bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2022‒04‒24
34 papers selected by
Kıvanç Görgülü
Technical University of Munich


  1. Mol Cell. 2022 Apr 21. pii: S1097-2765(22)00261-1. [Epub ahead of print]82(8): 1514-1527
      As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.
    Keywords:  autophagy; cancer; lysosome; quality control; remodeling
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.023
  2. JCI Insight. 2022 Apr 22. pii: e158288. [Epub ahead of print]7(8):
      Pancreatic fibrosis is a complication of chronic pancreatitis and is a prominent feature of pancreatic cancer. Pancreatic fibrosis is commonly observed in patients with prolonged pancreatic duct obstruction, which elevates intrapancreatic pressure. We show here that increased pancreatic duct pressure causes fibrosis and describes the mechanism by which pressure increases deposition of extracellular matrix proteins and fibrosis. We found that pancreatic stellate cells (PSCs), the source of the extracellular matrix proteins in fibrosis, express the mechanically activated ion channel Piezo1. By increasing intracellular calcium, mechanical stress or the Piezo1 agonist Yoda1-activated PSCs manifest by loss of perinuclear fat droplets and increased TGF-β1, fibronectin, and type I collagen expression. These effects were blocked by the Piezo1 inhibitor GsMTx4 and absent in PSCs from mice with conditional genetic deletion of Piezo1 in stellate cells, as was pancreatic duct ligation-induced fibrosis. Although TRPV4 has been proposed to have direct mechanosensing properties, we discovered that PSCs from Trpv4-KO mice were protected against Yoda1-triggered activation. Moreover, mice devoid of TRPV4 were protected from pancreatic duct ligation-induced fibrosis. Thus, high pressure within the pancreas stimulates Piezo1 channel opening, and subsequent activation of TRPV4 leads to stellate cell activation and pressure-induced chronic pancreatitis and fibrosis.
    Keywords:  Fibrosis; Gastroenterology
    DOI:  https://doi.org/10.1172/jci.insight.158288
  3. Cancers (Basel). 2022 Apr 13. pii: 1968. [Epub ahead of print]14(8):
      Pancreatic Ductal adenocarcinoma (PDAC) is an aggressive cancer commonly exhibiting KRAS-activating mutations. Alcohol contributes to the risk of developing PDAC in humans, and murine models have shown alcohol consumption in the context of KRAS mutation in the pancreas promotes the development of PDAC. The molecular signatures in pancreas cells altered by alcohol exposure in the context of mutant KRAS could identify pathways related to the etiology of PDAC. In this study, we evaluated the combined effects of alcohol exposure and KRAS mutation status on the transcriptome and proteome of pancreatic HPNE cell models. These analyses identified alterations in transcription and translational processes in mutant KRAS cells exposed to alcohol. In addition, multi-omics analysis suggests an increase in the correlation between mRNA transcript and protein abundance in cells exposed to alcohol with an underlying KRAS mutation. Through differential co-expression, SERPINE1 was found to be influential for PDAC development in the context of mutant KRAS and ethanol. In terms of PDAC subtypes, alcohol conditioning of HPNE cells expressing mutant KRAS decreases the Inflammatory subtype signature and increases the Proliferative and Metabolic signatures, as we previously observed in patient samples. The alterations in molecular subtypes were associated with an increased sensitivity to chemotherapeutic agents gemcitabine, irinotecan, and oxaliplatin. These results provide a framework for distinguishing the molecular dysregulation associated with combined alcohol and mutant KRAS in a pancreatic cell line model.
    Keywords:  KRAS; Proteomics; SERPINE1; alcohol; pancreatic cancer
    DOI:  https://doi.org/10.3390/cancers14081968
  4. JCI Insight. 2022 Apr 19. pii: e151353. [Epub ahead of print]
      Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway creating an urgent need for novel therapeutic targets. To unbiasedly find novel MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines. Here, we found protein arginine N-methyltransferase 5 (PRMT5) inhibitors to trigger a MYC-associated dependency. In human and murine PDACs, a robust connection of MYC and PRMT5 was detected. By the use of gain- and loss-of-function models, we confirm the increased efficacy of PRMT5 inhibitors in MYC deregulated PDACs. Although inhibition of PRMT5 is inducing DNA-damage and arresting PDAC cells in the G2/M-phase of the cell cycle, apoptotic cell death was executed predominantly in cells with high MYC expression. Experiments in primary patient-derived PDAC models demonstrated the existence of a highly PRMT5 inhibitor sensitive subtype. Our work suggests developing PRMT5 inhibitor-based therapies for PDAC.
    Keywords:  Cancer; Cell Biology; Oncology; Pharmacology
    DOI:  https://doi.org/10.1172/jci.insight.151353
  5. Mol Cell. 2022 Apr 21. pii: S1097-2765(22)00156-3. [Epub ahead of print]82(8): 1492-1500
      The endoplasmic reticulum (ER) is a hotspot for many essential cellular functions. The ER membrane is highly dynamic, which affects many cellular processes that take place within the ER. One such process is ER-phagy, a selective degradation of ER fragments (including membranes and luminal content), which serves to preserve the size of ER while adapting its morphology under basal and stress conditions. In order to be degraded, the ER undergoes selective fragmentation facilitated by specialized ER-shaping proteins that also act as ER-phagy receptors. Their ability to sense and induce membrane curvature, as well as to bridge the ER with autophagy machinery, allows for a successful ER fragmentation and delivery of these fragments to the lysosome for degradation and recycling. In this review, we provide insights into ER-phagy from the perspective of membrane remodeling. We highlight the importance of ER membrane dynamics during ER-phagy and emphasize how its dysregulation reflects on human physiology and pathology.
    DOI:  https://doi.org/10.1016/j.molcel.2022.02.018
  6. Nat Commun. 2022 Apr 19. 13(1): 2070
      Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in pancreatic ductal adenocarcinoma (PDAC) has not been explored. Here, we develop a DUB discovery pipeline, combining activity-based proteomics with a loss-of-function genetic screen in patient-derived PDAC organoids and murine genetic models. This approach identifies USP25 as a master regulator of PDAC growth and maintenance. Genetic and pharmacological USP25 inhibition results in potent growth impairment in PDAC organoids, while normal pancreatic organoids are insensitive, and causes dramatic regression of patient-derived xenografts. Mechanistically, USP25 deubiquitinates and stabilizes the HIF-1α transcription factor. PDAC is characterized by a severely hypoxic microenvironment, and USP25 depletion abrogates HIF-1α transcriptional activity and impairs glycolysis, inducing PDAC cell death in the tumor hypoxic core. Thus, the USP25/HIF-1α axis is an essential mechanism of metabolic reprogramming and survival in PDAC, which can be therapeutically exploited.
    DOI:  https://doi.org/10.1038/s41467-022-29684-9
  7. Proc Natl Acad Sci U S A. 2022 Apr 26. 119(17): e2110557119
      SignificanceMany new cancer drugs fail at the clinical stage owing to poor efficacy and/or excessive toxicity, though whether this reflects shortcomings of the target or the drug is often unclear. To gain earlier insights into factors that can influence the therapeutic index of target inhibition in vivo, we combine inducible RNA interference and somatic engineering technologies to produce a cost-effective platform that enables systemic and inducible suppression of candidate target in normal tissues and tumor cells in the same mouse. By comparing the consequences of genetic and pharmacological CDK9 inhibition, we establish the utility of this platform to predict factors influencing the therapeutic index. Additionally, our studies provide support, and some cautionary notes, for the clinical development of CDK9 inhibitors.
    Keywords:  CDK9; hepatocellular carcinoma; mouse model; preclinical platform
    DOI:  https://doi.org/10.1073/pnas.2110557119
  8. Dev Cell. 2022 Apr 14. pii: S1534-5807(22)00229-5. [Epub ahead of print]
      Mitochondrial dysfunction is interconnected with cancer. Nevertheless, how defective mitochondria promote cancer is poorly understood. We find that mitochondrial dysfunction promotes DNA damage under conditions of increased apoptotic priming. Underlying this process, we reveal a key role for mitochondrial dynamics in the regulation of DNA damage and genome instability. The ability of mitochondrial dynamics to regulate oncogenic DNA damage centers upon the control of minority mitochondrial outer membrane permeabilization (MOMP), a process that enables non-lethal caspase activation leading to DNA damage. Mitochondrial fusion suppresses minority MOMP and its associated DNA damage by enabling homogeneous mitochondrial expression of anti-apoptotic BCL-2 proteins. Finally, we find that mitochondrial dysfunction inhibits pro-apoptotic BAX retrotranslocation, causing BAX mitochondrial localization and thereby promoting minority MOMP. Unexpectedly, these data reveal oncogenic effects of mitochondrial dysfunction that are mediated via mitochondrial dynamics and caspase-dependent DNA damage.
    Keywords:  DNA damage; MOMP; apoptosis; cancer; caspase; cell death; fission; fusion; mitochondrial dynamics
    DOI:  https://doi.org/10.1016/j.devcel.2022.03.019
  9. Cell Regen. 2022 Apr 20. 11(1): 15
      Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
    Keywords:  Cancer cachexia; Stem cells; Tissue wasting
    DOI:  https://doi.org/10.1186/s13619-022-00108-9
  10. J Physiol. 2022 Apr 17.
      Disorders such as pancreatic or hepatic fibrosis are a cruel reminder that disruption of the delicate physiological balance could result in severe pathological consequences. Fibrosis is usually associated with chronic diseases and manifests itself as excessive deposition of the extracellular matrix, which gradually leads to the replacement of the cellular components by fibrotic lesions, significantly compromising normal tissue functions. The main cellular mediators of fibrosis are different populations of tissue fibroblasts, predominantly hepatic and pancreatic stellate cells in the liver and pancreas, respectively. These cells undergo a phenotypic switch in response to (bio)chemical or physical stimuli and acquire a myofibroblast-like phenotype characterised by increased contractile and adhesive properties, elevated expression of certain cytoskeletal and membrane proteins, and prominent production of extracellular matrix components. In the last decades, a substantial scientific efforts have been undertaken to investigate the pathogenesis of fibrosis. Here, cellular mechanisms of hepatic and pancreatic fibrosis, their aetiological factors, associated diseases and prospective therapies are discussed. New therapies against fibrosis are likely to be focused on regulation of hepatic/pancreatic stellate cell physiology as well as normalisation of the organ mechanostasis. Abstract figure legend This article is protected by copyright. All rights reserved.
    Keywords:  fibroblasts; fibrosis; liver; pancreas; stellate cells
    DOI:  https://doi.org/10.1113/JP281135
  11. Proc Natl Acad Sci U S A. 2022 Apr 26. 119(17): e2119644119
      SignificanceMissense mutations in the TP53 gene, encoding the p53 tumor suppressor, are very frequent in human cancer. Some of those mutations, particularly the more common ("hotspot") ones, not only abrogate p53's tumor suppressor activities but also endow the mutant protein with oncogenic gain of function (GOF). We report that p53R273H, the most common p53 mutant in pancreatic cancer, interacts with the SQSTM1/p62 protein to accelerate the degradation of cell adhesion proteins. This enables pancreatic cancer cells to detach from the epithelial sheet and engage in individualized cell migration, probably augmenting metastatic spread. By providing insights into mechanisms that underpin mutant p53 GOF, this study may suggest ways to interfere with the progression of cancers bearing particular p53 mutants.
    Keywords:  cell adhesion; migration; mutant p53; p62; protein–protein interaction
    DOI:  https://doi.org/10.1073/pnas.2119644119
  12. Microsyst Nanoeng. 2022 ;8 36
      The patient population suffering from pancreatic ductal adenocarcinoma (PDAC) presents, as a whole, with a high degree of molecular tumor heterogeneity. The heterogeneity of PDAC tumor composition has complicated treatment and stalled success in clinical trials. Current in vitro techniques insufficiently replicate the intricate stromal components of PDAC tumor microenvironments (TMEs) and fail to model a given tumor's unique genetic phenotype. The development of patient-derived organoids (PDOs) has opened the door for improved personalized medicine since PDOs are derived directly from patient tumors, thus preserving the tumors' unique behaviors and genetic phenotypes. This study developed a tumor-chip device engineered to mimic the PDAC TME by incorporating PDOs and stromal cells, specifically pancreatic stellate cells and macrophages. Establishing PDOs in a multicellular microfluidic chip device prolongs cellular function and longevity and successfully establishes a complex organotypic tumor environment that incorporates desmoplastic stroma and immune cells. When primary cancer cells in monoculture were subjected to stroma-depleting agents, there was no effect on cancer cell viability. However, targeting stroma in our tumor-chip model resulted in a significant increase in the chemotherapy effect on cancer cells, thus validating the use of this tumor-chip device for drug testing.
    Keywords:  Engineering; Materials science
    DOI:  https://doi.org/10.1038/s41378-022-00370-6
  13. Elife. 2022 Apr 22. pii: e62625. [Epub ahead of print]11
      Chronic obesity is correlated with severe metabolic and cardiovascular diseases as well as with an increased risk for developing cancers. Obesity is usually characterized by fat accumulation in enlarged - hypertrophic - adipocytes that are a source of inflammatory mediators, which promote the development and progression of metabolic disorders. Yet, in certain healthy obese individuals, fat is stored in metabolically more favorable hyperplastic fat tissue that contains an increased number of smaller adipocytes that are less inflamed. In a previous study we demonstrated that loss of the inhibitory protein-isoform C/EBPβ-LIP and the resulting augmented function of the transactivating isoform C/EBPβ-LAP promotes fat metabolism under normal feeding conditions and expands health- and lifespan in mice. Here we show that in mice on a high-fat diet, LIP-deficiency results in adipocyte hyperplasia associated with reduced inflammation and metabolic improvements. Furthermore, fat storage in subcutaneous depots is significantly enhanced specifically in LIP-deficient male mice. Our data identify C/EBPβ as a regulator of adipocyte fate in response to increased fat intake, which has major implications for metabolic health and aging.
    Keywords:  cell biology; chromosomes; gene expression; mouse
    DOI:  https://doi.org/10.7554/eLife.62625
  14. Nature. 2022 Apr 20.
      Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αβ T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.
    DOI:  https://doi.org/10.1038/s41586-022-04632-1
  15. Proc Natl Acad Sci U S A. 2022 Apr 26. 119(17): e2117938119
      SignificanceWe report a quantitative Raman microscopy method that measures the concentration of protein and lipid in cells at high spatial resolution in living and in fixed samples of tissues, allowing quantitative studies of cell size and organelle regulation both in cell culture and in tissue slices; it can be applied to problems of cell size control, intracellular crowding, and lipid metabolism in the context of cell growth, cell differentiation, cell senescence, and pathology.
    Keywords:  cell size; lipid imaging; quantitative microscopy; single cell mass quantification; stimulated Raman scattering
    DOI:  https://doi.org/10.1073/pnas.2117938119
  16. Adv Cancer Res. 2022 ;pii: S0065-230X(22)00036-7. [Epub ahead of print]154 169-201
      Pancreas and breast cancers both contain abundant stromal components within the tumor tissues. A prominent cell type within the stroma is cancer-associated fibroblasts (CAFs). CAFs play critical and complex roles establishing the tumor microenvironment to either promote or prevent tumor progression. Recently, complex genetic models and single cell-based techniques have provided emerging insights on the precise functions and cellular heterogeneity of CAFs. The transformation of normal fibroblasts into CAFs is a key event during tumor initiation and progression. Such coordination between tumor cells and fibroblasts plays an important role in cancer development. Reprograming fibroblasts is currently being explored for therapeutic benefits. In this review, we will discuss recent literature shedding light on the tissues of origin, activation mechanisms, and heterogeneity of CAFs comparing pancreas and breast cancers.
    Keywords:  Activation; Breast; Cancer; Fibroblasts; Heterogeneity; Origin; Pancreas
    DOI:  https://doi.org/10.1016/bs.acr.2022.03.003
  17. Stem Cell Rev Rep. 2022 Apr 23.
      Cellular senescence is an irreversible cell arrest process, which is determined by a variety of complicated mechanisms, including telomere attrition, mitochondrial dysfunction, metabolic disorders, loss of protein homeostasis, epigenetic changes, etc. Cellular senescence is causally related to the occurrence and development of age-related disease. The elderly is liable to suffer from disorders such as neurodegenerative diseases, cancer, and diabetes. Therefore, it is increasingly imperative to explore specific countermeasures for the treatment of age-related diseases. Numerous studies on humans and mice emphasize the significance of metabolic imbalance caused by short telomeres and mitochondrial damages in the onset of age-related diseases. Although the experimental data are relatively independent, more and more evidences have shown that there is mutual crosstalk between telomeres and mitochondrial metabolism in the process of cellular senescence. This review systematically discusses the relationship between telomere length, mitochondrial metabolic disorder, as well as their underlying mechanisms for cellular senescence and age-related diseases. Future studies on telomere and mitochondrial metabolism may shed light on potential therapeutic strategies for age-related diseases. Graphical Abstract The characteristics of cellular senescence mainly include mitochondrial dysfunction and telomere attrition. Mitochondrial dysfunction will cause mitochondrial metabolic disorders, including decreased ATP production, increased ROS production, as well as enhanced cellular apoptosis. While oxidative stress reaction to produce ROS, leads to DNA damage, and eventually influences telomere length. Under the stimulation of oxidative stress, telomerase catalytic subunit TERT mainly plays an inhibitory role on oxidative stress, reduces the production of ROS and protects telomere function. Concurrently, mitochondrial dysfunction and telomere attrition eventually induce a range of age-related diseases, such as T2DM, osteoporosis, AD, etc. :increase; :reduce;⟝:inhibition.
    Keywords:  Aging; Cellular senescence; Mitochondrial metabolism; Telomeres
    DOI:  https://doi.org/10.1007/s12015-022-10370-8
  18. Sci Adv. 2022 Apr 22. 8(16): eabm3453
      Tumor cell-derived extracellular vesicles (EVs) are being explored as circulating biomarkers, but it is unclear whether bulk measurements will allow early cancer detection. We hypothesized that a single-EV analysis (sEVA) technique could potentially improve diagnostic accuracy. Using pancreatic cancer (PDAC), we analyzed the composition of putative cancer markers in 11 model lines. In parental PDAC cells positive for KRASmut and/or P53mut proteins, only ~40% of EVs were also positive. In a blinded study involving 16 patients with surgically proven stage 1 PDAC, KRASmut and P53mut protein was detectable at much lower levels, generally in <0.1% of vesicles. These vesicles were detectable by the new sEVA approach in 15 of the 16 patients. Using a modeling approach, we estimate that the current PDAC detection limit is at ~0.1-cm3 tumor volume, below clinical imaging capabilities. These findings establish the potential for sEVA for early cancer detection.
    DOI:  https://doi.org/10.1126/sciadv.abm3453
  19. JAMA Oncol. 2022 Apr 21.
      Importance: Pancreatic cancer is the third most common cause of cancer death; however, randomized clinical trials (RCTs) of survival in patients with resectable pancreatic cancer lack mandatory measures for reporting baseline and prognostic factors, which hampers comparisons between outcome measures.Objective: To develop a consensus on baseline and prognostic factors to be used as mandatory measurements in RCTs of resectable and borderline resectable pancreatic cancer.
    Evidence Review: We performed a systematic literature search of the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, and Embase for RCTs on resectable and borderline resectable pancreatic cancer with overall survival as the primary outcome. We produced a systematic summary of all baseline and prognostic factors identified in the RCTs. A Delphi panel that included 13 experts was surveyed to reach a consensus on mandatory and recommended baseline and prognostic factors.
    Findings: The 42 RCTs that met inclusion criteria reported a total of 60 baseline and 19 prognostic factors. After 2 Delphi rounds, agreement was reached on 50 mandatory baseline and 20 mandatory prognostic factors for future RCTs, with a distinction between studies of neoadjuvant vs adjuvant treatment.
    Conclusion and Relevance: This findings of this systematic review and international expert consensus have produced this Consensus Statement on Mandatory Measurements in Pancreatic Cancer Trials for Resectable and Borderline Resectable Disease (COMM-PACT-RB). The baseline and prognostic factors comprising the mandatory measures will facilitate better comparison across RCTs and eventually will enable improved clinical practice among patients with resectable and borderline resectable pancreatic cancer.
    DOI:  https://doi.org/10.1001/jamaoncol.2022.0168
  20. Immunology. 2022 Apr 18.
      The relationship between macrophages of the peritoneal cavity and the adjacent omentum remains poorly understood. Here, we describe two populations of omental macrophages distinguished by CD102 expression and use an adoptive cell transfer approach to investigate whether these arise from peritoneal macrophages, and whether this depends upon inflammatory status, the origin of peritoneal macrophages and availability of the omental niches. We show that whereas established resident peritoneal macrophages largely fail to migrate to the omentum, monocyte-derived resident cells readily migrate and form a substantial component of omental CD102+ macrophages in the months following resolution of peritoneal inflammation. In contrast, both populations had the capacity to migrate to the omentum in the absence of endogenous peritoneal and omental macrophages. However, inflammatory macrophages expanded more effectively and more efficiently repopulated both CD102+ and CD102- omental populations, whereas established resident macrophages partially reconstituted the omental niche via recruitment of monocytes. Hence, cell origin determines the migration of peritoneal macrophages to the omentum and predisposes established resident macrophages to drive infiltration of monocyte-derived cells.
    DOI:  https://doi.org/10.1111/imm.13483
  21. J Cell Biol. 2022 Jun 06. pii: e202110151. [Epub ahead of print]221(6):
      The endolysosome system plays central roles in both autophagic degradation and secretory pathways, including the release of extracellular vesicles and particles (EVPs). Although previous work reveals important interconnections between autophagy and EVP-mediated secretion, our understanding of these secretory events during endolysosome inhibition remains incomplete. Here, we delineate a secretory autophagy pathway upregulated in response to endolysosomal inhibition, which mediates EVP-associated release of autophagic cargo receptors, including p62/SQSTM1. This secretion is highly regulated and dependent on multiple ATGs required for autophagosome formation, as well as the small GTPase Rab27a. Furthermore, disrupting autophagosome maturation, either via genetic inhibition of autophagosome-to-autolysosome fusion or expression of SARS-CoV-2 ORF3a, is sufficient to induce EVP secretion of autophagy cargo receptors. Finally, ATG-dependent EVP secretion buffers against the intracellular accumulation of autophagy cargo receptors when classical autophagic degradation is impaired. Thus, we propose secretory autophagy via EVPs functions as an alternate route to clear sequestered material and maintain proteostasis during endolysosomal dysfunction or impaired autophagosome maturation.
    DOI:  https://doi.org/10.1083/jcb.202110151
  22. Cell Chem Biol. 2022 Apr 13. pii: S2451-9456(22)00127-1. [Epub ahead of print]
      Environmental stresses, including hypoxia or detachment for anchorage independence, or attenuation of mitochondrial respiration through inhibition of electron transport chain induce reductive carboxylation in cells with an enhanced fraction of citrate arising through reductive metabolism of glutamine. This metabolic process contributes to redox homeostasis and sustains biosynthesis of lipids. Reductive carboxylation is often dependent on cytosolic isocitrate dehydrogenase 1 (IDH1). However, whether diverse cellular signals induce reductive carboxylation differentially or through a common signaling converging node remains unclear. We found that induction of reductive carboxylation commonly requires enhanced tyrosine phosphorylation and activation of IDH1, which, surprisingly, is achieved by attenuation of a cytosolic protein tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-2 (SHP-2). Mechanistically, diverse signals induce reductive carboxylation by converging at upregulation of NADPH oxidase 2, leading to elevated cytosolic reactive oxygen species that consequently inhibit SHP-2. Together, our work elucidates the signaling basis underlying reductive carboxylation in cancer cells.
    Keywords:  NADPH oxidase 2 (NOX2); Src homology region 2 domain-containing phosphatase-2 (SHP-2); cytosolic reactive oxygen species (ROS); isocitrate dehydrogenase 1 (IDH1); reductive carboxylation; tyrosine phosphorylation
    DOI:  https://doi.org/10.1016/j.chembiol.2022.03.010
  23. Semin Cell Dev Biol. 2022 Apr 18. pii: S1084-9521(22)00122-7. [Epub ahead of print]
      Mitochondria are vital organelles with a central role in all aspects of cellular metabolism. As a means to support the ever-changing demands of the cell, mitochondria produce energy, drive biosynthetic processes, maintain redox homeostasis, and function as a hub for cell signaling. While mitochondria have been widely studied for their role in disease and metabolic dysfunction, this organelle has a continually evolving role in the regulation of development, wound repair, and regeneration. Mitochondrial metabolism dynamically changes as tissues transition through distinct phases of development. These organelles support the energetic and biosynthetic demands of developing cells and function as key structures that coordinate the nutrient status of the organism with developmental progression. This review will examine the mechanisms that link mitochondria to developmental processes. We will also examine the process of mitochondrial respiratory quiescence (MRQ), a novel mechanism for regulating cellular metabolism through the biochemical and physiological remodeling of mitochondria. Lastly, we will examine MRQ as a system to discover the mechanisms that drive mitochondrial remodeling during development.
    Keywords:  Cancer; Drosophila; Metabolism; Mitochondria; Oocytes; Quiescence; Reprogramming; Stem cells
    DOI:  https://doi.org/10.1016/j.semcdb.2022.03.040
  24. Curr Oncol. 2022 Apr 11. 29(4): 2644-2649
      Salvage chemotherapy for patients with unresectable pancreatic cancer (UR-PC) who have been treated with gemcitabine and nab-paclitaxel (GnP), and 5-fluorouracil (5-FU)/l-leucovorin (LV) plus nanoliposomal irinotecan (nal-IRI), has not been fully established. We retrospectively reviewed data from 17 patients with UR-PC who initiated 5-FU/l-LV plus oxaliplatin (FOLFOX) as salvage chemotherapy at our hospital between June 2020 and August 2021, after treatment with GnP and 5-FU/LV plus nal-IRI. The primary endpoint was tumor response. The secondary endpoints were progression-free survival (PFS) and adverse events (AEs). The response and disease control rates were 5.9% (1/17) and 17.6% (3/17), respectively. The median PFS was 1.8 months (range: 0.4-5.2 months). Eight patients (47.1%) experienced grade 3 nonhematologic AEs, while none experienced grade 3 hematologic AEs. Two patients with controlled disease had homologous recombination deficiency (HRD)-associated gene mutations in cancer panel testing. The FOLFOX regimen benefit for UR-PC patients treated with GnP and 5-FU/LV plus nal-IRI may be limited to patients with HRD-associated gene mutations.
    Keywords:  FOLFOX; chemotherapy; pancreatic cancer
    DOI:  https://doi.org/10.3390/curroncol29040216
  25. Science. 2022 Apr 22. 376(6591): 377-382
      Cytotoxic T lymphocytes (CTLs) and natural killer cells kill virus-infected and tumor cells through the polarized release of perforin and granzymes. Perforin is a pore-forming toxin that creates a lesion in the plasma membrane of the target cell through which granzymes enter the cytosol and initiate apoptosis. Endosomal sorting complexes required for transport (ESCRT) proteins are involved in the repair of small membrane wounds. We found that ESCRT proteins were precisely recruited in target cells to sites of CTL engagement immediately after perforin release. Inhibition of ESCRT machinery in cancer-derived cells enhanced their susceptibility to CTL-mediated killing. Thus, repair of perforin pores by ESCRT machinery limits granzyme entry into the cytosol, potentially enabling target cells to resist cytolytic attack.
    DOI:  https://doi.org/10.1126/science.abl3855
  26. Nat Commun. 2022 Apr 19. 13(1): 2111
      AKT- a key molecular regulator of PI-3K signaling pathway, is somatically mutated in diverse solid cancer types, and aberrant AKT activation promotes altered cancer cell growth, survival, and metabolism1-8. The most common of AKT mutations (AKT1 E17K) sensitizes affected solid tumors to AKT inhibitor therapy7,8. However, the pathway dependence and inhibitor sensitivity of the long tail of potentially activating mutations in AKT is poorly understood, limiting our ability to act clinically in prospectively characterized cancer patients. Here we show, through population-scale driver mutation discovery combined with functional, biological, and therapeutic studies that some but not all missense mutations activate downstream AKT effector pathways in a growth factor-independent manner and sensitize tumor cells to diverse AKT inhibitors. A distinct class of small in-frame duplications paralogous across AKT isoforms induce structural changes different than those of activating missense mutations, leading to a greater degree of membrane affinity, AKT activation, and cell proliferation as well as pathway dependence and hyper-sensitivity to ATP-competitive, but not allosteric AKT inhibitors. Assessing these mutations clinically, we conducted a phase II clinical trial testing the AKT inhibitor capivasertib (AZD5363) in patients with solid tumors harboring AKT alterations (NCT03310541). Twelve patients were enrolled, out of which six harbored AKT1-3 non-E17K mutations. The median progression free survival (PFS) of capivasertib therapy was 84 days (95% CI 50-not reached) with an objective response rate of 25% (n = 3 of 12) and clinical benefit rate of 42% (n = 5 of 12). Collectively, our data indicate that the degree and mechanism of activation of oncogenic AKT mutants vary, thereby dictating allele-specific pharmacological sensitivities to AKT inhibition.
    DOI:  https://doi.org/10.1038/s41467-022-29638-1
  27. Mol Cell. 2022 Apr 21. pii: S1097-2765(22)00253-2. [Epub ahead of print]82(8): 1604-1604.e1
      Organelles are continuously turned over as part of cellular homeostasis and adaptation. Most organelles, even including the nucleus, are degraded by lysosomes via different pathways, such as macroautophagy, microautophagy, organelle-derived vesicle degradation, and crinophagy. In some specific cases-for example, in lens fiber cells-organelles are degraded by cytosolic phospholipases. To view this SnapShot, open or download the PDF.
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.015
  28. Autophagy. 2022 Apr 18.
      Single cell-based analysis of macroautophagy/autophagy is largely achieved through the use of fluorescence microscopy to detect autophagy-related proteins that associate with autophagic membranes and therefore can be quantified as fluorescent puncta. In this context, an automated analysis of the number and size of recognized puncta is preferable to a manual count, because more reliable results can be generated in a short time. Here we present a method for open source CellProfiler software-based analysis for quantitative autophagy assessments using GFP-tagged WIPI1 (WD repeat domain, phosphoinositide interacting 1) images acquired with Airyscan or confocal laser-scanning microscopy. The CellProfiler protocol is provided as a ready-to-use software pipeline, and the creation of this pipeline is detailed in both text and video formats. In addition, we provide CellProfiler pipelines for endogenous SQSTM1/p62 (sequestosome 1) or intracellular lipid droplet (LD) analysis, suitable to assess forms of selective autophagy. All protocols and software pipelines can be quickly and easily adapted for the use of alternative autophagy markers or cell types, and can also be used for high-throughput purposes.
    Keywords:  CellProfiler; SQSTM1/p62; WIPI1; airyscan microscopy; autophagy; lipid droplets
    DOI:  https://doi.org/10.1080/15548627.2022.2065617
  29. J Cachexia Sarcopenia Muscle. 2022 Apr 17.
      Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Its biological functions include metabolic stress adaptation, stem cell differentiation, immunomodulation and diseases regulation, and so on. Current researches have proved that autophagy dysfunction may contribute to the pathogenesis of some myopathies through impairment of myofibres regeneration. Studies of autophagy inhibition also indicate the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. In this review, we aim to report the mechanisms of action of autophagy on muscle regeneration to provide relevant references for the treatment of regenerating defective myopathies by regulating autophagy. Results have shown that one key mechanism of autophagy regulating the muscle regeneration is to affect the differentiation fate of muscle stem cells (MuSCs), including quiescence maintenance, activation and differentiation. The roles of autophagy (organelle/protein degradation, energy facilitation, and/or other) vary at different myogenic stages of the repair process. When the muscle is in homeostasis, basal autophagy can maintain the quiescence state and stemness of MuSCs by renewing organelle and protein. After injury, the increased autophagy flux contributes to meet biological energy demand of MuSCs during activation and proliferation. By mitochondrial remodelling, autophagy during differentiation can promote the metabolic transformation and balance mitochondrial-mediated apoptosis signals in myoblasts. Autophagy in mature myofibres is also essential for the degradation of necrotic myofibres, and may affect the dynamics of MuSCs by affecting the secretion spectrum of myofibres or the recruitment of supporting cells. Except for myogenic cells, autophagy also plays an important role in regulating the function of non-myogenic cells in the muscle microenvironment, which is also essential for successful muscle recovery. Autophagy can regulate the immune microenvironment during muscle regeneration through the recruitment and polarization of macrophages, while autophagy in endothelial cells can regulate muscle regeneration in an angiogenic or angiogenesis-independent manner. Drug or nutrition targeted autophagy has been preliminarily proved to restore muscle function in myopathies by promoting muscle regeneration, and further understanding the role and mechanism of autophagy in various cell types during muscle regeneration will enable more effective combinatorial therapeutic strategies.
    Keywords:  Autophagy; Microenvironment; MuSCs; Myopathies; Regeneration; Skeletal muscle
    DOI:  https://doi.org/10.1002/jcsm.13000
  30. Science. 2022 Apr 22. 376(6591): 394-396
      Cells migrate through crowded microenvironments within tissues during normal development, immune response, and cancer metastasis. Although migration through pores and tracks in the extracellular matrix (ECM) has been well studied, little is known about cellular traversal into confining cell-dense tissues. We find that embryonic tissue invasion by Drosophila macrophages requires division of an epithelial ectodermal cell at the site of entry. Dividing ectodermal cells disassemble ECM attachment formed by integrin-mediated focal adhesions next to mesodermal cells, allowing macrophages to move their nuclei ahead and invade between two immediately adjacent tissues. Invasion efficiency depends on division frequency, but reduction of adhesion strength allows macrophage entry independently of division. This work demonstrates that tissue dynamics can regulate cellular infiltration.
    DOI:  https://doi.org/10.1126/science.abj0425
  31. Clin Gastroenterol Hepatol. 2022 Apr 15. pii: S1542-3565(22)00389-5. [Epub ahead of print]
      BACKGROUND & AIMS: Follow-up of abdominal computed tomography (CT) and magnetic resonance imaging (MRI) findings suspicious for pancreatic cancer may be delayed if documentation is unclear. We evaluated whether standardized reporting and follow-up of imaging results reduced time to diagnosis of pancreatic cancer.METHODS: We used a quasi-experimental stepped-wedge cluster design to evaluate the effectiveness of newly implemented radiology reporting system. The system standardizes the reporting of CT and MRI reports using hashtags that classify pancreatic findings. The system also automates referral of patients with findings suspicious for pancreatic cancer to a multidisciplinary care team for rapid review and follow-up. The study examined 318,331 patients who underwent CT or MRI that included the abdomen during 2016 through 2019 who had not had an eligible CT or MRI in the preceding 24 months. We evaluated the association of the intervention with incidence of pancreatic cancer within 60 days and 120 days after imaging.
    RESULTS: 38% of patients received the intervention and 1,523 (0.48%) patients were diagnosed with pancreatic cancer. In multivariable analysis accounting for age, race/ethnicity, sex, Charlson comorbidity, history of cancer, diabetes, and 4-month calendar period, the intervention was associated with nearly 50% greater odds of diagnosing pancreatic cancer within 60 days (adjusted OR, 1.47, 95% CI, 1.05-2.06) and 120 days (adjusted OR, 1.46, 95% CI, 1.04-2.06).
    CONCLUSIONS: In this large quasi-experimental community-based observational study, implementation standardized reporting of abdominal CT and MRI reports with clinical navigation was effective for increasing the detection and diagnosis of pancreatic cancer.
    Keywords:  Pancreas; computed tomography; health services research; magnetic resonance imaging
    DOI:  https://doi.org/10.1016/j.cgh.2022.03.047
  32. Nat Rev Cardiol. 2022 Apr 19.
      Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
    DOI:  https://doi.org/10.1038/s41569-022-00698-6
  33. Cell. 2022 Apr 15. pii: S0092-8674(22)00343-9. [Epub ahead of print]
      Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.
    Keywords:  T cells; TME; breast cancer; cancer-associated fibroblasts; dendritic cells; immunotherapy; resistance to therapy; single-cell RNA-sequencing; tumor dormancy; tumor immunology; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.cell.2022.03.033