucidate the role of mitochondrial transplantation in sarcopenia. KEY MESSAGES: Sarcopenia is the progressive loss of skeletal muscle mass, strength, and quality. Although the specific mechanisms that lead to sarcopenia are not fully understood, mitochondria have been identified as a key factor in the development of sarcopenia. Damaged and dysfunctional mitochondria initiate various cellular mediators and signaling pathways, which largely contribute to the age-related loss of skeletal muscle mass and strength. Mitochondrial transplantation has been reported to be a possible option for the treatment/prevention of several diseases. Mitochondrial transplantation may be a possible therapeutic option for improving skeletal muscle health and treating sarcopenia. Mitochondrial transplantation as a possible treatment option for sarcopenia.
    Keywords:  Mitochondrial dysfunction; Mitochondrial transplantation; Sarcopenia; Skeletal muscle
    DOI:  https://doi.org/10.1007/s00109-023-02326-3
  23. Ann Surg. 2023 May 25.
       OBJECTIVE: To assess the association of survival with neoadjuvant chemotherapy (NAC) in resectable pancreatic adenocarcinoma (PDAC).
    SUMMARY BACKGROUND DATA: The early control of potential micrometastases and patient selection using NAC has been advocated for patients with PDAC. However, the role of NAC for resectable PDAC remains unclear.
    METHODS: Patients with clinical T1 and T2 PDAC were identified in the National Cancer Database from 2010 to 2017. Kaplan-Meier estimates and Cox regression models were used to compare survival. To address immortal time bias, landmark analysis was performed. Interactions between preoperative factors and NAC were investigated in subgroup analyses. A propensity score analysis was performed to compare survival between multiagent NAC and upfront surgery.
    RESULTS: In total, 4,041 patients were treated with upfront surgery and 1,175 patients treated with NAC (79.4% multiagent NAC, 20.6% single-agent NAC). Using a landmark time of 6 months after diagnosis, patients treated with multiagent NAC had longer median overall survival, compared to upfront surgery and single-agent NAC. (35.8 vs. 27.1 vs. 27.4 mo). Multiagent NAC was associated with lower mortality rates compared to upfront surgery (adjusted HR, 0.77; 95% CI, 0.70-0.85), whereas single-agent NAC was not. The association of survival with multiagent NAC were consistent in analyses using the matched data sets. Interaction analysis revealed that multiagent NAC was associated with lower mortality rates across age, facility type, CA 19-9 levels, and clinical T/N stages, except in patients with body/tail tumors.
    CONCLUSION: The findings suggest that multiagent NAC followed by resection is associated with improved survival compared to upfront surgery.
    DOI:  https://doi.org/10.1097/SLA.0000000000005925
  24. Nat Rev Clin Oncol. 2023 May 25.
      Despite the importance of chemotherapy-associated adverse events in oncology practice and the broad range of interventions available to mitigate them, limited systematic efforts have been made to identify, critically appraise and summarize the totality of evidence on the effectiveness of these interventions. Herein, we review the most common long-term (continued beyond treatment) and late or delayed (following treatment) adverse events associated with chemotherapy and other anticancer treatments that pose major threats in terms of survival, quality of life and continuation of optimal therapy. These adverse effects often emerge during and continue beyond the course of therapy or arise among survivors in the months and years following treatment. For each of these adverse effects, we discuss and critically evaluate their underlying biological mechanisms, the most commonly used pharmacological and non-pharmacological treatment strategies, and evidence-based clinical practice guidelines for their appropriate management. Furthermore, we discuss risk factors and validated risk-assessment tools for identifying patients most likely to be harmed by chemotherapy and potentially benefit from effective interventions. Finally, we highlight promising emerging supportive-care opportunities for the ever-increasing number of cancer survivors at continuing risk of adverse treatment effects.
    DOI:  https://doi.org/10.1038/s41571-023-00776-9
  25. J Cachexia Sarcopenia Muscle. 2023 May 24.
       BACKGROUND: Maintaining the ability to perform self-care is a critical goal in patients with cancer. We assessed whether the patient-reported ability to walk 4 m and wash oneself predict survival in patients with pre-terminal cancer.
    METHODS: We performed a prospective observational study on 169 consecutive hospitalized patients with cancer (52% female, 64 ± 12 years) and an estimated 1-12 months prognosis at an academic, inpatient palliative care unit. Patients answered functional questions for 'today', 'last week', and 'last month', performed patient-reported outcomes (PROs), and physical function assessments.
    RESULTS: Ninety-two (54%) patients reported the ability to independently walk 4 m and 100 (59%) to wash 'today'. The median number of days patients reported the ability to walk 4 m and wash were 6 (IQR 0-7) and 7 (0-7) days ('last week'); and 27 (5-30) and 26 (10-30) days ('last month'). In the last week, 32% of patients were unable to walk 4 m on every day and 10% could walk on 1-3 days; 30% were unable to wash on every day and 10% could wash on 1-3 days. In the last months, 14% of patients were unable to walk 4 m on every day and 10% could only walk on 1-10 days; 12% were unable to wash on every day and 11% could wash on 1-10 days. In patients who could walk 'today' average 4 m gait speed was 0.78 ± 0.28 m/s. Patients who reported impaired walking and washing experienced more symptoms (dyspnoea, exertion, and oedema) and decreased physical function (higher Eastern Cooperative Oncology Group Performance Status, and lower Karnofsky Performance Status and hand-grip strength [unable vs. able to walk 'today': 205 ± 87 vs. 252 ± 78 Newton, P = 0.001; unable vs. able to wash 'today': 204 ± 86 vs. 250 ± 80 Newton, P = 0.001]). During the 27 months of observation, 152 (90%) patients died (median survival 46 days). In multivariable Cox proportional hazards regression analyses, all tested parameters were independent predictors of survival: walking 4 m 'today' (HR 0.63, P = 0.015), 'last week' (per 1 day: HR 0.93, P = 0.011), 'last month' (per 1 day: HR 0.98, P = 0.012), 4 m gait speed (per 1 m/s: HR 0.45, P = 0.002), and washing 'today' (HR 0.67, P = 0.024), 'last week (per 1 day HR 0.94, p=0.019), and 'last month' (per 1 day HR 0.99, P = 0.040). Patients unable to walk and wash experienced the shortest survival and most reduced functional status.
    CONCLUSIONS: In patients with pre-terminal cancer, the self-reported ability to walk 4 m and wash were independent predictors of survival and associated with decreased functional status.
    Keywords:  Cancer; Independence; Palliative care; Self-care; Walking ability; Washing ability
    DOI:  https://doi.org/10.1002/jcsm.13247
  26. Elife. 2023 May 23. pii: e78335. [Epub ahead of print]12
      Metabolic scaling, the inverse correlation of metabolic rates to body mass, has been appreciated for more than 80 years. Studies of metabolic scaling have largely been restricted to mathematical modeling of caloric intake and oxygen consumption, and mostly rely on computational modeling. The possibility that other metabolic processes scale with body size has not been comprehensively studied. To address this gap in knowledge, we employed a systems approach including transcriptomics, proteomics, and measurement of in vitro and in vivo metabolic fluxes. Gene expression in livers of five species spanning a 30,000-fold range in mass revealed differential expression according to body mass of genes related to cytosolic and mitochondrial metabolic processes, and to detoxication of oxidative damage. To determine whether flux through key metabolic pathways is ordered inversely to body size, we applied stable isotope tracer methodology to study multiple cellular compartments, tissues, and species. Comparing C57BL/6 J mice with Sprague-Dawley rats, we demonstrate that while ordering of metabolic fluxes is not observed in in vitro cell-autonomous settings, it is present in liver slices and in vivo. Together, these data reveal that metabolic scaling extends beyond oxygen consumption to other aspects of metabolism, and is regulated at the level of gene and protein expression, enzyme activity, and substrate supply.
    Keywords:  biochemistry; chemical biology; liver metabolism; metabolic flux; metabolic scaling; mouse; rat
    DOI:  https://doi.org/10.7554/eLife.78335
  27. Membranes (Basel). 2023 May 02. pii: 492. [Epub ahead of print]13(5):
      The plasma membrane of mammalian cells is involved in a wide variety of cellular processes, including, but not limited to, endocytosis and exocytosis, adhesion and migration, and signaling. The regulation of these processes requires the plasma membrane to be highly organized and dynamic. Much of the plasma membrane organization exists at temporal and spatial scales that cannot be directly observed with fluorescence microscopy. Therefore, approaches that report on the membrane's physical parameters must often be utilized to infer membrane organization. As discussed here, diffusion measurements are one such approach that has allowed researchers to understand the subresolution organization of the plasma membrane. Fluorescence recovery after photobleaching (or FRAP) is the most widely accessible method for measuring diffusion in a living cell and has proven to be a powerful tool in cell biology research. Here, we discuss the theoretical underpinnings that allow diffusion measurements to be used in elucidating the organization of the plasma membrane. We also discuss the basic FRAP methodology and the mathematical approaches for deriving quantitative measurements from FRAP recovery curves. FRAP is one of many methods used to measure diffusion in live cell membranes; thus, we compare FRAP with two other popular methods: fluorescence correlation microscopy and single-particle tracking. Lastly, we discuss various plasma membrane organization models developed and tested using diffusion measurements.
    Keywords:  FRAP; actin; confocal microscopy; diffusion; fluorescence recovery after photobleaching; microdomain; plasma membrane
    DOI:  https://doi.org/10.3390/membranes13050492
  28. Nat Commun. 2023 May 22. 14(1): 2740
      Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.
    DOI:  https://doi.org/10.1038/s41467-023-38292-0
  29. Nature. 2023 May 24.
      Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.
    DOI:  https://doi.org/10.1038/s41586-023-05972-2
  30. Nat Rev Endocrinol. 2023 May 23.
      Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
    DOI:  https://doi.org/10.1038/s41574-023-00845-0
  31. World J Clin Cases. 2023 Apr 26. 11(12): 2631-2636
      Pancreatic cancer is a highly devastating disease with high mortality rates. Even patients who undergo potential curative surgery have a high risk for recurrence. The incidence of depression and anxiety are higher in patients with cancer than the general population. However, patients with pancreatic cancer are at most of risk of both depression and anxiety and there seems to be a biological link. In some patients, depression seems to be a precursor to pancreatic cancer. In this article we discuss the biological link between depression anxiety and hepatobiliary malignancies and discuss treatment strategies.
    Keywords:  Anxiety; Cytokines; Depression; Gastrointestinal malignancies; Pancreatic cancer
    DOI:  https://doi.org/10.12998/wjcc.v11.i12.2631
  32. Biology (Basel). 2023 Apr 27. pii: 664. [Epub ahead of print]12(5):
      Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.
    Keywords:  membrane dynamics; membrane protrusion; mitochondria; nanotubule; organelle interaction; organelles; peroxisomes
    DOI:  https://doi.org/10.3390/biology12050664