bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2022–11–06
forty-two papers selected by
Kıvanç Görgülü, Technical University of Munich



  1. Autophagy. 2022 Oct 31.
      Macroautophagy/autophagy is a highly conserved catabolic process pivotal to cellular homeostasis and support of tumorigenesis. Being a potential therapeutic target for cancer, we have worked to understand the implications of autophagy inhibition both systemically, and tumor-specifically. We utilized inducible expression of Atg5 shRNA to temporally control autophagy levels in a reversible manner to study the effects of tumor-intrinsic and systemic autophagic loss and restoration on established KrasG12D/+;trp53-/- (KP) lung tumor growth. We reported that transient systemic ATG5 loss significantly reduces KP lung tumor growth. Through in vivo isotope tracing and metabolic flux analyses, we noted that systemic ATG5 knockdown significantly reduces the uptake of glucose and lactate in lung tumors, leading to impaired TCA cycle metabolism and biosynthesis. Additionally, we observed an increased tumor T cell infiltration in the absence of systemic ATG5, which is essential for T cell-mediated tumor killing. Moreover, the impaired tumor metabolism and increased T cell infiltration are sustained when autophagy is restored in a short term. Finally, we found that intermittent systemic ATG5 knockdown, a mock therapy situation, significantly prolongs the lifespan of mice bearing KP lung tumors. Our findings lay the proof of concept for inhibition of autophagy as a valid approach to cancer therapy.
    Keywords:  KRAS; autophagy; cancer metabolism; cancer therapy; immune evasion; lung tumor
    DOI:  https://doi.org/10.1080/15548627.2022.2141534
  2. Semin Cancer Biol. 2022 Oct 28. pii: S1044-579X(22)00204-8. [Epub ahead of print]86(Pt 3): 1216-1230
      Cancer cells undergo metabolic alterations to meet the immense demand for energy, building blocks, and redox potential. Tumors show glucose-avid and lactate-secreting behavior even in the presence of oxygen, a process known as aerobic glycolysis. Glycolysis is the backbone of cancer cell metabolism, and cancer cells have evolved various mechanisms to enhance it. Glucose metabolism is intertwined with other metabolic pathways, making cancer metabolism diverse and heterogeneous, where glycolysis plays a central role. Oncogenic signaling accelerates the metabolic activities of glycolytic enzymes, mainly by enhancing their expression or by post-translational modifications. Aerobic glycolysis ferments glucose into lactate which supports tumor growth and metastasis by various mechanisms. Herein, we focused on tumor glycolysis, especially its interactions with the pentose phosphate pathway, glutamine metabolism, one-carbon metabolism, and mitochondrial oxidation. Further, we describe the role and regulation of key glycolytic enzymes in cancer. We summarize the role of lactate, an end product of glycolysis, in tumor growth, and the metabolic adaptations during metastasis. Lastly, we briefly discuss limitations and future directions to improve our understanding of glucose metabolism in cancer.
    Keywords:  Cancer metabolism; Lactate; Metastasis; Tumor glycolysis; metabolic adaptations
    DOI:  https://doi.org/10.1016/j.semcancer.2022.09.007
  3. Trends Cell Biol. 2022 Oct 31. pii: S0962-8924(22)00231-8. [Epub ahead of print]
      Energy deprivation is a frequent adverse event in tumors that is caused by mutations, malperfusion, hypoxia, and nutrition deficit. The resulting bioenergetic stress leads to signaling and metabolic adaptation responses in tumor cells, secures survival, and adjusts migration activity. The kinetic responses of cancer cells to energy deficit were recently identified, including a switch of invasive cancer cells to energy-conservative amoeboid migration and an enhanced capability for distant metastasis. We review the energy programs employed by different cancer invasion modes including collective, mesenchymal, and amoeboid migration, as well as their interconversion in response to energy deprivation, and we discuss the consequences for metastatic escape. Understanding the energy requirements of amoeboid and other dissemination strategies offers rationales for improving therapeutic targeting of metastatic cancer progression.
    Keywords:  amoeboid migration; cellular bioenergetics; metabolic stress; migration plasticity
    DOI:  https://doi.org/10.1016/j.tcb.2022.09.009
  4. Cancer Cell. 2022 Oct 27. pii: S1535-6108(22)00493-7. [Epub ahead of print]
      The evolution of established cancers is driven by selection of cells with enhanced fitness. Subclonal mutations in numerous epigenetic regulator genes are common across cancer types, yet their functional impact has been unclear. Here, we show that disruption of the epigenetic regulatory network increases the tolerance of cancer cells to unfavorable environments experienced within growing tumors by promoting the emergence of stress-resistant subpopulations. Disruption of epigenetic control does not promote selection of genetically defined subclones or favor a phenotypic switch in response to environmental changes. Instead, it prevents cells from mounting an efficient stress response via modulation of global transcriptional activity. This "transcriptional numbness" lowers the probability of cell death at early stages, increasing the chance of long-term adaptation at the population level. Our findings provide a mechanistic explanation for the widespread selection of subclonal epigenetic-related mutations in cancer and uncover phenotypic inertia as a cellular trait that drives subclone expansion.
    Keywords:  adaptation; cancer epigenetics; chromatin modifiers; environmental stress; mechanisms of cancer evolution; mutations; pan-cancer; plasticity; subclonal; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.ccell.2022.10.002
  5. Antioxid Redox Signal. 2022 Oct 31.
       SIGNIFICANCE: Cancer is frequently associated with the appearance of cachexia, a multifactorial wasting syndrome. Cachexia develops either as a result of tumor progression or as a side effect of anticancer treatments, especially of standard chemotherapy, eventually representing the direct cause of death in up to one third of all cancer patients. Cachexia, within its multi-organ affection, is characterized by severe loss of muscle mass and function, representing the most relevant subject of preclinical and clinical investigation.
    RECENT ADVANCES: The pathogenesis of muscle wasting in cancer- and chemotherapy-induced cachexia is complex and encompasses heightened protein catabolism and reduced anabolism, disrupted mitochondria and energy metabolism and even neuromuscular junction dismantling. The mechanisms underlying these alterations are still controversial, especially concerning the molecular drivers that could be targeted for anti-cachexia therapies. Inflammation and mitochondrial oxidative stress are among the principal candidates, the latter being extensively discussed in the present review.
    CRITICAL ISSUES: Several approaches have been tested in order to modulate the redox homeostasis in tumor hosts and to counteract cancer- and chemotherapy-induced muscle wasting, from exercise training to distinct classes of direct or indirect antioxidants. We herein report the most relevant results obtained in both preclinical and clinical trials.
    FUTURE DIRECTIONS: Including the assessment and the treatment of altered redox balance in the clinical management of cancer patients is still a big challenge. The available evidence suggests that fortifying the antioxidant defenses either by pharmacological or non-pharmacological strategies will likely improve cachexia and eventually the outcome of a broad cancer patient population.
    DOI:  https://doi.org/10.1089/ars.2022.0149
  6. Nat Methods. 2022 Oct 31.
      Multiplexed imaging and spatial transcriptomics enable highly resolved spatial characterization of cellular phenotypes, but still largely depend on laborious manual annotation to understand higher-order patterns of tissue organization. As a result, higher-order patterns of tissue organization are poorly understood and not systematically connected to disease pathology or clinical outcomes. To address this gap, we developed an approach called UTAG to identify and quantify microanatomical tissue structures in multiplexed images without human intervention. Our method combines information on cellular phenotypes with the physical proximity of cells to accurately identify organ-specific microanatomical domains in healthy and diseased tissue. We apply our method to various types of images across healthy and disease states to show that it can consistently detect higher-level architectures in human tissues, quantify structural differences between healthy and diseased tissue, and reveal tissue organization patterns at the organ scale.
    DOI:  https://doi.org/10.1038/s41592-022-01657-2
  7. Nat Commun. 2022 Oct 31. 13(1): 6513
      Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.
    DOI:  https://doi.org/10.1038/s41467-022-34081-3
  8. Br J Surg. 2022 Nov 04. pii: znac350. [Epub ahead of print]
    International Study Group of Pancreatic Pathologists (ISGPP)
       BACKGROUND: Most tumour response scoring systems for resected pancreatic cancer after neoadjuvant therapy score tumour regression. However, whether treatment-induced changes, including tumour regression, can be identified reliably on haematoxylin and eosin-stained slides remains unclear. Moreover, no large study of the interobserver agreement of current tumour response scoring systems for pancreatic cancer exists. This study aimed to investigate whether gastrointestinal/pancreatic pathologists can reliably identify treatment effect on tumour by histology, and to determine the interobserver agreement for current tumour response scoring systems.
    METHODS: Overall, 23 gastrointestinal/pancreatic pathologists reviewed digital haematoxylin and eosin-stained slides of pancreatic cancer or treated tumour bed. The accuracy in identifying the treatment effect was investigated in 60 patients (30 treatment-naive, 30 after neoadjuvant therapy (NAT)). The interobserver agreement for the College of American Pathologists (CAP) and MD Anderson Cancer Center (MDACC) tumour response scoring systems was assessed in 50 patients using intraclass correlation coefficients (ICCs). An ICC value below 0.50 indicated poor reliability, 0.50 or more and less than 0.75 indicated moderate reliability, 0.75 or more and below 0.90 indicated good reliability, and above 0.90 indicated excellent reliability.
    RESULTS: The sensitivity and specificity for identifying NAT effect were 76.2 and 49.0 per cent respectively. After NAT in 50 patients, ICC values for both tumour response scoring systems were moderate: 0.66 for CAP and 0.71 for MDACC.
    CONCLUSION: Identification of the effect of NAT in resected pancreatic cancer proved unreliable, and interobserver agreement for the current tumour response scoring systems was suboptimal. These findings support the recently published International Study Group of Pancreatic Pathologists recommendations to score residual tumour burden rather than tumour regression after NAT.
    DOI:  https://doi.org/10.1093/bjs/znac350
  9. Gastro Hep Adv. 2022 ;1(4): 640-651
       BACKGROUND AND AIMS: Animal data show that the presence of an oncogenic Kras mutation in pancreatic acinar cells leads to acinar-to-ductal metaplasia (ADM), pancreatic intraepithelial neoplasia (PanIN), and pancreatic ductal adenocarcinoma (PDAC). Inflammatory macrophages play an important role in the formation of ADMs and transition to PanINs. Epidemiologically, statins are associated with a reduced risk of PDAC. We investigated whether statins inhibit inflammatory cytokine production in macrophages and whether this leads to reduced ADM formation.
    METHODS: The efficacy of statins on inflammatory cytokine production in 2 macrophage cell lines was measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of macrophage-conditioned medium on ADM in primary pancreatic acinar cells was investigated. Mouse pancreatic tissue samples were analyzed for macrophage numbers, cytokine levels, and neoplastic/dysplastic area.
    RESULTS: Lipophilic statins prevented inflammatory cytokine production in Raw264.7 and J774A.1 cells stimulated by lipopolysaccharide. The inhibitory effect of statins was mediated by inhibition of mevalonate and geranylgeranyl pyrophosphate synthesis and disruption of the actin cytoskeleton but not by a reduction in intracellular cholesterol. Treatment of macrophages with lipophilic statins also blocked ADM formation of primary pancreatic acinar cells. Furthermore, oral administration of simvastatin was associated with a reduction in the number of intrapancreatic macrophages, decreased inflammatory cytokine levels in the pancreas, and attenuated ADM/PanIN formation in mice.
    CONCLUSION: Our data support the hypothesis that statins oppose early PDAC development by their effects on macrophages and ADM formation. The inhibitory actions of statins on macrophages may collaborate with direct inhibitory effects on transformed pancreatic epithelial cells, which cumulatively may reduce early PDAC development and progression.
    Keywords:  Acinar-to-Ductal Metaplasia; Macrophages; Pancreatic Cancer; Statins
    DOI:  https://doi.org/10.1016/j.gastha.2022.04.012
  10. IUBMB Life. 2022 Nov 04.
      When p62/Sequestosome-1 binds to a ubiquitinated protein, it undergoes liquid-liquid phase separation and forms a membraneless organelle, p62 body. There are two major physiological functions of the p62 body. One is effective autophagic degradation of ubiquitinated proteins and the other is antioxidant stress response, both of which contribute to cellular homeostasis. In this review, I review the history of p62 research in relation to autophagy and outline the formation, degradation, and physiological functions of the p62 body. This article is protected by copyright. All rights reserved.
    Keywords:  KEAP1; NRF2; autophagy; p62; phase separation
    DOI:  https://doi.org/10.1002/iub.2689
  11. Cancer Res Commun. 2022 Sep;2(9): 1017-1036
      It is projected that in 5 years, pancreatic cancer will become the second deadliest cancer in the United States. A unique aspect of pancreatic ductal adenocarcinoma (PDAC) is its stroma; rich in cancer-associated fibroblasts (CAFs) and a dense CAF-generated extracellular matrix (ECM). These pathogenic stroma CAF/ECM units cause the collapse of local blood vessels rendering the tumor microenvironment nutrient-poor. PDAC cells are able to survive this state of nutrient stress via support from CAF-secreted material, which includes small extracellular vesicles (sEVs). The tumor-supportive CAFs possess a distinct phenotypic profile, compared to normal-like fibroblasts, expressing NetrinG1 (NetG1) at the plasma membrane, and active Integrin α5β1 localized to the multivesicular bodies; traits indicative of poor patient survival. We herein report that NetG1+ CAFs secrete sEVs that stimulate Akt-mediated survival in nutrient-deprived PDAC cells, protecting them from undergoing apoptosis. Further, we show that NetG1 expression in CAFs is required for the pro-survival properties of sEVs. Additionally, we report that the above-mentioned CAF markers are secreted in distinct subpopulations of EVs; with NetG1 being enriched in exomeres, and Integrin α5β1 being enriched in exosomes. Finally, we found that NetG1 and Integrin α5β1 were detected in sEVs collected from plasma of PDAC patients, while their levels were significantly lower in plasma-derived sEVs of sex/age-matched healthy donors. The discovery of these tumor-supporting CAF-EVs elucidates novel avenues in tumor-stroma interactions and pathogenic stroma detection.
    Keywords:  NetrinG1; cancer-associated fibroblasts; extracellular matrix; extracellular vesicles; pancreatic cancer; α5β1-integrin
    DOI:  https://doi.org/10.1158/2767-9764.crc-21-0147
  12. Mol Cell. 2022 Oct 31. pii: S1097-2765(22)00962-5. [Epub ahead of print]
      Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.
    Keywords:  anaplerosis; cancer; cancer metabolism; metabolism; mitochondrion; redox; redox transfer; respiration
    DOI:  https://doi.org/10.1016/j.molcel.2022.10.005
  13. Nat Metab. 2022 Nov 03.
      Iron is essential to many fundamental biological processes, but its cellular compartmentalization and concentration must be tightly controlled. Although iron overload can contribute to obesity-associated metabolic deterioration, the subcellular localization and accumulation of iron in adipose tissue macrophages is largely unknown. Here, we show that macrophage mitochondrial iron levels control systemic metabolism in male mice by altering adipocyte iron concentrations. Using various transgenic mouse models to manipulate the macrophage mitochondrial matrix iron content in an inducible fashion, we demonstrate that lowering macrophage mitochondrial matrix iron increases numbers of M2-like macrophages in adipose tissue, lowers iron levels in adipocytes, attenuates inflammation and protects from high-fat-diet-induced metabolic deterioration. Conversely, elevating macrophage mitochondrial matrix iron increases M1-like macrophages and iron levels in adipocytes, exacerbates inflammation and worsens high-fat-diet-induced metabolic dysfunction. These phenotypes are robustly reproduced by transplantation of a small amount of fat from transgenic to wild-type mice. Taken together, we identify macrophage mitochondrial iron levels as a crucial determinant of systemic metabolic homeostasis in mice.
    DOI:  https://doi.org/10.1038/s42255-022-00664-z
  14. J Physiol Biochem. 2022 Nov 05.
      We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells. In the presence of melatonin (1 mM, 100 µM, 10 µM, or 1 µM), decreases in the phosphorylation of c-Jun N-terminal kinase and of p44/42 and an increase in the phosphorylation of p38 were observed. Cell viability dropped in the presence of melatonin. A rise in the phosphorylation of AMP-activated protein kinase was detected in the presence of 1 mM and 100 µM melatonin. Treatment with 1 mM melatonin decreased the phosphorylation of protein kinase B, whereas 100 µM and 10 µM melatonin increased its phosphorylation. An increase in the generation of mitochondrial reactive oxygen species and a decrease of mitochondrial membrane potential were noted following melatonin treatment. Basal and maximal respiration, ATP production by oxidative phosphorylation, spare capacity, and proton leak dropped in the presence of melatonin. The expression of complex I of the mitochondrial respiratory chain was augmented in the presence of melatonin. Conversely, in the presence of 1 mM melatonin, decreases in the expression of mitofusins 1 and 2 were detected. The glycolysis and the glycolytic capacity were diminished in cells treated with 1 mM or 100 µM melatonin. Increases in the expression of phosphofructokinase-1 and lactate dehydrogenase were noted in cells incubated with 100 µM, 10 µM, or 1 µM melatonin. The expression of glucose transporter 1 was increased in cells incubated with 10 µM or 1 µM melatonin. Conversely, 1 mM melatonin decreased the expression of all three proteins. Our results suggest that melatonin, at pharmacological concentrations, might modulate mitochondrial physiology and energy metabolism in addition to major pathways involved in pancreatic stellate cell proliferation.
    Keywords:  Cell proliferation; Fibrosis; Glycolysis; Melatonin; Mitochondria; Pancreatic stellate cells
    DOI:  https://doi.org/10.1007/s13105-022-00930-4
  15. Autophagy. 2022 Nov 02.
      Macroautophagy/autophagy is the process by which portions of the cytoplasm are sequestered within a transient compartment and delivered to the degradative organelle of the cell, the vacuole or lysosome. Autophagy is a fundamental cytoprotective mechanism, and defects in this process are associated with many diseases. For example, the inability to degrade certain cargo such as mitochondria may lead to neurodegenerative disorders such as Parkinson disease. Autophagic cargo can be many different things including organelles such as mitochondria, but also proteins and protein aggregates, nucleic acids, and lipids. Much of our understanding of autophagy comes from studies in baker's yeast, Saccharomyces cerevisiae. In that organism, autophagy begins at the phagophore assembly site (PAS), which nucleates the initial sequestering compartment, referred to as a phagophore. With the help of autophagy-related (Atg) proteins and lipid addition, the phagophore membrane expands to enclose damaged or superfluous cytoplasmic components, eventually closing into a completed double-membrane vesicle called the autophagosome. The autophagosome is delivered to the degradative organelle where it fuses, releasing the encapsulated cargo into the interior of the organelle where it is broken down into macromolecular building blocks. The resulting building blocks are released back into the cytosol for reuse. Video games are modern expressions of art incorporating illustration, animation, and mechanistic design. While often underappreciated as a scientific art form, video games can beautifully express scientific topics in a way that is both intuitive and engaging, especially to a younger audience.
    DOI:  https://doi.org/10.1080/15548627.2022.2143212
  16. Front Cardiovasc Med. 2022 ;9 1000067
      Impaired biomolecules and cellular organelles are gradually built up during the development and aging of organisms, and this deteriorating process is expedited under stress conditions. As a major lysosome-mediated catabolic process, autophagy has evolved to eradicate these damaged cellular components and recycle nutrients to restore cellular homeostasis and fitness. The autophagic activities are altered under various disease conditions such as ischemia-reperfusion cardiac injury, sarcopenia, and genetic myopathies, which impact multiple cellular processes related to cellular growth and survival in cardiac and skeletal muscles. Thus, autophagy has been the focus for therapeutic development to treat these muscle diseases. To develop the specific and effective interventions targeting autophagy, it is essential to understand the molecular mechanisms by which autophagy is altered in heart and skeletal muscle disorders. Herein, we summarize how autophagy alterations are linked to cardiac and skeletal muscle defects and how these alterations occur. We further discuss potential pharmacological and genetic interventions to regulate autophagy activities and their applications in cardiac and skeletal muscle diseases.
    Keywords:  autophagy; cardiomyopathy; gene therapy; heart disease; mitophagy; muscular dystrophy; myopathy; skeletal muscle disease
    DOI:  https://doi.org/10.3389/fcvm.2022.1000067
  17. Oncol Res Treat. 2022 Oct 28.
       BACKGROUND: Different therapeutic options are available for the treatment of advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). Platinum-based, multiagent chemotherapy regimens, such as FOLFIRINOX, are important elements in multidisciplinary management of PDAC.
    SUMMARY: At least one third of patients with metastatic PDAC are eligible for treatment with FOLFIRINOX. Eligibility criteria include good performance status and the absence of relevant comorbidities. However, chemotherapies can potentially be associated with serious adverse events, such as diarrhea or polyneuropathies. Here, we review relevant data from first-line, second-line, and maintenance therapy trials as well as real-world data. In addition, we address management of possible adverse events.
    KEY MESSAGES: (1) Selection of suitable treatment regime depends on patient performance status, comorbidities and anticipated toxicity (2) FOLFIRINOX is an appropriate treatment for patients up to 75 years of age, and with an ECOG PS of 0 or 1, without relevant comorbidities, normal or nearly normal bilirubin levels, and no significantly reduced DPD activity (3) In particular, patients with germline BRCA1/2 (gBRCA1/2) or PALB2 mutations may benefit from first-line platinum-containing therapy (4) early and comprehensive testing of the patient's mutational status could support the first-line treatment decision-making.
    DOI:  https://doi.org/10.1159/000527692
  18. Autophagy. 2022 Oct 30. 1-12
      TERF2/TRF2 is a pleiotropic telomeric protein that plays a crucial role in tumor formation and progression through several telomere-dependent and -independent mechanisms. Here, we uncovered a novel function for this protein in regulating the macroautophagic/autophagic process upon different stimuli. By using both biochemical and cell biology approaches, we found that TERF2 binds to the non-histone chromatin-associated protein HMGB1, and this interaction is functional to the nuclear/cytoplasmic protein localization. Specifically, silencing of TERF2 alters the redox status of the cells, further exacerbated upon EBSS nutrient starvation, promoting the cytosolic translocation and the autophagic activity of HMGB1. Conversely, overexpression of wild-type TERF2, but not the mutant unable to bind HMGB1, negatively affects the cytosolic translocation of HMGB1, counteracting the stimulatory effect of EBSS starvation. Moreover, genetic depletion of HMGB1 or treatment with inflachromene, a specific inhibitor of its cytosolic translocation, completely abolished the pro-autophagic activity of TERF2 silencing. In conclusion, our data highlighted a novel mechanism through which TERF2 modulates the autophagic process, thus demonstrating the key role of the telomeric protein in regulating a process that is fundamental, under both physiological and pathological conditions, in defining the fate of the cells.Abbreviations: ALs: autolysosomes; ALT: alternative lengthening of telomeres; ATG: autophagy related; ATM: ATM serine/threonine kinase; CQ: Chloroquine; DCFDA: 2',7'-dichlorofluorescein diacetate; DDR: DNA damage response; DHE: dihydroethidium; EBSS: Earle's balanced salt solution; FACS: fluorescence-activated cell sorting; GFP: green fluorescent protein; EGFP: enhanced green fluorescent protein; GSH: reduced glutathione; GSSG: oxidized glutathione; HMGB1: high mobility group box 1; ICM: inflachromene; IF: immunofluorescence; IP: immunoprecipitation; NAC: N-acetyl-L-cysteine; NHEJ: non-homologous end joining; PLA: proximity ligation assay; RFP: red fluorescent protein; ROS: reactive oxygen species; TIF: telomere-induced foci; TERF2/TRF2: telomeric repeat binding factor 2.
    Keywords:  Autophagy; HMGB1; ROS; TERF2/TRF2; cancer; cell biology; oxidative stress
    DOI:  https://doi.org/10.1080/15548627.2022.2138687
  19. Contact (Thousand Oaks). 2022 Jan-Dec;5:5
      A fundamental role of membrane-bound organelles is the compartmentalization and organization of cellular processes. Mitochondria perform an immense number of metabolic chemical reactions and to efficiently regulate these, the organelle organizes its inner membrane into distinct morphological domains, including its characteristic cristae membranes. In recent years, a structural feature of increasing apparent importance is the inter-connection between the mitochondrial exterior and other organelles at membrane contact sites (MCSs). Mitochondria form MCSs with almost every other organelle in the cell, including the endoplasmic reticulum, lipid droplets, and lysosomes, to coordinate global cellular metabolism with mitochondrial metabolism. However, these MCSs not only facilitate the transport of metabolites between organelles, but also directly impinge on the physical shape and functional organization inside mitochondria. In this review, we highlight recent advances in our understanding of how physical connections between other organelles and mitochondria both directly and indirectly influence the internal architecture of mitochondria.
    Keywords:  Ca2+; cristae; endoplasmic reticulum; inner mitochondrial membrane; interorganelle (inter-organelle); lipid droplet; lysosome; mitochondrion (mitochondria); phospholipid
    DOI:  https://doi.org/10.1177/25152564221133267
  20. Proc Natl Acad Sci U S A. 2022 Nov 08. 119(45): e2211142119
      Ultradian rhythms in metabolism and physiology have been described previously in mammals. However, the underlying mechanisms for these rhythms are still elusive. Here, we report the discovery of temperature-sensitive ultradian rhythms in mammalian fibroblasts that are independent of both the cell cycle and the circadian clock. The period in each culture is stable over time but varies in different cultures (ranging from 3 to 24 h). We show that transient, single-cell metabolic pulses are synchronized into stable ultradian rhythms across contacting cells in culture by gap junction-mediated coupling. Coordinated rhythms are also apparent for other metabolic and physiological measures, including plasma membrane potential (Δψp), intracellular glutamine, α-ketoglutarate, intracellular adenosine triphosphate (ATP), cytosolic pH, and intracellular calcium. Moreover, these ultradian rhythms require extracellular glutamine, several different ion channels, and the suppression of mitochondrial ATP synthase by α-ketoglutarate, which provides a key feedback mechanism. We hypothesize that cellular coupling and metabolic feedback can be used by cells to balance energy demands for survival.
    Keywords:  cellular metabolism; gap junctions; ion channels; membrane potential; ultradian rhythms
    DOI:  https://doi.org/10.1073/pnas.2211142119
  21. Mol Syst Biol. 2022 11;18(11): e11006
      The unravelling of the complexity of cellular metabolism is in its infancy. Cancer-associated genetic alterations may result in changes to cellular metabolism that aid in understanding phenotypic changes, reveal detectable metabolic signatures, or elucidate vulnerabilities to particular drugs. To understand cancer-associated metabolic transformation, we performed untargeted metabolite analysis of 173 different cancer cell lines from 11 different tissues under constant conditions for 1,099 different species using mass spectrometry (MS). We correlate known cancer-associated mutations and gene expression programs with metabolic signatures, generating novel associations of known metabolic pathways with known cancer drivers. We show that metabolic activity correlates with drug sensitivity and use metabolic activity to predict drug response and synergy. Finally, we study the metabolic heterogeneity of cancer mutations across tissues, and find that genes exhibit a range of context specific, and more general metabolic control.
    Keywords:  cancer; heterogeneity; metabolomics; mutation
    DOI:  https://doi.org/10.15252/msb.202211006
  22. Front Pharmacol. 2022 ;13 1034129
      Metastasis is responsible for 90% of deaths in cancer patients. Most patients diagnosed with metastatic cancer will die within 5 years. PA is good for health and has become an emerging adjuvant therapy for cancer survivors. Regular moderate exercise substantially lowers the incidence and recurrence of several cancers, alleviates cancer-related adverse events, enhances the efficacy of anti-cancer treatments, and improves the quality of life of cancer patients. Revealing the mechanisms of PA inhibiting tumor metastasis could upgrade our understanding of cancer biology and help researchers explore new therapeutic strategies to improve survival in cancer patients. However, it remains poorly understood how physical activity prevents metastasis by modulating tumor behavior. The immune system is involved in each step of tumor metastasis. From invasion to colonization, immune cells interact with tumor cells to secret cytokines and proteases to remodel the tumor microenvironment. Substantial studies demonstrated the ability of physical activity to induce antitumor effects of immune cells. This provides the possibility that physical activity can modulate immune cells behavior to attenuate tumor metastasis. The purpose of this review is to discuss and summarize the critical link between immune function and exercise in metastasis prevention.
    Keywords:  immune cells; immune function; microenvironment; physical activity; tumor metastasis
    DOI:  https://doi.org/10.3389/fphar.2022.1034129
  23. Cancer Discov. 2022 Nov 04. pii: CD-22-0535. [Epub ahead of print]
      Lysosomal autophagy inhibition (LAI) with hydroxychloroquine or DC661 can enhance cancer therapy, but tumor regrowth is common. To elucidate LAI resistance, proteomics and immunoblotting demonstrated that LAI induced lipid metabolism enzymes in multiple cancer cell lines. Lipidomics showed that LAI increased cholesterol, sphingolipids, and glycosphingolipids. These changes were associated with striking levels of GM1+ membrane microdomains (GMM) in plasma membranes and lysosomes. Inhibition of cholesterol/sphingolipid metabolism proteins enhanced LAI cytotoxicity. Targeting UDP-glucose ceramide glucosyltransferase (UGCG) synergistically augmented LAI cytotoxicity. While UGCG inhibition decreased LAI-induced GMM and augmented cell death, UGCG overexpression led to LAI resistance. Melanoma patients with high UGCG expression had significantly shorter disease-specific survival. The FDA-approved UGCG inhibitor eliglustat combined with LAI significantly inhibited tumor growth and improved survival in syngeneic tumors and a therapy-resistant patient-derived xenograft. These findings nominate UGCG as a new cancer target, and clinical trials testing UGCG inhibition in combination with LAI are warranted.
    DOI:  https://doi.org/10.1158/2159-8290.CD-22-0535
  24. Mol Cell Proteomics. 2022 Nov 01. pii: S1535-9476(22)00246-8. [Epub ahead of print] 100438
      Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography-tandem mass spectrometry. Most of the 1,481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤ 0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1-like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.
    DOI:  https://doi.org/10.1016/j.mcpro.2022.100438
  25. Cell Metab. 2022 Oct 22. pii: S1550-4131(22)00453-3. [Epub ahead of print]
      Despite its central importance in cellular metabolism, many details remain to be determined regarding subcellular lactate metabolism and its regulation in physiology and disease, as there is sensitive spatiotemporal resolution of lactate distribution, and dynamics remains a technical challenge. Here, we develop and characterize an ultrasensitive, highly responsive, ratiometric lactate sensor, named FiLa, enabling the monitoring of subtle lactate fluctuations in living cells and animals. Utilizing FiLa, we demonstrate that lactate is highly enriched in mammalian mitochondria and compile an atlas of subcellular lactate metabolism that reveals lactate as a key hub sensing various metabolic activities. In addition, FiLa sensors also enable direct imaging of elevated lactate levels in diabetic mice and facilitate the establishment of a simple, rapid, and sensitive lactate assay for point-of-care clinical screening. Thus, FiLa sensors provide powerful, broadly applicable tools for defining the spatiotemporal landscape of lactate metabolism in health and disease.
    Keywords:  highly responsive lactate sensors; lactate metabolism; point-of-care clinical screening; real-time monitoring; subcellular lactate landscape
    DOI:  https://doi.org/10.1016/j.cmet.2022.10.002
  26. Cell Metab. 2022 Nov 01. pii: S1550-4131(22)00459-4. [Epub ahead of print]34(11): 1620-1653
      The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
    Keywords:  amplification; communication; energy; evolution; health; membrane potential; metabokines; mito-nuclear signaling; mitochondrial networks; mitokines; mitotypes; receptors; signal transduction; steroid hormones; stress responses; tissue-specific
    DOI:  https://doi.org/10.1016/j.cmet.2022.10.008
  27. Nature. 2022 Nov 02.
      The accumulation of senescent cells is a major cause of age-related inflammation and predisposes to a variety of age-related diseases1. However, little is known about the molecular basis underlying this accumulation and its potential as a target to ameliorate the ageing process. Here we show that senescent cells heterogeneously express the immune checkpoint protein programmed death-ligand 1 (PD-L1) and that PD-L1+ senescent cells accumulate with age in vivo. PD-L1- cells are sensitive to T cell surveillance, whereas PD-L1+ cells are resistant, even in the presence of senescence-associated secretory phenotypes (SASP). Single-cell analysis of p16+ cells in vivo revealed that PD-L1 expression correlated with higher levels of SASP. Consistent with this, administration of programmed cell death protein 1 (PD-1) antibody to naturally ageing mice or a mouse model with normal livers or induced nonalcoholic steatohepatitis reduces the total number of p16+ cells in vivo as well as the PD-L1+ population in an activated CD8+ T cell-dependent manner, ameliorating various ageing-related phenotypes. These results suggest that the heterogeneous expression of PD-L1 has an important role in the accumulation of senescent cells and inflammation associated with ageing, and the elimination of PD-L1+ senescent cells by immune checkpoint blockade may be a promising strategy for anti-ageing therapy.
    DOI:  https://doi.org/10.1038/s41586-022-05388-4
  28. Am J Physiol Cell Physiol. 2022 Nov 01.
      Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor expressing cells along chemical gradients. Chemokines are a physiologic system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor infiltrating immune cells that culminate in a tumor unique immune microenvironment. In the age of precision oncology strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences within heterogenous tumors. In this article we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drive cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
    Keywords:  Chemokine receptor; cell migration; immuno-oncology; metastasis; tumorigenesis
    DOI:  https://doi.org/10.1152/ajpcell.00151.2022
  29. Cell Rep Methods. 2022 Oct 24. 2(10): 100315
      Populations of stem, progenitor, or cancer cells show proliferative heterogeneity in vivo, comprising proliferating and quiescent cells. Consistent quantification of the quiescent subpopulation and progression of the proliferating cells through the individual phases of the cell cycle has not been achieved. Here, we describe CycleFlow, a method that robustly infers this comprehensive information from standard pulse-chase experiments with thymidine analogs. Inference is based on a mathematical model of the cell cycle, with realistic waiting time distributions for the G1, S, and G2/M phases and a long-term quiescent G0 state. We validate CycleFlow with an exponentially growing cancer cell line in vitro. Applying it to T cell progenitors in steady state in vivo, we uncover strong proliferative heterogeneity, with a minority of CD4+CD8+ T cell progenitors cycling very rapidly and then entering quiescence. CycleFlow is suitable as a routine method for quantitative cell-cycle analysis.
    Keywords:  BrdU labeling; EdU labeling; G0; cell cycle; cell proliferation; cell-cycle arrest; non-Markovian model; quiescence; statistical inference; thymocyte development
    DOI:  https://doi.org/10.1016/j.crmeth.2022.100315
  30. Mol Syst Biol. 2022 11;18(11): e11033
      Cancer cells reprogram their metabolism to support growth and invasion. While previous work has highlighted how single altered reactions and pathways can drive tumorigenesis, it remains unclear how individual changes propagate at the network level and eventually determine global metabolic activity. To characterize the metabolic lifestyle of cancer cells across pathways and genotypes, we profiled the intracellular metabolome of 180 pan-cancer cell lines grown in identical conditions. For each cell line, we estimated activity for 49 pathways spanning the entirety of the metabolic network. Upon clustering, we discovered a convergence into only two major metabolic types. These were functionally confirmed by 13 C-flux analysis, lipidomics, and analysis of sensitivity to perturbations. They revealed that the major differences in cancers are associated with lipid, TCA cycle, and carbohydrate metabolism. Thorough integration of these types with multiomics highlighted little association with genetic alterations but a strong association with markers of epithelial-mesenchymal transition. Our analysis indicates that in absence of variations imposed by the microenvironment, cancer cells adopt distinct metabolic programs which serve as vulnerabilities for therapy.
    Keywords:  cancer metabolism; cell lines; metabolic flux; metabolomics; omics
    DOI:  https://doi.org/10.15252/msb.202211033
  31. Bio Protoc. 2022 Oct 05. pii: e4525. [Epub ahead of print]12(19):
      Few models exist that allow for rapid and effective screening of anti-metastasis drugs. Here, we present a drug screening protocol utilizing gastrulation of zebrafish embryos for identification of anti-metastasis drugs. Based on the evidence that metastasis proceeds through utilizing the molecular mechanisms of gastrulation, we hypothesized that chemicals interrupting zebrafish gastrulation might suppress the metastasis of cancer cells. Thus, we developed a phenotype-based chemical screen that uses epiboly, the first morphogenetic movement in gastrulation, as a marker. The screen only needs zebrafish embryos and enables hundreds of chemicals to be tested in five hours by observing the epiboly progression of chemical-treated embryos. In the screen, embryos at the two-cell stage are firstly corrected and then developed to the sphere stage. The embryos are treated with a test chemical and incubated in the presence of the chemical until vehicle-treated embryos develop to the 90% epiboly stage. Finally, positive 'hit' chemicals that interrupt epiboly progression are selected by comparing epiboly progression of the chemical-treated and vehicle-treated embryos under a stereoscopic microscope. A previous study subjected 1,280 FDA-approved drugs to the screen and identified adrenosterone and pizotifen as epiboly-interrupting drugs. These were validated to suppress metastasis of breast cancer cells in mice models of metastasis. Furthermore, 11β-hydroxysteroid dehydrogenase 1 (HSD11β1) and serotonin receptor 2C (HTR2C), the primary targets of adrenosterone and pizotifen, respectively, promoted metastasis through induction of epithelial-mesenchymal transition (EMT). Therefore, this screen could be converted into a chemical genetic screening platform for identification of metastasis-promoting genes. Graphical abstract.
    Keywords:   Anti-metastasis drugs ; EMT ; Gastrulation ; Metastasis ; Phenotyping screening ; Zebrafish
    DOI:  https://doi.org/10.21769/BioProtoc.4525
  32. Autophagy. 2022 Oct 30. 1-14
      Much of our understanding of the intracellular regulation of macroautophagy/autophagy comes from in vitro studies. However, there remains a paucity of knowledge about how this process is regulated within different tissues during development, aging and disease in vivo. Because upregulation of autophagy is considered a promising therapeutic strategy for the treatment of diverse disorders, it is vital that we understand how this pathway functions in different tissues and this is best done by in vivo analysis. Similarly, to understand the role of autophagy in the pathogenesis of disease, it is important to study this process in the whole animal to investigate how tissue-specific changes in flux and cell-autonomous versus non-cell-autonomous effects alter disease progression. To this end, we have developed an inducible expression system to up- or downregulate autophagy in vivo, in zebrafish. We have used a modified version of the Gal4-UAS expression system to allow inducible expression of autophagy up- or downregulating transgenes by addition of tamoxifen. Using this inducible expression system, we have tested which transgenes robustly up- or downregulate autophagy and have validated these tools using Lc3-II blots and puncta analysis and disease rescue in a zebrafish model of neurodegeneration. These tools allow the temporal control of autophagy via the administration of tamoxifen and spatial control via tissue or cell-specific ERT2-Gal4 driver lines and will enable the investigation of how cell- or tissue-specific changes in autophagic flux affect processes such as aging, inflammation and neurodegeneration in vivo.Abbreviations: ANOVA: analysis of variance; Atg: autophagy related; Bcl2l11/Bim: BCL2 like 11; d.p.f.: days post-fertilization; Cryaa: crystallin, alpha a: DMSO: dimethyl sulfoxide; Elavl3: ELAV like neuron-specific RNA binding protein 3; ER: estrogen receptor; ERT2: modified ligand-binding domain of human ESR1/estrogen receptor α; Gal4: galactose-responsive transcription factor 4; GFP: green fluorescent protein; h.p.f.: hours post-fertilization; HSP: heat-shock protein; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; SD: standard deviation; SEM: standard error of the mean; UAS: upstream activating sequence; Ubb: ubiquitin b.
    Keywords:  ATG4B; ATG5; LC3-II; autophagy; neurodegeneration; tamoxifen; zebrafish
    DOI:  https://doi.org/10.1080/15548627.2022.2135824
  33. Cell. 2022 Oct 25. pii: S0092-8674(22)01261-2. [Epub ahead of print]
      When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.
    Keywords:  K-Cl cotransport; Na-K-2Cl cotransport; SLC12 cotransporter; WNK kinase; biomolecular condensates; cell volume regulation; hyperosmotic stress; macromolecular crowding; phase separation
    DOI:  https://doi.org/10.1016/j.cell.2022.09.042
  34. iScience. 2022 Nov 18. 25(11): 105330
      Metastasis is tightly linked with poor cancer prognosis, yet it is not clear how transformed cells become invasive carcinomas. We previously discovered that single KRasV12-transformed cells can invade directly from the epithelium by basal cell extrusion. During this process, cells de-differentiate by mechanically pinching off their epithelial determinants, but how they trans-differentiate into a migratory, mesenchymal phenotype is not known. Here, we demonstrate that basally extruded KRasV12-expressing cells become significantly deformed as they invade the zebrafish body. Decreasing the confinement that cells experience after they invade reduces the percentage of KRasV12 cells that trans-differentiate into mesenchymal cell types, while higher confinement increases this percentage. Additionally, increased confinement promotes accumulation of internal masses over time. Altogether, our results suggest that mechanical forces drive not only de-differentiation of KRasV12-transformed epithelial cells as they invade but also their re-differentiation into mesenchymal phenotypes that contribute to distant metastases.
    Keywords:  Cancer; Cell biology; Organizational aspects of cell biology
    DOI:  https://doi.org/10.1016/j.isci.2022.105330
  35. Commun Biol. 2022 Oct 31. 5(1): 1159
      Despite the fact that 5-fluorouracil (5-FU) is the backbone for chemotherapy in colorectal cancer (CRC), the response rates in patients is limited to 50%. The mechanisms underlying 5-FU toxicity are debated, limiting the development of strategies to improve its efficacy. How fundamental aspects of cancer, such as driver mutations and phenotypic heterogeneity, relate to the 5-FU response remains obscure. This largely relies on the limited number of studies performed in pre-clinical models able to recapitulate the key features of CRC. Here, we analyzed the 5-FU response in patient-derived organoids that reproduce the different stages of CRC. We find that 5-FU induces pyrimidine imbalance, which leads to DNA damage and cell death in the actively proliferating cancer cells deficient in p53. Importantly, p53-deficiency leads to cell death due to impaired cell cycle arrest. Moreover, we find that targeting the Warburg effect in KRASG12D glycolytic tumor organoids enhances 5-FU toxicity by further altering the nucleotide pool and, importantly, without affecting non-transformed WT cells. Thus, p53 emerges as an important factor in determining the 5-FU response, and targeting cancer metabolism in combination with replication stress-inducing chemotherapies emerges as a promising strategy for CRC treatment.
    DOI:  https://doi.org/10.1038/s42003-022-04055-8
  36. Semin Cancer Biol. 2022 Oct 31. pii: S1044-579X(22)00215-2. [Epub ahead of print]
      Lactate has long been considered as a metabolic by-product of aerobic glycolysis for cancer. However, more and more studies have shown that lactate can regulate cancer progression via multiple mechanisms such as cell cycle regulation, immune suppression, energy metabolism and so on. A recent discovery of lactylation attracted a lot of attention and is already a hot topic in the cancer field. In this review, we summarized the latest functions of lactate and its underlying mechanisms in cancer. We also included our analysis of protein lactylation in different rat organs and compared them with other published lactylation data. The unresolved challenges in this field were discussed, and the potential application of these new discoveries of lactate-related cell cycle activities for cancer target therapy was speculated.
    Keywords:  Cancer; Cell cycle; Lactate; Lactylation; Warburg effect
    DOI:  https://doi.org/10.1016/j.semcancer.2022.10.009
  37. Dev Cell. 2022 Oct 25. pii: S1534-5807(22)00720-1. [Epub ahead of print]
      Mitochondrial perturbations within neurons communicate stress signals to peripheral tissues, coordinating organismal-wide mitochondrial homeostasis for optimal fitness. However, the neuronal control of the systemic stress regulation remains poorly understood. Here, we identified a G-protein-coupled receptor (GPCR), SRZ-75, that couples with Gαq signaling in a pair of chemosensory ADL neurons to drive the mitochondrial unfolded protein response (UPRmt) activation in the intestine via the release of neuropeptides in Caenorhabditis elegans. Constitutive activation of Gαq signaling in the ADL neurons is sufficient to induce the intestinal UPRmt, leading to increased stress resistance and metabolic adaptations. Ablation of ADL neurons attenuates the intestinal UPRmt activation in response to various forms of neuronal mitochondrial dysfunction. Thus, GPCR and its Gαq downstream signaling in two sensory neurons coordinate the systemic UPRmt activation, representing a previously uncharacterized, but potentially conserved, neuronal signaling for organismal-wide mitochondrial stress regulation.
    Keywords:  ADL chemosensory neurons; G-protein-coupled receptor; GPCR; Gαq signaling; SRZ-75; UPR(mt); cell-non-autonomous regulation; the mitochondrial unfolded protein response
    DOI:  https://doi.org/10.1016/j.devcel.2022.10.001
  38. G3 (Bethesda). 2022 Oct 31. pii: jkac287. [Epub ahead of print]
      Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan (CLS) assays in yeast measure the survival of non-dividing cells at stationary phase over time, providing insights into the aging process of post-mitotic cells. Tra1 is an essential component of both the yeast SAGA/SLIK and NuA4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitized cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
    Keywords:  SAGA complex; Tra1; chronological aging; peroxisomes; yeast
    DOI:  https://doi.org/10.1093/g3journal/jkac287
  39. Front Oncol. 2022 ;12 991850
      Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a minority (< 10%) of patients surviving five years past diagnosis. This could be improved with the development of new imaging modalities for early differentiation of benign and cancerous fibrosis. This study intends to explore the application of a two-photon microscopy technique known as second harmonic generation to PDAC using the 2D Wavelet Transform Modulus Maxima (WTMM) Anisotropy method to quantify collagen organization in fibrotic pancreatic tissue. Forty slides from PDAC patients were obtained and eight images were captured per each tissue category on each slide. Brownian surface motion and white noise images were generated for calibration and testing of a new variable binning approach to the 2D WTMM Anisotropy method. The variable binning method had greater resistance to wavelet scaling effects and white noise images were found to have the lowest anisotropy factor. Cancer and fibrosis had greater anisotropy factors (Fa) at small wavelet scales than normal and normal adjacent tissue. At a larger scale of 21 μm this relationship changed with normal tissue having a higher Fa than all other tissue groups. White noise is the best representative image for isotropy and the 2D WTMM anisotropy method is sensitive to changes induced in collagen by PDAC.
    Keywords:  anisotropy; pancreatic cancer; second-harmonic generation (SHG); tumor micro environment; wavelets
    DOI:  https://doi.org/10.3389/fonc.2022.991850
  40. STAR Protoc. 2022 Dec 16. 3(4): 101791
      Well-characterized small molecules enable the study of cell processes and facilitate target validation. Here, we describe a high-content multiplex screen to investigate cell viability over 48 h, which can be combined with investigating phenotypic features, such as tubulin binding and mitochondrial content, as initial cellular quality control of diverse compounds. The protocol is on a live-cell basis and easily adaptable and scalable. It details cell preparation, compound handling, plate layout configuration, image acquisition with the CQ1, and data analysis using the CellPathfinder software. For complete details on the use and execution of this protocol, please refer to Tjaden et al. (2022).
    Keywords:  Cancer; Cell biology; Cell-based assays; High throughput screening; Microscopy
    DOI:  https://doi.org/10.1016/j.xpro.2022.101791
  41. Lancet Oncol. 2022 Nov;pii: S1470-2045(22)00450-8. [Epub ahead of print]23(11): e502-e514
      Cancer policy differences might help to explain international variation in cancer survival, but empirical evidence is scarce. We reviewed cancer policies in 20 International Cancer Benchmarking Partnership jurisdictions in seven countries and did exploratory analyses linking an index of cancer policy consistency over time, with monitoring and implementation mechanisms, to survival from seven cancers in a subset of ten jurisdictions from 1995 to 2014. All ten jurisdictions had structures in place to oversee or deliver cancer control policies and had published at least one major cancer plan. Few cancer plans had explicit budgets for implementation or mandated external evaluation. Cancer policy consistency was positively correlated with improvements in survival over time for six of the seven cancer sites. Jurisdictions that scored the highest on policy consistency had large improvements in survival for most sites. Our analysis provides an important first step to systematically capture and evaluate what are inherently complex policy processes. The findings can help guide policy makers seeking approaches and frameworks to improve cancer services and, ultimately, cancer outcomes.
    DOI:  https://doi.org/10.1016/S1470-2045(22)00450-8