bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2022–04–17
forty-five papers selected by
Kıvanç Görgülü, Technical University of Munich



  1. Oncogene. 2022 Apr 13.
      The cytoplasmic phosphatase DUSP6 and its nuclear counterpart DUSP5 are negative regulators of RAS/ERK signalling. Here we use deletion of either Dusp5 or Dusp6 to explore the roles of these phosphatases in a murine model of KRASG12D-driven pancreatic cancer. By 56-days, loss of either DUSP5 or DUSP6 causes a significant increase in KRASG12D-driven pancreatic hyperplasia. This is accompanied by increased pancreatic acinar to ductal metaplasia (ADM) and the development of pre-neoplastic pancreatic intraepithelial neoplasia (PanINs). In contrast, by 100-days, pancreatic hyperplasia is reversed with significant atrophy of pancreatic tissue and weight loss observed in animals lacking either DUSP5 or DUSP6. On further ageing, Dusp6-/- mice display accelerated development of metastatic pancreatic ductal adenocarcinoma (PDAC), while in Dusp5-/- animals, although PDAC development is increased this process is attenuated by atrophy of pancreatic acinar tissue and severe weight loss in some animals before cancer could progress. Our data suggest that despite a common target in the ERK MAP kinase, DUSP5 and DUSP6 play partially non-redundant roles in suppressing oncogenic KRASG12D signalling, thus retarding both tumour initiation and progression. Our data suggest that loss of either DUSP5 or DUSP6, as observed in certain human tumours, including the pancreas, could promote carcinogenesis.
    DOI:  https://doi.org/10.1038/s41388-022-02302-0
  2. Gut. 2022 Apr 15. pii: gutjnl-2021-325564. [Epub ahead of print]
       OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models.
    DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation.
    RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment.
    CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.
    Keywords:  CELL MATRIX INTERACTION; MACROPHAGES; MOLECULAR ONCOLOGY; PANCREATIC CANCER; PANCREATIC FIBROSIS
    DOI:  https://doi.org/10.1136/gutjnl-2021-325564
  3. Cancer Res. 2022 Apr 12. pii: canres.3230.2021. [Epub ahead of print]
      Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with few effective treatments. Here we show that the mitochondrial calcium uniporter (MCU) promotes PDAC cell migration, invasion, metastasis, and metabolic stress resistance by activating the Keap1-Nrf2 antioxidant program. The cystine transporter SLC7A11 was identified as a druggable target downstream of the MCU-Nrf2 axis. Paradoxically, despite the increased ability to uptake cystine, MCU-overexpressing PDAC demonstrated characteristics typical of cystine-deprived cells and were hypersensitive to cystine deprivation-induced ferroptosis. Pharmacological inhibitors of SLC7A11 effectively induced tumor regression and abrogated MCU-driven metastasis in PDAC. In patient-derived organoid models in vitro and patient-derived xenograft models in vivo, MCU-high PDAC demonstrated increased sensitivity to SLC7A11 inhibition compared to MCU-low tumors. These data suggest that MCU is able to promote resistance to metabolic stress and drive PDAC metastasis in a cystine-dependent manner. MCU-mediated cystine addiction could be exploited as a therapeutic vulnerability to inhibit PDAC tumor growth and prevent metastasis.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-3230
  4. Trends Biochem Sci. 2022 Apr 06. pii: S0968-0004(22)00067-6. [Epub ahead of print]
      Age-associated changes in mitochondria are closely involved in aging. Apart from the established roles in bioenergetics and biosynthesis, mitochondria are signaling organelles that communicate their fitness to the nucleus, triggering transcriptional programs to adapt homeostasis stress that is essential for organismal health and aging. Emerging studies revealed that mitochondrial-to-nuclear (mito-nuclear) communication via altered levels of mitochondrial metabolites or stress signals causes various epigenetic changes, facilitating efforts to maintain homeostasis and affect aging. Here, we summarize recent studies on the mechanisms by which mito-nuclear communication modulates epigenomes and their effects on regulating the aging process. Insights into understanding how mitochondrial metabolites serve as prolongevity signals and how aging affects this communication will help us develop interventions to promote longevity and health.
    Keywords:  UPR(mt); aging; epigenetic regulation; longevity; mitochondrial metabolites; mitochondrial–nuclear communication
    DOI:  https://doi.org/10.1016/j.tibs.2022.03.008
  5. Matrix Biol. 2022 Apr 08. pii: S0945-053X(22)00052-X. [Epub ahead of print]
      Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis due to its aggressive progression, late detection and lack of druggable driver mutations, which often combine to result in unsuitability for surgical intervention. Together with activating mutations of the small GTPase KRas, which are found in over 90% of PDAC tumours, a contributory factor for PDAC tumour progression is formation of a rigid extracellular matrix (ECM) and associated desmoplasia. This response leads to aberrant integrin signalling, and accelerated proliferation and invasion. To identify the integrin adhesion systems that operate in PDAC, we analysed a range of pancreatic ductal epithelial cell models using 2D, 3D and organoid culture systems. Proteomic analysis of isolated integrin receptor complexes from human pancreatic ductal epithelial (HPDE) cells predominantly identified integrin α6β4 and hemidesmosome components, rather than classical focal adhesion components. Electron microscopy, together with immunofluorescence, confirmed the formation of hemidesmosomes by HPDE cells, both in 2D and 3D culture systems. Similar results were obtained for the human PDAC cell line, SUIT-2. Analysis of HPDE cell secreted proteins and cell-derived matrices (CDM) demonstrated that HPDE cells secrete a range of laminin subunits and form a hemidesmosome-specific, laminin 332-enriched ECM. Expression of mutant KRas (G12V) did not affect hemidesmosome composition or formation by HPDE cells. Cell-ECM contacts formed by mouse and human PDAC organoids were also assessed by electron microscopy. Organoids generated from both the PDAC KPC mouse model and human patient-derived PDAC tissue displayed features of acinar-ductal cell polarity, and hemidesmosomes were visible proximal to prominent basement membranes. Furthermore, electron microscopy identified hemidesmosomes in normal human pancreas. Depletion of integrin β4 reduced cell proliferation in both SUIT-2 and HPDE cells, reduced the number of SUIT-2 cells in S-phase, and induced G1 cell cycle arrest, suggesting a requirement for α6β4-mediated adhesion for cell cycle progression and growth. Taken together, these data suggest that laminin-binding adhesion mechanisms in general, and hemidesmosome-mediated adhesion in particular, may be under-appreciated in the context of PDAC. Proteomic data are available via ProteomeXchange with the identifiers PXD027803, PXD027823 and PXD027827.
    Keywords:  Cancer; Hemidesmosome; Integrin; Laminin; Organoid; Pancreas
    DOI:  https://doi.org/10.1016/j.matbio.2022.03.010
  6. Gut. 2022 Apr 15. pii: gutjnl-2022-327430. [Epub ahead of print]
      
    Keywords:  EXTRACELLULAR MATRIX; MACROPHAGES; PANCREATIC CANCER
    DOI:  https://doi.org/10.1136/gutjnl-2022-327430
  7. Nat Cell Biol. 2022 Apr 11.
      Epithelial-mesenchymal transition (EMT) programs operate within carcinoma cells, where they generate phenotypes associated with malignant progression. In their various manifestations, EMT programs enable epithelial cells to enter into a series of intermediate states arrayed along the E-M phenotypic spectrum. At present, we lack a coherent understanding of how carcinoma cells control their entrance into and continued residence in these various states, and which of these states favour the process of metastasis. Here we characterize a layer of EMT-regulating machinery that governs E-M plasticity (EMP). This machinery consists of two chromatin-modifying complexes, PRC2 and KMT2D-COMPASS, which operate as critical regulators to maintain a stable epithelial state. Interestingly, loss of these two complexes unlocks two distinct EMT trajectories. Dysfunction of PRC2, but not KMT2D-COMPASS, yields a quasi-mesenchymal state that is associated with highly metastatic capabilities and poor survival of patients with breast cancer, suggesting that great caution should be applied when PRC2 inhibitors are evaluated clinically in certain patient cohorts. These observations identify epigenetic factors that regulate EMP, determine specific intermediate EMT states and, as a direct consequence, govern the metastatic ability of carcinoma cells.
    DOI:  https://doi.org/10.1038/s41556-022-00877-0
  8. Autophagy. 2022 Apr 15. 1-9
      Atg11 is an adaptor protein required for the induction of selective autophagy via receptor binding. However, our understanding of the molecular mechanisms by which it regulates selective autophagy remains incomplete. Here, we show that Atg11 is phosphorylated by Atg1. Rapamycin treatment or starvation conditions induced slower electrophoretic mobility of Atg11 in an Atg1 kinase activity-dependent manner. Through in vitro kinase assays combined with mutagenesis, we determined that Atg1 phosphorylates S949, S1057, and S1064 residues in CC4 domain of Atg11. Replacing the three residues with alanine suppressed the cleavage of selective autophagy substrates for the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy, reticulophagy, and pexophagy. The Atg11 mutant was defective in binding to related selective autophagy receptors. These results demonstrate a previously unknown function of Atg1 in regulation of selective autophagy via Atg11 phosphorylation.Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy-related; Cvt: cytoplasm-to-vacuole targeting; FUNDC1: FUN14 domain-containing protein 1; GFP: green fluorescent protein; MTOR: mechanistic target of rapamycin kinase; PAS: phagophore assembly site; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PRKAC/PKA: protein kinase cAMP-activated; SD-G: glucose starvation; SD-N: nitrogen starvation; ULK1: unc-51 like autophagy activating kinase 1; λ-PPase: lambda protein phosphatase.
    Keywords:  Atg1; Atg11; phosphorylation; receptor; selective autophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2063494
  9. EMBO Rep. 2022 Apr 13. e54801
      Selective autophagy cargos are recruited to autophagosomes primarily by interacting with autophagosomal ATG8 family proteins via the LC3-interacting region (LIR). The upstream sequence of most LIRs contains negatively charged residues such as Asp, Glu, and phosphorylated Ser and Thr. However, the significance of LIR phosphorylation (compared with having acidic amino acids) and the structural basis of phosphorylated LIR-ATG8 binding are not entirely understood. Here, we show that the serine residues upstream of the core LIR of the endoplasmic reticulum (ER)-phagy receptor TEX264 are phosphorylated by casein kinase 2, which is critical for its interaction with ATG8s, autophagosomal localization, and ER-phagy. Structural analysis shows that phosphorylation of these serine residues increases binding affinity by producing multiple hydrogen bonds with ATG8s that cannot be mimicked by acidic residues. This binding mode is different from those of other ER-phagy receptors that utilize a downstream helix, which is absent from TEX264, to increase affinity. These results suggest that phosphorylation of the LIR is critically important for strong LIR-ATG8 interactions, even in the absence of auxiliary interactions.
    Keywords:  ER-phagy; LC3-interacting region; crystal structure; phosphorylation; selective autophagy
    DOI:  https://doi.org/10.15252/embr.202254801
  10. Elife. 2022 Apr 13. pii: e72381. [Epub ahead of print]11
      Mechanics has been a central focus of physical biology in the past decade. In comparison, how cells manage their size is less understood. Here we show that a parameter central to both the physics and the physiology of the cell, its volume, depends on a mechano-osmotic coupling. We found that cells change their volume depending on the rate at which they change shape, when they spontaneously spread are externally deformed. Cells undergo slow deformation at constant volume, while fast deformation leads to volume loss. We propose a mechano-sensitive pump and leak model to explain this phenomenon. Our model and experiments suggest that volume modulation depends on the state of the actin cortex and the coupling of ion fluxes to membrane tension. This mechano-osmotic coupling defines a membrane tension homeostasis module constantly at work in cells, causing volume fluctuations associated with fast cell shape changes, with potential consequences on cellular physiology.
    Keywords:  cell biology; human; mouse; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.72381
  11. Autophagy. 2022 Apr 10. 1-21
      Selective macroautophagy/autophagy maintains cellular homeostasis through the lysosomal degradation of specific cellular proteins or organelles. The pro-survival effect of selective autophagy has been well-characterized, but the mechanism by which it drives cell death is still poorly understood. Here, we use a quantitative proteomic approach to identify HPCAL1 (hippocalcin like 1) as a novel autophagy receptor for the selective degradation of CDH2 (cadherin 2) during ferroptosis. HPCAL1-dependent CDH2 depletion increases susceptibility to ferroptotic death by reducing membrane tension and favoring lipid peroxidation. Site-directed mutagenesis aided by bioinformatic analyses revealed that the autophagic degradation of CDH2 requires PRKCQ (protein kinase C theta)-mediated HPCAL1 phosphorylation on Thr149, as well as a non-classical LC3-interacting region motif located between amino acids 46-51. An unbiased drug screening campaign involving 4208 small molecule compounds led to the identification of a ferroptosis inhibitor that suppressed HPCAL1 expression. The genetic or pharmacological inhibition of HPCAL1 prevented ferroptosis-induced tumor suppression and pancreatitis in suitable mouse models. These findings provide a framework for understanding how selective autophagy promotes ferroptotic cell death.Abbreviations: ANXA7: annexin A7; ARNTL: aryl hydrocarbon receptor nuclear translocator like; CCK8: cell counting kit-8; CDH2: cadherin 2; CETSAs: cellular thermal shift assays; CPT2: carnitine palmitoyltransferase 2; DAMP, danger/damage-associated molecular pattern; DPPH: 2,2-diphenyl-1-picrylhydrazyl; DFO: deferoxamine; EBNA1BP2: EBNA1 binding protein 2; EIF4G1: eukaryotic translation initiation factor 4 gamma 1; FBL: fibrillarin; FKBP1A: FKBP prolyl isomerase 1A; FTH1: ferritin heavy chain 1; GPX4: glutathione peroxidase 4; GSDMs: gasdermins; HBSS: Hanks' buffered salt solution; HMGB1: high mobility group box 1; HNRNPUL1: heterogeneous nuclear ribonucleoprotein U like 1; HPCAL1: hippocalcin like 1; H1-3/HIST1H1D: H1.3 linker histone, cluster member; IKE: imidazole ketone erastin; KD: knockdown; LDH: lactate dehydrogenase; LIR: LC3-interacting region; MAGOH: mago homolog, exon junction complex subunit; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MDA: malondialdehyde; MLKL: mixed lineage kinase domain like pseudokinase; MPO: myeloperoxidase; MTOR: mechanistic target of rapamycin kinase; OE: overexpressing; OSTM1: osteoclastogenesis associated transmembrane protein 1; PRKC/PKC: protein kinase C; PRKAR1A: protein kinase cAMP-dependent type I regulatory subunit alpha; PRDX3: peroxiredoxin 3; PTGS2: prostaglandin-endoperoxide synthase 2; ROS: reactive oxygen species; SLC7A11: solute carrier family 7 member 11; SLC40A1: solute carrier family 40 member 1; SPTAN1: spectrin alpha, non-erythrocytic 1; STS: staurosporine; UBE2M: ubiquitin conjugating enzyme E2 M; ZYX: zyxin.
    Keywords:  Autophagy; degradation; ferroptosis; inhibitor; mechanotransduction; pancreas; phosphorylation
    DOI:  https://doi.org/10.1080/15548627.2022.2059170
  12. Cell Rep. 2022 Apr 12. pii: S2211-1247(22)00424-7. [Epub ahead of print]39(2): 110672
      Phospholipid biosynthesis plays a role in mediating membrane-to-histone communication that influences metabolic decisions. Upon nutrient deprivation, phospholipid methylation generates a starvation signal in the form of S-adenosylmethionine (SAM) depletion, leading to dynamic changes in histone methylation. Here we show that the SAM-responsive methylation of H3K36 is critical for metabolic adaptation to nutrient starvation in the budding yeast Saccharomyces cerevisiae. We find that mutants deficient in H3K36 methylation exhibit defects in membrane integrity and pyrimidine metabolism and lose viability quickly under starvation. Adjusting the synthesis of phospholipids potently rewires metabolic pathways for nucleotide synthesis and boosts the production of antioxidants, ameliorating the defects resulting from the loss of H3K36 methylation. We further demonstrate that H3K36 methylation reciprocally regulates phospholipid synthesis by influencing redox balance. Our study illustrates an adaptive mechanism whereby phospholipid synthesis entails a histone modification to reprogram metabolism for adaptation in a eukaryotic model organism.
    Keywords:  CP: Metabolism; CP: Molecular biology; H3K36 methylation; S-adenosylmethionine; cellular metabolism; environmental adaptation; phosphatidylcholine; phosphatidylethanolamine; phospholipid; pyrimidine
    DOI:  https://doi.org/10.1016/j.celrep.2022.110672
  13. EMBO J. 2022 Apr 12. e109390
      Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.
    Keywords:  DGAT1; iron; lipid droplet; metabolism; mitophagy
    DOI:  https://doi.org/10.15252/embj.2021109390
  14. Nat Commun. 2022 Apr 13. 13(1): 1985
      Neuronal nerve processes in the tumor microenvironment were highlighted recently. However, the origin of intra-tumoral nerves remains poorly known, in part because of technical difficulties in tracing nerve fibers via conventional histological preparations. Here, we employ three-dimensional (3D) imaging of cleared tissues for a comprehensive analysis of sympathetic innervation in a murine model of pancreatic ductal adenocarcinoma (PDAC). Our results support two independent, but coexisting, mechanisms: passive engulfment of pre-existing sympathetic nerves within tumors plus an active, localized sprouting of axon terminals into non-neoplastic lesions and tumor periphery. Ablation of the innervating sympathetic nerves increases tumor growth and spread. This effect is explained by the observation that sympathectomy increases intratumoral CD163+ macrophage numbers, which contribute to the worse outcome. Altogether, our findings provide insights into the mechanisms by which the sympathetic nervous system exerts cancer-protective properties in a mouse model of PDAC.
    DOI:  https://doi.org/10.1038/s41467-022-29659-w
  15. Cancer Res. 2022 Apr 11. pii: canres.3155.2021. [Epub ahead of print]
      Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost anti-tumor T-cell function by targeting ER-mitochondria crosstalk have not yet been exploited. Here, we used carbon monoxide (CO), a short-lived gaseous molecule, to test if engaging moderate ERS conditions can improve mitochondrial and anti-tumor functions in T cells. In melanoma antigen-specific T cells, CO-induced transient activation of ERS sensor protein kinase R-like endoplasmic reticulum kinase (PERK) significantly increased anti-tumor T-cell function. Furthermore, CO-induced PERK activation temporarily halted protein translation and induced protective autophagy, including mitophagy. The use of LC3-GFP enabled differentiation between the cells that prepare themselves to undergo active autophagy (LC3-GFPpos) and those that fail to enter the process (LC3-GFPneg). LC3-GFPpos T cells showed strong anti-tumor potential, whereas LC3-GFPneg cells exhibited a T regulatory-like phenotype, harbored dysfunctional mitochondria, and accumulated abnormal metabolite content. These anomalous ratios of metabolites rendered the cells with a hypermethylated state and distinct epigenetic profile, limiting their anti-tumor activity. Overall, this study shows that ERS-activated autophagy pathways modify the mitochondrial function and epigenetically reprogram T cells towards a superior anti-tumor phenotype to achieve robust tumor control.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-3155
  16. Oncogene. 2022 Apr 11.
      Metastatic progression is a major burden for breast cancer patients and is associated with the ability of cancer cells to overcome stressful conditions, such as nutrients deprivation and hypoxia, and to gain invasive properties. Autophagy and epithelial-to-mesenchymal transition are critical contributors to these processes. Here, we show that the P2X4 purinergic receptor is upregulated in breast cancer biopsies from patients and it is primarily localised in endolysosomes. We demonstrate that P2X4 enhanced invasion in vitro, as well as mammary tumour growth and metastasis in vivo. The pro-malignant role of P2X4 was mediated by the regulation of lysosome acidity, the promotion of autophagy and cell survival. Furthermore, the autophagic activity was associated with epithelial-to-mesenchymal transition (EMT), and this role of P2X4 was even more pronounced under metabolic challenges. Pharmacological and gene silencing of P2X4 inhibited both autophagy and EMT, whereas its rescue in knocked-down cells led to the restoration of the aggressive phenotype. Together, our results demonstrate a previously unappreciated role for P2X4 in regulating lysosomal functions and fate, promoting breast cancer progression and aggressiveness.
    DOI:  https://doi.org/10.1038/s41388-022-02297-8
  17. Front Oncol. 2022 ;12 839779
       Background: Biological sex, gender and age have an impact on the incidence and outcome in patients with metastatic pancreatic cancer. The aim of this study is to investigate whether biological sex, gender and age are associated with treatment allocation and overall survival (OS) of patients with metastatic pancreatic cancer in a nationwide cohort.
    Methods: Patients with synchronous metastatic pancreatic cancer diagnosed between 2015 and 2019 were selected from the Netherlands Cancer Registry (NCR). The association between biological sex and the probability of receiving systemic treatment were examined with multivariable logistic regression analyses. Kaplan Meier analyses with log-rank test were used to describe OS.
    Results: A total of 7470 patients with metastatic pancreatic cancer were included in this study. Fourty-eight percent of patients were women. Women received less often systemic treatment (26% vs. 28%, P=0.03), as compared to men. Multivariable logistic regression analyses with adjustment for confounders showed that women ≤55 years of age, received more often systemic treatment (OR 1.82, 95% CI 1.24-2.68) compared to men of the same age group. In contrast, women at >55 years of age had a comparable probability to receive systemic treatment compared to men of the same age groups. After adjustment for confounders, women had longer OS compared to men (HR 0.89, 95% CI 0.84-0.93).
    Conclusion: This study found that women in general had a lower probability of receiving systemic treatment compared to men, but this can mainly be explained by age differences. Women had better OS compared to men after adjustment for confounders.
    Keywords:  drug therapy; gender identity; palliative treatment; pancreatic cancer; pancreatic neoplasms; sex; systemic treatment
    DOI:  https://doi.org/10.3389/fonc.2022.839779
  18. Expert Rev Gastroenterol Hepatol. 2022 Apr 11.
       BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the US. Recent studies demonstrated survival benefits for FOLFIRINOX (5-FU, leucovorin, irinotecan, and oxaliplatin) and Gem/nab-P (gemcitabine/nab-paclitaxel) over gemcitabine monotherapy. In this study, we evaluated the clinical outcomes of patients with mPDAC before and after incorporating these newer regimens into the clinical practice.
    METHODS: A retrospective study of patients with mPDAC at our institution between 2009-2018, who were followed up until December 2019. Overall survival (OS) and progression-free survival (PFS) were calculated using Kaplan-Meier survival analysis. Univariate and multivariable Cox regression analyses were used to explore predictors of survival.
    RESULTS: A total of 394 patients with mPDAC were included:122 (31%) were diagnosed between 2009-2013 and 272 (69%) between 2014-2018. In 2009-2013 cohort vs. 2014-2018 cohort, the median OS and PFS were similar (4 vs. 3.6 months, P=0.5) and (2.3 vs. 2.5 months, p=0.41), respectively. Age, ECOG-Performance status >1, serum albumin, neutrophil-lymphocyte ratio, and platelets-to-lymphocyte ratio were independent predictors of better OS.
    CONCLUSIONS: In this study of real-world data, the median OS and PFS for all patients with mPDAC was equivalent before and after incorporating newer treatment regimens into the clinical practice.
    Keywords:  chemotherapy; outcomes; pancreatic adenocarcinoma; retrospective studies
    DOI:  https://doi.org/10.1080/17474124.2022.2065259
  19. Proc Natl Acad Sci U S A. 2022 Apr 19. 119(16): e2119168119
      SignificanceThe highly desmoplastic and immunosuppressive microenvironment of pancreatic tumors is a major determinant of the aggressive nature and therapeutic resistance of pancreatic cancer. Therefore, improving our understanding of the mechanisms that regulate the composition and function of the pancreatic tumor microenvironment is critical for the design of intervention strategies for this devastating malignancy. This study identifies a modality for the reprogramming of tumor-associated macrophages involving collagen scavenging followed by a metabolic switch toward a profibrotic paracrine phenotype. These findings establish a molecular framework for the elucidation of regulatory processes that could be harnessed to mitigate the stroma-dependent protumorigenic effects in pancreatic cancer.
    Keywords:  collagen; fibrosis; macrophage; pancreatic cancer; stellate cell
    DOI:  https://doi.org/10.1073/pnas.2119168119
  20. J Exp Clin Cancer Res. 2022 Apr 11. 41(1): 137
       BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic neoplasm with high metastatic potential and poor clinical outcome. Like other solid tumors, PDAC in the early stages is often asymptomatic, and grows very slowly under a distinct acidic pHe (extracellular pH) microenvironment. However, most previous studies have only reported the fate of cancerous cells upon cursory exposure to acidic pHe conditions. Little is known about how solid tumors-such as the lethal PDAC originating within the pancreatic duct-acinar system that secretes alkaline fluids-evolve to withstand and adapt to the prolonged acidotic microenvironmental stress.
    METHODS: Representative PDAC cells were exposed to various biologically relevant periods of extracellular acidity. The time effects of acidic pHe stress were determined with respect to tumor cell proliferation, phenotypic regulation, autophagic control, metabolic plasticity, mitochondrial network dynamics, and metastatic potentials.
    RESULTS: Unlike previous short-term analyses, we found that the acidosis-mediated autophagy occurred mainly as an early stress response but not for later adaptation to microenvironmental acidification. Rather, PDAC cells use a distinct and lengthy process of reversible adaptive plasticity centered on the early fast and later slow mitochondrial network dynamics and metabolic adjustment. This regulates their acute responses and chronic adaptations to the acidic pHe microenvironment. A more malignant state with increased migratory and invasive potentials in long-term acidosis-adapted PDAC cells was obtained with key regulatory molecules being closely related to overall patient survival. Finally, the identification of 34 acidic pHe-related genes could be potential targets for the development of diagnosis and treatment against PDAC.
    CONCLUSIONS: Our study offers a novel mechanism of early rapid response and late reversible adaptation of PDAC cells to the stress of extracellular acidosis. The presence of this distinctive yet slow mode of machinery fills an important knowledge gap in how solid tumor cells sense, respond, reprogram, and ultimately adapt to the persistent microenvironmental acidification.
    Keywords:  Acidic stress; Autophagy; Extracellular pH; Fission; Fusion; Mitochondrial dynamics; Pancreatic ductal adenocarcinoma; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s13046-022-02329-x
  21. Am Soc Clin Oncol Educ Book. 2022 Apr;42 1-11
      More than 50 years after the discovery of RAS family proteins, which harbor the most common activating mutations in cancer, the U.S. Food and Drug Administration approved the first direct allele-specific inhibitor of mutant KRAS in lung cancer. We highlight the history of discovering RAS and decades of studies targeting KRAS-driven lung cancer. A landmark article by Shokat and colleagues in 2013 elucidated allosteric inhibition of this undruggable target and paved the way for the first-in-class direct KRASG12C inhibitor. Although these drugs have impressive 36%-45% objective response rates with a median duration of response of 10 months, many tumors do not respond, and diverse mechanisms of resistance have already been observed; this includes new KRAS alterations, activation of alternate RTK pathway proteins, bypass pathways, and transcriptional remodeling. These resistance mechanisms can be profiled using tissue-based and plasma-based testing and help to inform clinical trial options for patients. We conclude with a discussion of research informing ongoing clinical trials to rationally test promising treatments to thwart or overcome resistance to KRASG12C inhibitors and target other KRAS-altered lung cancers.
    DOI:  https://doi.org/10.1200/EDBK_360354
  22. Gastroenterology. 2022 Apr 07. pii: S0016-5085(22)00356-0. [Epub ahead of print]
      Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer, due to both its late stage at diagnosis and its resistance to chemotherapy. However, recent advances in our understanding of the biology of PDAC have revealed new opportunities for early detection and targeted therapy of PDAC. In this review, we discuss the pathogenesis of PDAC, including molecular alterations in tumor cells, cellular alterations in the tumor microenvironment, and population-level risk factors. We review the current status of surveillance and early detection of PDAC, including populations at high risk and screening approaches. We outline the diagnostic approach to PDAC and highlight key treatment considerations, including how therapeutic approaches change with disease stage and targetable subtypes of PDAC. Recent years have seen significant improvements in our approaches to detect and treat PDAC, but large-scale, coordinated efforts will be needed to maximize the clinical impact for patients and improve overall survival.
    DOI:  https://doi.org/10.1053/j.gastro.2022.03.056
  23. Pancreas. 2022 Feb 01. 51(2): 148-152
       OBJECTIVE: The aim of the study was to clarify the association of skeletal muscle mass and the prognosis of unresectable pancreatic ductal adenocarcinoma (PDAC) treated with gemcitabine plus nab-paclitaxel (GnP).
    METHODS: We included 124 unresectable PDAC patients who received GnP chemotherapy. Skeletal muscle mass of the third lumbar vertebrae (L3) level was measured by computed tomography immediately before GnP initiation, and the skeletal muscle index (L3-SMI) was calculated. Sarcopenia was defined as L3-SMI less than 42 cm2/m2 in male patients and less than 38 cm2/m2 in female patients.
    RESULTS: Sarcopenia was found in 63 patients (50.8%). There was no significant difference in overall survival (OS) between sarcopenia and nonsarcopenia patients; however, in elderly patients (>70 years), the OS of sarcopenia patients was significantly poorer than that of nonsarcopenia patients (390 vs 631 days, respectively; hazard ratio, 2.64; 95% confidence interval, 1.33-5.23). Multivariate analyses in elderly patients revealed that sarcopenia and tumor stage were independent poor prognostic factors. Despite the short OS of elderly sarcopenia patients, there were no significant differences in progression-free survival or response rate.
    CONCLUSIONS: Sarcopenia diagnosed by L3-SMI is a prognostic factor in elderly patients who receive GnP for unresectable PDAC. However, GnP exhibits a certain efficacy in sarcopenia and nonsarcopenia patients.
    DOI:  https://doi.org/10.1097/MPA.0000000000001985
  24. Pancreas. 2022 Feb 01. 51(2): 190-195
       OBJECTIVE: Cigarette smoking is an established risk factor for pancreatic ductal adenocarcinoma (PDAC). In this project, we investigated the effect of smoking and the role of histone deacetylase 4 (HDAC4) in PDAC invasion and metastasis.
    METHODS: Cells were treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and cigarette smoke extract and the mRNA levels of HDACs were measured by real-time polymerase chain reaction. Invasion was measured using the Matrigel Invasion Assay. Syngeneic PDAC mice were treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and metastasis measured. Human PDAC primary and metastatic tissues were analyzed by immunohistochemistry.
    RESULTS: Levels of HDAC4 mRNA were increased by smoking. Smoking compounds significantly promoted invasion of cancer cells and promoted metastasis of PDAC cells to different organs, including the liver and the lung, whereas inhibition of HDAC4 prevented this effect. The effect of HDAC4 inhibition on preventing smoking-induced metastasis was greater in the liver compared with the lung. We found that HDAC4 is highly expressed in primary and metastatic PDAC tumors.
    CONCLUSIONS: We found that HDAC4 is the only HDAC induced by smoking among all HDACs analyzed. We found that smoking promotes invasion and metastasis of PDAC cells through a mechanism that involves HDAC4 and that HDAC4 is a promising target for preventing PDAC metastasis.
    DOI:  https://doi.org/10.1097/MPA.0000000000001998
  25. Trends Cell Biol. 2022 Apr 08. pii: S0962-8924(22)00062-9. [Epub ahead of print]
      Tissues consist of cells and their surrounding extracellular matrix (ECM). Cell-ECM interactions play crucial roles in embryonic development, differentiation, tissue remodeling, and diseases including fibrosis and cancer. Recent research advances in characterizing cell-matrix interactions include detailed descriptions of hundreds of ECM and associated molecules, their complex intermolecular interactions in development and disease, identification of distinctive modes of cell migration in different 3D ECMs, and new insights into mechanisms of organ formation. Exploring the roles of the physical features of different ECM microenvironments and the bidirectional regulation of cell signaling and matrix organization emphasize the dynamic nature of these interactions, which can include feedback loops that exacerbate disease. Understanding mechanisms of cell-matrix interactions can potentially lead to targeted therapeutic interventions.
    Keywords:  cancer invasion; cell adhesion; cell migration; extracellular matrix; fibrosis; mechanotransduction
    DOI:  https://doi.org/10.1016/j.tcb.2022.03.002
  26. Ann Oncol. 2022 Apr 06. pii: S0923-7534(22)00672-X. [Epub ahead of print]
    PanScan/PanC4 I-III Consortium
       BACKGROUND: Pancreatic cancer presents as advanced disease in >80% of patients; yet, appropriate ages to consider prevention and early detection strategies are poorly defined. We investigated age-specific associations and attributable risks of pancreatic cancer for established modifiable and non-modifiable risk factors.
    PATIENTS AND METHODS: We included 167 483 participants from 2 prospective US cohort studies with 1190 incident cases of pancreatic cancer during >30 years of follow-up; 5107 pancreatic cancer cases and 8845 control participants of European ancestry from a completed multicenter genome-wide association study (GWAS); and 197 490 pancreatic cancer cases documented in the US Surveillance, Epidemiology, and End Results (SEER) Program. Across different age categories, we investigated cigarette smoking, obesity, diabetes, height, and non-O blood group in the prospective cohorts; weighted polygenic risk score (PRS) of 22 previously identified single nucleotide polymorphisms in the GWAS; and male sex and Black race in the SEER program.
    RESULTS: In the prospective cohorts, all 5 risk factors were more strongly associated with pancreatic cancer risk among younger participants, with associations attenuated among those >70 years. The hazard ratios comparing participants with 3-5 risk factors to those with no risk factors were 9.24 (95% confidence interval [CI], 4.11-20.77) among those aged ≤60 years, 3.00 (95% CI, 1.85-4.86) among those aged 61-70 years, and 1.46 (95% CI, 1.10-1.94) among those over 70 years (Pheterogeneity = 3×10-5). These factors together were related to 65.6%, 49.7%, and 17.2% of incident pancreatic cancers in these age groups, respectively. In the GWAS and the SEER Program, the associations with the polygenic risk score, male sex, and Black race were all stronger among younger individuals (Pheterogeneity ≤ .01).
    CONCLUSIONS: Established risk factors are more strongly associated with earlier-onset pancreatic cancer, emphasizing the importance of age at initiation for cancer prevention and control programs targeting this highly lethal malignancy.
    Keywords:  age; lifestyle modification; pancreatic cancer; polygenic risk score; risk factor
    DOI:  https://doi.org/10.1016/j.annonc.2022.03.276
  27. Matrix Biol Plus. 2022 Jun;14 100109
      Despite improvements in the understanding of disease biology, pancreatic ductal adenocarcinoma (PDAC) remains the most malignant cancer of the pancreas. PDAC constitutes ∼95% of all pancreatic cancers, and it is highly resistant to therapeutics. The increased tissue rigidity, which stems from the rich fibrotic stroma in the tumor microenvironment, is central to disease development, physiology, and resistance to drug perfusion. Pancreatic stellate cells (PSCs) are responsible for overproduction of extracellular matrix in the fibrotic stroma, and this is exacerbated by the overexpression of transforming growth factor-β (TGF-β). However, there are few in vitro PDAC models, which include both PSCs and TGF-β or mimic in vivo-like tumor stiffness. In this study, we present a three-dimensional in vitro PDAC model, which includes PSCs and TGF-β, and recapitulates PDAC tissue mechanical stiffness. Using oscillatory shear rheology, we show the mechanical stiffness of the model is within range of the PDAC tissue stiffness by day 21 of culture and highlight that the matrix environment is essential to adequately capture PDAC disease. PDAC is a complex, aggressive disease with poor prognosis, and biophysically relevant in vitro PDAC models, which take into account tissue mechanics, will provide improved tumor models for effective therapeutic assessment.
    Keywords:  Oscillatory shear rheology; Pancreatic ductal adenocarcinoma; Pancreatic stellate cells; Tissue mechanics; Transforming growth factor β1; Tumor microenvironment; Tumour biophysics
    DOI:  https://doi.org/10.1016/j.mbplus.2022.100109
  28. Semin Cell Dev Biol. 2022 Apr 08. pii: S1084-9521(22)00126-4. [Epub ahead of print]
      The nucleolus is a large nuclear membraneless organelle responsible for ribosome biogenesis. Ribosomes are cytoplasmic macromolecular complexes comprising RNA and proteins that link amino acids together to form new proteins. The biogenesis of ribosomes is an intricate multistep process that involves the transcription of ribosomal DNA (rDNA), the processing of ribosomal RNA (rRNA), and the assembly of rRNA with ribosomal proteins to form active ribosomes. Nearly all steps necessary for ribosome production and maturation occur in the nucleolus. Nucleolar shape, size, and number are directly linked to ribosome biogenesis. Errors in the steps of ribosomal biogenesis are sensed by the nucleolus causing global alterations in nucleolar function and morphology. This phenomenon, known as nucleolar stress, can lead to molecular changes such as stabilization of p53, which in turn activates cell cycle arrest or apoptosis. In this review, we discuss recent work on the association of nucleolar stress with degenerative diseases and developmental defects. In addition, we highlight the importance of de novo nucleotide biosynthesis for the enhanced nucleolar activity of cancer cells and discuss targeting nucleotide biosynthesis as a strategy to activate nucleolar stress to specifically target cancer cells.
    Keywords:  Nucleolar stress; Nucleolus; Nucleotides; RRNA; Ribosome biogenesis; Ribosomopathies
    DOI:  https://doi.org/10.1016/j.semcdb.2022.04.001
  29. Nat Cell Biol. 2022 Apr 11.
      Skeletal muscle has long been recognized as an inhospitable site for disseminated tumour cells (DTCs). Yet its antimetastatic nature has eluded a thorough mechanistic examination. Here, we show that DTCs traffic to and persist within skeletal muscle in mice and in humans, which raises the question of how this tissue suppresses colonization. Results from mouse and organotypic culture models along with metabolomic profiling suggested that skeletal muscle imposes a sustained oxidative stress on DTCs that impairs their proliferation. Functional studies demonstrated that disrupting reduction-oxidation homeostasis via chemogenetic induction of reactive oxygen species slowed proliferation in a more fertile organ: the lung. Conversely, enhancement of the antioxidant potential of tumour cells through ectopic expression of catalase in the tumour or host mitochondria allowed robust colonization of skeletal muscle. These findings reveal a profound metabolic bottleneck imposed on DTCs and sustained by skeletal muscle. A thorough understanding of this biology could reveal previously undocumented DTC vulnerabilities that can be exploited to prevent metastasis in other more susceptible tissues.
    DOI:  https://doi.org/10.1038/s41556-022-00881-4
  30. EMBO J. 2022 Apr 11. e109675
      Our understanding of the cellular composition and architecture of cancer has primarily advanced using 2D models and thin slice samples. This has granted spatial information on fundamental cancer biology and treatment response. However, tissues contain a variety of interconnected cells with different functional states and shapes, and this complex organization is impossible to capture in a single plane. Furthermore, tumours have been shown to be highly heterogenous, requiring large-scale spatial analysis to reliably profile their cellular and structural composition. Volumetric imaging permits the visualization of intact biological samples, thereby revealing the spatio-phenotypic and dynamic traits of cancer. This review focuses on new insights into cancer biology uniquely brought to light by 3D imaging and concomitant progress in cancer modelling and quantitative analysis. 3D imaging has the potential to generate broad knowledge advance from major mechanisms of tumour progression to new strategies for cancer treatment and patient diagnosis. We discuss the expected future contributions of the newest imaging trends towards these goals and the challenges faced for reaching their full application in cancer research.
    Keywords:  3D imaging; archival tissue; cancer (immuno)therapy; cancer biology
    DOI:  https://doi.org/10.15252/embj.2021109675
  31. Curr Biol. 2022 Apr 08. pii: S0960-9822(22)00491-2. [Epub ahead of print]
      For the maintenance of epithelial homeostasis, various aberrant or dysfunctional cells are actively eliminated from epithelial layers. This cell extrusion process mainly falls into two modes: cell-competition-mediated extrusion and apoptotic extrusion. However, it is not clearly understood whether and how these processes are governed by common molecular mechanisms. In this study, we demonstrate that the reactive oxygen species (ROS) levels are elevated within a wide range of epithelial layers around extruding transformed or apoptotic cells. The downregulation of ROS suppresses the extrusion process. Furthermore, ATP is extracellularly secreted from extruding cells, which promotes the ROS level and cell extrusion. Moreover, the extracellular ATP and ROS pathways positively regulate the polarized movements of surrounding cells toward extruding cells in both cell-competition-mediated and apoptotic extrusion. Hence, extracellular ATP acts as an "extrude me" signal and plays a prevalent role in cell extrusion, thereby sustaining epithelial homeostasis and preventing pathological conditions or disorders.
    Keywords:  ROS; RasV12; Scribble; apoptosis; cell competition; cell extrusion; cell migration; epithelia; extracellular ATP; mouse intestine
    DOI:  https://doi.org/10.1016/j.cub.2022.03.057
  32. J Pathol. 2022 Apr 12.
      The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review, we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. This article is protected by copyright. All rights reserved.
    Keywords:  Adult stem cells; Clonal dynamics; Clonality analysis; Colon; DNA sequencing; Haemopoietic stem cells; In Situ Hybridisation; Intestinal stem cells; Lineage tracing; Quantitative methods
    DOI:  https://doi.org/10.1002/path.5911
  33. Autophagy. 2022 Apr 12. 1-3
      LC3 lipidation-mediated selective macroautophagy/autophagy helps eukaryotes to defend against endogenous dangers and foreign invaders. However, LC3 activation mechanisms of selective autophagy are still elusive. We previously determined that the V-ATPase-ATG16L1 axis is critical for LC3 recruitment to bacteria-residing vacuoles, whereas the Salmonella effector SopF directly targets V-ATPase to disrupt ATG16L1 interaction. Here we show that host ARF GTPase binding causes SopF-dependent ADP-ribosylation of the Gln124 site of the ATP6V0C/V0C subunit of V-ATPase. Furthermore, LC3 activation by pH perturbation of endolysosomes and the Golgi apparatus is also abolished by SopF or a ATP6V0CQ124A mutation, illustrating that disruption of the proton gradient in acidic compartments is a universal signal that triggers V-ATPase-ATG16L1-induced LC3 lipidation.
    Keywords:  ARF; ATG16L1; SopF; V-ATPase; VAIL; endomembrane damage; pH disturbance; selective autophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2062889
  34. Cancers (Basel). 2022 Apr 06. pii: 1834. [Epub ahead of print]14(7):
       BACKGROUND: Even though numerous novel lymph node (LN) classification schemes exist, an extensive comparison of their performance in patients with resected pancreatic ductal adenocarcinoma (PDAC) has not yet been performed.
    METHOD: We investigated the prognostic performance and discriminative ability of 25 different LN ratio (LNR) and 27 log odds of metastatic LN (LODDS) classifications by means of Cox regression and C-statistic in 319 patients with resected PDAC. Regression models were adjusted for age, sex, T category, grading, localization, presence of metastatic disease, positivity of resection margins, and neoadjuvant therapy.
    RESULTS: Both LNR or LODDS as continuous variables were associated with advanced tumor stage, distant metastasis, positive resection margins, and PDAC of the head or corpus. Two distinct LN classifications, one LODDS and one LNR, were found to be superior to the N category in the complete patient collective. However, only the LODDS classification exhibited statistically significant, gradually increasing HRs of their subcategories and at the same time significantly higher discriminative potential in the subgroups of patients with PDAC of the head or corpus and in patients with tumor free resection margins or M0 status, respectively. On this basis, we built a clinically helpful nomogram to estimate the prognosis of patients after radically resected PDAC.
    CONCLUSION: One LNR and one LODDS classification scheme were found to out-perform the N category in terms of both prognostic performance and discriminative ability, in distinct patient subgroups, with reference to OS in patients with resected PDAC.
    Keywords:  LNR; LODDS; lymph node classification; pancreatic cancer
    DOI:  https://doi.org/10.3390/cancers14071834
  35. Science. 2022 Apr 15. 376(6590): 297-301
      Animals have evolved mechanisms, such as cell competition, to remove dangerous or nonfunctional cells from a tissue. Tumor necrosis factor signaling can eliminate clonal malignancies from Drosophila imaginal epithelia, but why this pathway is activated in tumor cells but not normal tissue is unknown. We show that the ligand that drives elimination is present in basolateral circulation but remains latent because it is spatially segregated from its apically localized receptor. Polarity defects associated with malignant transformation cause receptor mislocalization, allowing ligand binding and subsequent apoptotic signaling. This process occurs irrespective of the neighboring cells' genotype and is thus distinct from cell competition. Related phenomena at epithelial wound sites are required for efficient repair. This mechanism of polarized compartmentalization of ligand and receptor can generally monitor epithelial integrity to promote tissue homeostasis.
    DOI:  https://doi.org/10.1126/science.abl4213
  36. Nat Cell Biol. 2022 Apr 11.
      Biomolecular condensates organize biochemistry, yet little is known about how cells control the position and scale of these structures. In cells, condensates often appear as relatively small assemblies that do not coarsen into a single droplet despite their propensity to fuse. Here, we report that ribonucleoprotein condensates of the glutamine-rich protein Whi3 interact with the endoplasmic reticulum, which prompted us to examine how membrane association controls condensate size. Reconstitution revealed that membrane recruitment promotes Whi3 condensation under physiological conditions. These assemblies rapidly arrest, resembling size distributions seen in cells. The temporal ordering of molecular interactions and the slow diffusion of membrane-bound complexes can limit condensate size. Our experiments reveal a trade-off between locally enhanced protein concentration at membranes, which favours condensation, and an accompanying reduction in diffusion, which restricts coarsening. Given that many condensates bind endomembranes, we predict that the biophysical properties of lipid bilayers are key for controlling condensate sizes throughout the cell.
    DOI:  https://doi.org/10.1038/s41556-022-00882-3
  37. Redox Biol. 2022 Apr 06. pii: S2213-2317(22)00076-3. [Epub ahead of print]52 102304
      As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.
    Keywords:  Cav-1; Dynamin-related protein 1; Mitochondrial dynamics; Mitofusin 2; Mitophagy; mtROS
    DOI:  https://doi.org/10.1016/j.redox.2022.102304
  38. Front Oncol. 2022 ;12 826617
      Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a poor response to current treatment regimens. The multifunctional DNA repair-redox signaling protein Ref-1 has a redox signaling function that activates several transcriptional factors (TFs) including NF-κB (RelA), STAT3, AP-1. These have been implicated in signaling in PDAC and associated with cancer progression and therapy resistance. Numerous studies have shown a role for RelA in PDAC inflammatory responses and therapy resistance, little is known as to how these inflammatory responses are modulated through Ref-1 redox signaling pathways during pancreatic pathogenesis. RelA and STAT3 are two major targets of Ref-1 and are important in PDAC pathogenesis. To decipher the mechanistic role of RelA in response to Ref-1 inhibition, we used PDAC cells (KC3590) from a genetically engineered Kras G12D-driven mouse model that also is functionally deficient for RelA (Parent/Vector) or KC3590 cells with fully functional RelA added back (clone 13; C13). We demonstrated that RelA deficient cells are more resistant to Ref-1 redox inhibitors APX3330, APX2009, and APX2014, and their sensitivity is restored in the RelA proficient cells. Knockdown of STAT3 did not change cellular sensitivity to Ref-1 redox inhibitors in either cell type. Gene expression analysis demonstrated that Ref-1 inhibitors significantly decreased IL-8, FOSB, and c-Jun when functional RelA is present. We also demonstrated that PRDX1, a known Ref-1 redox modulator, contributes to Ref-1 inhibitor cellular response. Knockdown of PRDX1 when functional RelA is present resulted in dramatically increased PDAC killing in response to Ref-1 inhibitors. The enhanced cell killing was not due to increased intracellular ROS production. Although Ref-1 inhibition decreased the NADP/NADPH ratio in the cells, the addition of PRDX1 knockdown did not further this redox imbalance. This data suggests that the mechanism of cell killing following Ref-1 inhibition is at least partially mediated through RelA and not STAT3. Further imbalancing of the redox signaling through disruption of the PRDX1-Ref-1 interaction may have therapeutic implications. Our data further support a pivotal role of RelA in mediating Ref-1 redox signaling in PDAC cells with the Kras G12D genotype and provide novel therapeutic strategies to combat PDAC drug resistance.
    Keywords:  Ape1; DNA repair; PRDX1; STAT3; pancreatic ductal adenocarcinoma (PDAC); redox signaling; relA; transcriptional factors
    DOI:  https://doi.org/10.3389/fonc.2022.826617
  39. Sci Adv. 2022 Apr 15. 8(15): eabm5095
      During cytokinesis, the intercellular bridge (ICB) connecting the daughter cells experiences pulling forces, which delay abscission by preventing the assembly of the ESCRT scission machinery. Abscission is thus triggered by tension release, but how ICB tension is controlled is unknown. Here, we report that caveolae, which are known to regulate membrane tension upon mechanical stress in interphase cells, are located at the midbody, at the abscission site, and at the ICB/cell interface in dividing cells. Functionally, the loss of caveolae delays ESCRT-III recruitment during cytokinesis and impairs abscission. This is the consequence of a twofold increase of ICB tension measured by laser ablation, associated with a local increase in myosin II activity at the ICB/cell interface. We thus propose that caveolae buffer membrane tension and limit contractibility at the ICB to promote ESCRT-III assembly and cytokinetic abscission. Together, this work reveals an unexpected connection between caveolae and the ESCRT machinery and the first role of caveolae in cell division.
    DOI:  https://doi.org/10.1126/sciadv.abm5095
  40. Cells. 2022 Mar 23. pii: 1073. [Epub ahead of print]11(7):
      Growth and differentiation factor 15 (GDF15) is a cytokine reported to cause anorexia and weight loss in animal models. Neutralization of GDF15 was efficacious in mitigating cachexia and improving survival in cachectic tumor models. Interestingly, elevated circulating GDF15 was reported in patients with pulmonary arterial hypertension and heart failure, but it is unclear whether GDF15 contributes to cachexia in these disease conditions. In this study, rats treated with monocrotaline (MCT) manifested a progressive decrease in body weight, food intake, and lean and fat mass concomitant with elevated circulating GDF15, as well as development of right-ventricular dysfunction. Cotreatment of GDF15 antibody mAb2 with MCT prevented MCT-induced anorexia and weight loss, as well as preserved lean and fat mass. These results indicate that elevated GDF15 by MCT is causal to anorexia and weight loss. GDF15 mAb2 is efficacious in mitigating MCT-induced cachexia in vivo. Furthermore, the results suggest GDF15 inhibition is a potential therapeutic approach to alleviate cardiac cachexia in patients.
    Keywords:  GDF15; cardiac cachexia; monocrotaline
    DOI:  https://doi.org/10.3390/cells11071073
  41. Trends Pharmacol Sci. 2022 Apr 07. pii: S0165-6147(22)00055-4. [Epub ahead of print]
      The cases of pancreatic cancer and associated deaths are increasing consistently and have become a global health concern. Prevalent intratumoral and intertumoral heterogeneity in pancreatic cancer has been revealed as an important cause of its poor prognosis. However, few precision management strategies have been formulated to treat this complex disease. There is growing evidence supporting the significance of subtyping pancreatic tumors on the basis of their molecular characteristics for improving the accuracy of clinical decision-making on treatment. Here, we summarize the current approaches to classification of pancreatic cancer, and highlight the feasibility and potential defects of their application in precision therapy.
    Keywords:  immune subtype; molecular subtype; morphological subtype; pancreatic cancer; precision therapy
    DOI:  https://doi.org/10.1016/j.tips.2022.03.005
  42. Mol Oncol. 2022 Apr 09.
      As precision medicine increases the response rate of treatment, tumors frequently bypass inhibition and reoccur. In order for treatment to be effective long term, the mechanisms enabling treatment adaptation need to be understood. Here, we report a mouse model that, in the absence of p53 and the presence of oncogenic KrasG12D , develops breast tumors. Upon inactivation of KrasG12D , tumors initially regress and enter remission. Subsequently, the majority of tumors adapt to the withdrawal of KrasG12D expression and return. KrasG12D -independent tumor cells show a strong mesenchymal profile with active RAS-RAF-MEK-ERK (MAPK/ERK) signaling. Both KrasG12D -dependent and KrasG12D -independent tumors display a high level of genomic instability, and KrasG12D -independent tumors harbor numerous amplified genes that can activate the MAPK/ERK signaling pathway. Our study identifies both epithelial-mesenchymal transition (EMT) and active MAPK/ERK signaling in tumors that adapt to oncogenic KrasG12D withdrawal in a novel Trp53-/- breast cancer mouse model. To achieve long-lasting responses in the clinic to RAS-fueled cancer, treatment will need to focus in parallel on obstructing tumors from adapting to oncogene inhibition.
    Keywords:  Kras; breast cancer; mouse model; treatment adaptation
    DOI:  https://doi.org/10.1002/1878-0261.13220
  43. Cancer Discov. 2022 Apr 11. pii: candisc.0158.2022. [Epub ahead of print]
      Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRAS G12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique, covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRAS G12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRAS G12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with SHP2, MEK or CDK4/6 inhibitors. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRAS G12C-mutated tumors.
    DOI:  https://doi.org/10.1158/2159-8290.CD-22-0158