bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2021–09–19
forty-six papers selected by
Kıvanç Görgülü, Technical University of Munich



  1. Nature. 2021 Sep 15.
      Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths worldwide1. Studies in human tissues and in mouse models have suggested that for many cancers, stem cells sustain early mutations driving tumour development2,3. For the pancreas, however, mechanisms underlying cellular renewal and initiation of PDAC remain unresolved. Here, using lineage tracing from the endogenous telomerase reverse transcriptase (Tert) locus, we identify a rare TERT-positive subpopulation of pancreatic acinar cells dispersed throughout the exocrine compartment. During homeostasis, these TERThigh acinar cells renew the pancreas by forming expanding clones of acinar cells, whereas randomly marked acinar cells do not form these clones. Specific expression of mutant Kras in TERThigh acinar cells accelerates acinar clone formation and causes transdifferentiation to ductal pre-invasive pancreatic intraepithelial neoplasms by upregulating Ras-MAPK signalling and activating the downstream kinase ERK (phospho-ERK). In resected human pancreatic neoplasms, we find that foci of phospho-ERK-positive acinar cells are common and frequently contain activating KRAS mutations, suggesting that these acinar regions represent an early cancer precursor lesion. These data support a model in which rare TERThigh acinar cells may sustain KRAS mutations, driving acinar cell expansion and creating a field of aberrant cells initiating pancreatic tumorigenesis.
    DOI:  https://doi.org/10.1038/s41586-021-03916-2
  2. J Exp Med. 2021 Nov 01. pii: e20210911. [Epub ahead of print]218(11):
      Sex disparity in cancer is so far inadequately considered, and components of its basis are rather unknown. We reveal that male versus female pancreatic cancer (PC) patients and mice show shortened survival, more frequent liver metastasis, and elevated hepatic metastasis-promoting gene expression. Tissue inhibitor of metalloproteinases 1 (TIMP1) was the secreted factor with the strongest male-biased expression in patient-derived pancreatic tumors. Male-specific up-regulation of systemic TIMP1 was demonstrated in PC mouse models and patients. Using TIMP1-competent and TIMP1-deficient PC mouse models, we established a causal role of TIMP1 in determining shortened survival and increased liver metastasis in males. Observing TIMP1 expression as a risk parameter in males led to identification of a subpopulation exhibiting increased TIMP1 levels (T1HI males) in both primary tumors and blood. T1HI males showed increased risk for liver metastasis development not only in PC but also in colorectal cancer and melanoma. This study reveals a lifestyle-independent sex disparity in liver metastasis and may open new avenues toward precision medicine.
    DOI:  https://doi.org/10.1084/jem.20210911
  3. Genes Dev. 2021 Sep 16.
      Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.
    Keywords:  KRAS; MARK3; USP21; macropinocytosis; targeted therapy resistance
    DOI:  https://doi.org/10.1101/gad.348787.121
  4. Surg Oncol Clin N Am. 2021 Oct;pii: S1055-3207(21)00043-0. [Epub ahead of print]30(4): 609-619
      Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. However, it should be kept in mind that there are other pancreatic cancers that are classified by their cellular lineage: acinar cell carcinomas (acinar differentiation), neuroendocrine neoplasms (arising from the islets), solid-pseudopapillary neoplasms (showing no discernible cell lineage), and pancreatoblastomas (characterized by multiphenotypic differentiation, including acinar endocrine and ductal). This article focuses on the molecular and pathology alterations in PDAC.
    Keywords:  Pancreatic cancer; Pancreatic ductal adenocarcinoma; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.soc.2021.06.003
  5. FEBS J. 2021 Sep 12.
      Mitochondrial dysfunction is increasingly appreciated as a central contributor to human disease. Oxidative metabolism at the mitochondrial respiratory chain produces ATP and is intricately tied to redox homeostasis and biosynthetic pathways. Metabolic stress arising from genetic mutations in mitochondrial genes and environmental factors such as malnutrition or overnutrition is perceived by the cell and leads to adaptive and maladaptive responses that can underlie pathology. Here, we will outline cellular sensors that react to alterations in energy production, organellar redox, and metabolites stemming from mitochondrial disease (MD) mutations. MD is a heterogenous group of disorders primarily defined by defects in mitochondrial oxidative phosphorylation from nuclear or mitochondrial-encoded gene mutations. Pre-clinical therapies that improve fitness of MD mouse models have been recently identified. Targeting metabolic/energetic deficiencies, maladaptive signaling processes, and hyper-oxygenation of tissues are all strategies aside from direct genetic approaches that hold therapeutic promise. A further mechanistic understanding of these curative processes as well as the identification of novel targets will significantly impact mitochondrial biology and disease research.
    Keywords:  Mitochondrial dysfunction; hypoxia; mTORC1; metabolism; mitochondrial disease; mitochondrial signaling; oxidative stress; reactive oxygen species; redox homeostasis
    DOI:  https://doi.org/10.1111/febs.16195
  6. Cell Stress. 2021 Sep;5(9): 128-142
      The yeast Atg8 protein and its paralogs in mammals, mammalian Atg8s (mAtg8s), have been primarily appreciated for their participation in autophagy. However, lipidated mAtg8s, including the most frequently used autophagosomal membrane marker LC3B, are found on cellular membranes other than autophagosomes. Here we put forward a hypothesis that the lipidation of mAtg8s, termed 'Atg8ylation', is a general membrane stress and remodeling response analogous to the role that ubiquitylation plays in tagging proteins. Ubiquitin and mAtg8s are related in sequence and structure, and the lipidation of mAtg8s occurs on its C-terminal glycine, akin to the C-terminal glycine of ubiquitin. Conceptually, we propose that mAtg8s and Atg8ylation are to membranes what ubiquitin and ubiquitylation are to proteins, and that, like ubiquitylation, Atg8ylation has a multitude of downstream effector outputs, one of which is autophagy.
    Keywords:  ampk; atg8; autophagy; endosome; exosomes; galectin; lap; lc3; lysosome; microvesicles; mtor; secretion; secretory autophagy; tfeb; ubiquitin; ubiquitylation; unconventional secretion
    DOI:  https://doi.org/10.15698/cst2021.09.255
  7. Gut. 2021 Sep 11. pii: gutjnl-2021-325405. [Epub ahead of print]
       OBJECTIVE: Large-scale genome sequencing efforts of human tumours identified epigenetic modifiers as one of the most frequently mutated gene class in human cancer. However, how these mutations drive tumour development and tumour progression are largely unknown. Here, we investigated the function of the histone demethylase KDM6A in gastrointestinal cancers, such as liver cancer and pancreatic cancer.
    DESIGN: Genetic alterations as well as expression analyses of KDM6A were performed in patients with liver cancer. Genetic mouse models of liver and pancreatic cancer coupled with Kdm6a-deficiency were investigated, transcriptomic and epigenetic profiling was performed, and in vivo and in vitro drug treatments were conducted.
    RESULTS: KDM6A expression was lost in 30% of patients with liver cancer. Kdm6a deletion significantly accelerated tumour development in murine liver and pancreatic cancer models. Kdm6a-deficient tumours showed hyperactivation of mTORC1 signalling, whereas endogenous Kdm6a re-expression by inducible RNA-interference in established Kdm6a-deficient tumours diminished mTORC1 activity resulting in attenuated tumour progression. Genome-wide transcriptional and epigenetic profiling revealed direct binding of Kdm6a to crucial negative regulators of mTORC1, such as Deptor, and subsequent transcriptional activation by epigenetic remodelling. Moreover, in vitro and in vivo genetic epistasis experiments illustrated a crucial function of Deptor and mTORC1 in Kdm6a-dependent tumour suppression. Importantly, KDM6A expression in human tumours correlates with mTORC1 activity and KDM6A-deficient tumours exhibit increased sensitivity to mTORC1 inhibition.
    CONCLUSION: KDM6A is an important tumour suppressor in gastrointestinal cancers and acts as an epigenetic toggle for mTORC1 signalling. Patients with KDM6A-deficient tumours could benefit of targeted therapy focusing on mTORC1 inhibition.
    Keywords:  gastrointestinal cancer; hepatobiliary cancer; hepatocellular carcinoma; molecular carcinogenesis
    DOI:  https://doi.org/10.1136/gutjnl-2021-325405
  8. Cancer Lett. 2021 Sep 08. pii: S0304-3835(21)00454-7. [Epub ahead of print]
      Cancer cells craftily adapt their energy metabolism to their microenvironment. Nutrient deprivation due to hypovascularity and fibrosis is a major characteristic of pancreatic ductal adenocarcinoma (PDAC); thus, PDAC cells must produce energy intrinsically. However, the enhancement of energy production via activating Kras mutations is insufficient to explain the metabolic rewiring of PDAC cells. Here, we investigated the molecular mechanism underlying the metabolic shift in PDAC cells under serine starvation. Amino acid analysis revealed that the concentrations of all essential amino acids and most nonessential amino acids were decreased in the blood of PDAC patients. In addition, the plasma serine concentration was significantly higher in PDAC patients with PHGDH-high tumors than in those with PHGDH-low tumors. Although the growth and tumorigenesis of PK-59 cells with PHGDH promoter hypermethylation were significantly decreased by serine starvation, these activities were maintained in PDAC cell lines with PHGDH promoter hypomethylation by serine biosynthesis through PHGDH induction. In fact, DNA methylation analysis by pyrosequencing revealed that the methylation status of the PHGDH promoter was inversely correlated with the PHGDH expression level in human PDAC tissues. In addition to PHGDH induction by serine starvation, PDAC cells showed enhanced serine biosynthesis under serine starvation through 3-PG accumulation via PGAM1 knockdown, resulting in enhanced PDAC cell growth and tumor growth. However, PHGDH knockdown efficiently suppressed PDAC cell growth and tumor growth under serine starvation. These findings provide evidence that targeting the serine biosynthesis pathway by inhibiting PHGDH is a potent therapeutic approach to eliminate PDAC cells in nutrient-deprived microenvironments.
    Keywords:  Cancer metabolism; Glycolysis; Nutrient microenvironment; Pancreatic cancer; Serine biosynthesis
    DOI:  https://doi.org/10.1016/j.canlet.2021.09.007
  9. Biol Open. 2021 Sep 17. pii: bio.058736. [Epub ahead of print]
      There is great interest in understanding the cellular mechanisms controlling autophagy, a tightly regulated catabolic and stress response pathway. Prior work has uncovered links between autophagy and the Golgi reassembly stacking protein of 55 kDa (GRASP55), but their precise interrelationship remains unclear. Intriguingly, both autophagy and GRASP55 have been functionally and spatially linked to the endoplasmic reticulum (ER)-Golgi interface, broaching this compartment as a site where GRASP55 and autophagy may intersect. Here, we uncover that loss of GRASP55 enhances LC3 puncta formation, indicating that GRASP55 restricts autophagosome formation. Additionally, using proximity-dependent biotinylation, we identify a GRASP55 proximal interactome highly associated with the ER-Golgi interface. Both nutrient starvation and loss of GRASP55 are associated with coalescence of early secretory pathway markers. In light of these findings, we propose that GRASP55 regulates spatial organization of the ER-Golgi interface, which suppresses early autophagosome formation.
    Keywords:  Autophagy; Cell biology; GRASP55
    DOI:  https://doi.org/10.1242/bio.058736
  10. Nat Protoc. 2021 Sep 17.
      Cancer cells undergo diverse metabolic adaptations to meet the energetic demands imposed by dysregulated growth and proliferation. Assessing metabolism in intact tumors allows the investigator to observe the combined metabolic effects of numerous cancer cell-intrinsic and -extrinsic factors that cannot be fully captured in culture models. We have developed methods to use stable isotope-labeled nutrients (e.g., [13C]glucose) to probe metabolic activity within intact tumors in vivo, in mice and humans. In these methods, the labeled nutrient is introduced to the circulation through an intravenous catheter prior to surgical resection of the tumor and adjacent nonmalignant tissue. Metabolism within these tissues during the infusion transfers the isotope label into metabolic intermediates from pathways supplied by the infused nutrient. Extracting metabolites from surgical specimens and analyzing their isotope labeling patterns provides information about metabolism in the tissue. We provide detailed information about this technique, from introduction of the labeled tracer through data analysis and interpretation, including streamlined approaches to quantify isotope labeling in informative metabolites extracted from tissue samples. We focus on infusions with [13C]glucose and the application of mass spectrometry to assess isotope labeling in intermediates from central metabolic pathways, including glycolysis, the tricarboxylic acid cycle and nonessential amino acid synthesis. We outline practical considerations to apply these methods to human subjects undergoing surgical resections of solid tumors. We also discuss the method's versatility and consider the relative advantages and limitations of alternative approaches to introduce the tracer, harvest the tissue and analyze the data.
    DOI:  https://doi.org/10.1038/s41596-021-00605-2
  11. Surg Oncol Clin N Am. 2021 Oct;pii: S1055-3207(21)00044-2. [Epub ahead of print]30(4): 673-691
      Pancreatic ductal adenocarcinoma is characterized by early systemic dissemination, a complex tumor microenvironment, as well as significant intratumoral and intertumoral heterogeneity. Treatment options and survival in pancreatic ductal adenocarcinoma have improved steadily over the last 3 decades. Although cytotoxic chemotherapy is currently the mainstay of treatment for pancreatic ductal adenocarcinoma, evolving therapeutic strategies are aimed at targeting the tumor microenvironment, metabolism, and the tumor-host immune balance.
    Keywords:  Adenocarcinoma of the pancreas; Chemotherapy; Evolution; Pancreatic cancer; Systemic treatment
    DOI:  https://doi.org/10.1016/j.soc.2021.06.004
  12. Cell Metab. 2021 Sep 08. pii: S1550-4131(21)00376-4. [Epub ahead of print]
      Aging leads to profound changes in glucose homeostasis, weight, and adiposity, which are considered good predictors of health and survival in humans. Direct evidence that these age-associated metabolic alterations are recapitulated in animal models is lacking, impeding progress to develop and test interventions that delay the onset of metabolic dysfunction and promote healthy aging and longevity. We compared longitudinal trajectories, rates of change, and mortality risks of fasting blood glucose, body weight, and fat mass in mice, nonhuman primates, and humans throughout their lifespans and found similar trajectories of body weight and fat in the three species. In contrast, fasting blood glucose decreased late in life in mice but increased over the lifespan of nonhuman primates and humans. Higher glucose was associated with lower mortality in mice but higher mortality in nonhuman primates and humans, providing a cautionary tale for translating age-associated metabolic changes from mice to humans.
    Keywords:  fasting blood glucose; humans; metabolism; mice; mortality; nonhuman primates; predictors
    DOI:  https://doi.org/10.1016/j.cmet.2021.08.013
  13. Cell. 2021 Sep 16. pii: S0092-8674(21)00994-6. [Epub ahead of print]184(19): 4996-5014.e26
      CD8 T cell responses against different tumor neoantigens occur simultaneously, yet little is known about the interplay between responses and its impact on T cell function and tumor control. In mouse lung adenocarcinoma, we found that immunodominance is established in tumors, wherein CD8 T cell expansion is predominantly driven by the antigen that most stably binds MHC. T cells responding to subdominant antigens were enriched for a TCF1+ progenitor phenotype correlated with response to immune checkpoint blockade (ICB) therapy. However, the subdominant T cell response did not preferentially benefit from ICB due to a dysfunctional subset of TCF1+ cells marked by CCR6 and Tc17 differentiation. Analysis of human samples and sequencing datasets revealed that CCR6+ TCF1+ cells exist across human cancers and are not correlated with ICB response. Vaccination eliminated CCR6+ TCF1+ cells and dramatically improved the subdominant response, highlighting a strategy to optimally engage concurrent neoantigen responses against tumors.
    Keywords:  CCR6; CD8 T cell; TCF1; Tc17; checkpoint blockade; immunodominance; lung cancer; neoantigen; vaccine
    DOI:  https://doi.org/10.1016/j.cell.2021.08.020
  14. Cell Rep. 2021 Sep 14. pii: S2211-1247(21)01136-0. [Epub ahead of print]36(11): 109689
      Assessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging. We further reveal that Rac1 inhibition can enhance tumor cell vulnerability to fluid-flow-induced shear stress and therefore improves overall anti-metastatic response to therapy during transit to secondary sites such as the lung. Collectively, this study demonstrates the utility of single-cell intravital imaging in vivo to demonstrate that Rac1 inhibition can reduce tumor progression and metastases in an autochthonous setting to improve overall survival.
    Keywords:  FLIM; FRET biosensors; Rac1; breast cancer; intravital imaging; metastasis; pharmacodynamics; small GTPases
    DOI:  https://doi.org/10.1016/j.celrep.2021.109689
  15. Autophagy. 2021 Sep 14. 1-3
      The mammalian ULK kinase complex is the most upstream component in the macroautophagy/autophagy signaling pathway. ULK1 and homolog ULK2, the sole serine/threonine kinases in autophagy, transduce an array of autophagy-inducing stimuli to downstream autophagic machinery, regulating autophagy from autophagosome initiation to fusion of autophagosomes with lysosomes. ULK signaling is also implicated in a diverse array of non-canonical processes from necroptosis to ER-Golgi trafficking to stress granule clearance. However, the exact mechanisms by which ULK regulates these diverse processes remain largely unknown. Most notably, the number of validated ULK substrates is surprisingly low. Our study identifies new ULK substrates from a wide array of protein families and signaling pathways and supports an expanded range of physiological roles for the ULKs. We further characterize several new substrates, including the PIK3C3/VPS34-containing complex subunit PIK3R4/VPS15 and the AMPK component PRKAG2. Finally, by analyzing PIK3R4/VPS15-deficient models we discover novel aspects of ULK signaling with potential relevance in selective autophagy.
    Keywords:  AMPK; PIK3R4; PRKAG2; VPS15; VPS34; p150
    DOI:  https://doi.org/10.1080/15548627.2021.1968615
  16. Sci Signal. 2021 Aug 31. 14(698): eabm1199
      ApoE mediates immune suppression in pancreatic ductal adenocarcinoma.
    DOI:  https://doi.org/10.1126/scisignal.abm1199
  17. Mol Cancer Ther. 2021 Sep 13. pii: molcanther.0083.2021. [Epub ahead of print]
      A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense, desmoplastic stroma and the consequent altered interactions between cancer cells and their surrounding tumor microenvironment (TME) that promote disease progression, metastasis, and chemoresistance. We have previously shown that IL-6 secreted from pancreatic stellate cells (PSCs) stimulates the activation of STAT3 signaling in tumor cells, an established mechanism of therapeutic resistance in PDAC. We have now identified the tumor cell-derived cytokine interleukin-1α (IL-1α) as an upstream mediator of IL-6 release from PSCs that is involved in STAT3 activation within the TME. Herein, we show that IL-1α is overexpressed in both murine and human PDAC tumors and engages with its cognate receptor IL-1R1 which is strongly expressed on stromal cells. Further, we show that IL-1R1 inhibition using anakinra (recombinant IL-1 receptor antagonist) significantly reduces stromal-derived IL-6, thereby suppressing IL-6-dependent STAT3 activation in human PDAC cell lines. Anakinra treatment results in significant reduction in IL-6 and activated STAT3 levels in pancreatic tumors from Ptf1aCre/+;LSL-KrasG12D/+; Tgfbr2flox/flox (PKT) mice. Additionally, the combination of anakinra with cytotoxic chemotherapy significantly extends overall survival compared with vehicle treatment or anakinra monotherapy in this aggressive genetic mouse model of PDAC. These data highlight the importance of IL-1 in mediating tumor-stromal IL-6/STAT3 crosstalk in the TME and provide preclinical rationale for targeting IL-1 signaling as a therapeutic strategy in PDAC.
    DOI:  https://doi.org/10.1158/1535-7163.MCT-21-0083
  18. Cell. 2021 Sep 16. pii: S0092-8674(21)00997-1. [Epub ahead of print]184(19): 5031-5052.e26
    Clinical Proteomic Tumor Analysis Consortium
      Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
    Keywords:  CPTAC; KRAS; endothelial cell; glycoproteins; immune-cold tumors; kinase inhibitors; neoplastic cellularity; pancreatic ductal adenocarcinoma; proteogenomics; tumor subtyping
    DOI:  https://doi.org/10.1016/j.cell.2021.08.023
  19. Nature. 2021 Sep 15.
      
    Keywords:  Cancer; Medical research
    DOI:  https://doi.org/10.1038/d41586-021-02435-4
  20. Trends Endocrinol Metab. 2021 Sep 08. pii: S1043-2760(21)00200-9. [Epub ahead of print]
      
    Keywords:  adiposity; browning; cachexia; cancer; muscle adipose tissue crosstalk
    DOI:  https://doi.org/10.1016/j.tem.2021.08.007
  21. Nat Rev Mol Cell Biol. 2021 Sep 13.
      Dietary restriction with adequate nutrition is the gold standard for delaying ageing and extending healthspan and lifespan in diverse species, including rodents and non-human primates. In this Review, we discuss the effects of dietary restriction in these mammalian model organisms and discuss accumulating data that suggest that dietary restriction results in many of the same physiological, metabolic and molecular changes responsible for the prevention of multiple ageing-associated diseases in humans. We further discuss how different forms of fasting, protein restriction and specific reductions in the levels of essential amino acids such as methionine and the branched-chain amino acids selectively impact the activity of AKT, FOXO, mTOR, nicotinamide adenine dinucleotide (NAD+), AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21), which are key components of some of the most important nutrient-sensing geroprotective signalling pathways that promote healthy longevity.
    DOI:  https://doi.org/10.1038/s41580-021-00411-4
  22. Cancer Immunol Res. 2021 Sep 15. pii: canimm.0144.2021. [Epub ahead of print]
      Immunotherapy, including PD-1/PD-L1 agonists, has shown limited efficacy in pancreatic ductal adenocarcinoma (PDAC). We examined the PD-1/PD-L1 expression and immunoarchitectural features by automated morphometric analysis using multiplex immunofluorescence and 118 microsatellite-stable, treatment-naïve, surgically resected PDACs (study cohort). Five microsatellite-instable cases were stained in parallel (MSI cohort). Molecular analysis was additionally performed. An independent PDAC-cohort (n=226) was immunostained for PD-L1and used as a validation cohort. PD-L1 expression on tumor cells (TCs) and/or immune cells (ICs) was present in 32% and 30% of the study and validation cohorts, respectively, and assigned into one of four patterns: "adaptive-1" (TC:0, IC>1%), "adaptive-2" (TC>1%-<25%, IC>1%), "constitutive" (TC{greater than or equal to}25%, IC:0), and "combined" (TC{greater than or equal to}25%, IC>1%). "Constitutive" tumors were characterized by reduced numbers of all immune cells and poor outcome. In contrast, "adaptive-1" tumors exhibited abundant T cells, including high counts of cytotoxic CD3+CD8+ and PD-1+CD3+CD8+ cells, but low counts of PD-L1+CD3+CD8+ cells and associated with the best outcome. "Adaptive-2" tumors (median OS:13 months) displayed higher proportions of PD-L1+CD3+CD8+ T cells and tumor-associated macrophages (CD68+, CD68+CD206+) compared to "adaptive-1" tumors. In the "combined" pattern, extensive PD-L1 expression on TCs was accompanied by increased numbers of T cells and improved OS. ICs were closer to PD-L1- than to PD-L1+ PDAC cells. TP53 and PIK3CA alterations tended to be more frequent in PD-L1+ tumors. The 5 MSI cases were PD-L1-. The distinct PD-1/PD-L1-associated immunoarchitectural patterns underpin the heterogeneity of the immunological responses and might be used to inform patient outcomes and therapeutic decisions in pancreatic cancer.
    DOI:  https://doi.org/10.1158/2326-6066.CIR-21-0144
  23. Nat Mater. 2021 Sep 13.
      Experimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin-integrin α3/α6 signalling in establishment and survival of pancreatic organoids. Altered tissue stiffness-a hallmark of pancreatic cancer-was recapitulated in culture by adjusting the hydrogel properties to engage mechano-sensing pathways and alter organoid growth. Pancreatic stromal cells were readily incorporated into the hydrogels and replicated phenotypic traits characteristic of the tumour environment in vivo. This model therefore recapitulates a pathologically remodelled tumour microenvironment for studies of normal and pancreatic cancer cells in vitro.
    DOI:  https://doi.org/10.1038/s41563-021-01085-1
  24. Immunity. 2021 Sep 08. pii: S1074-7613(21)00360-5. [Epub ahead of print]
      In tumors, a subset of CD8+ T cells expressing the transcription factor TCF-1 drives the response to immune checkpoint blockade. We examined the mechanisms that maintain these cells in an autochthonous model of lung adenocarcinoma. Longitudinal sampling and single-cell sequencing of tumor-antigen specific TCF-1+ CD8+ T cells revealed that while intratumoral TCF-1+ CD8+ T cells acquired dysfunctional features and decreased in number as tumors progressed, TCF-1+ CD8+ T cell frequency in the tumor draining LN (dLN) remained stable. Two discrete intratumoral TCF-1+ CD8+ T cell subsets developed over time-a proliferative SlamF6+ subset and a non-cycling SlamF6- subset. Blocking dLN egress decreased the frequency of intratumoral SlamF6+ TCF-1+ CD8+ T cells. Conventional type I dendritic cell (cDC1) in dLN decreased in number with tumor progression, and Flt3L+anti-CD40 treatment recovered SlamF6+ T cell frequencies and decreased tumor burden. Thus, cDC1s in tumor dLN maintain a reservoir of TCF-1+ CD8+ T cells and their decrease contributes to failed anti-tumor immunity.
    Keywords:  CD8 T cells; Flt3L; T cell dysfunction; TCF-1+; anti-CD40; migratory cDC1; single-cell RNA-seq; tumor immunology; tumor-draining lymph node
    DOI:  https://doi.org/10.1016/j.immuni.2021.08.026
  25. Biochem J. 2021 Sep 17. 478(17): 3373-3393
      Cancer metastasis remains a major clinical challenge for cancer treatment. It is therefore crucial to understand how cancer cells establish and maintain their metastatic traits. However, metastasis-specific genetic mutations have not been identified in most exome or genome sequencing studies. Emerging evidence suggests that key steps of metastasis are controlled by reversible epigenetic mechanisms, which can be targeted to prevent and treat the metastatic disease. A variety of epigenetic mechanisms were identified to regulate metastasis, including the well-studied DNA methylation and histone modifications. In the past few years, large scale chromatin structure alterations including reprogramming of the enhancers and chromatin accessibility to the transcription factors were shown to be potential driving force of cancer metastasis. To dissect the molecular mechanisms and functional output of these epigenetic changes, it is critical to use advanced techniques and alternative animal models for interdisciplinary and translational research on this topic. Here we summarize our current understanding of epigenetic aberrations in cancer progression and metastasis, and their implications in developing new effective metastasis-specific therapies.
    Keywords:  cancer metastasis; chromatin opening; enhancer reprogramming; epigenetics; histone modification; tumor progression
    DOI:  https://doi.org/10.1042/BCJ20210084
  26. Mol Biol Cell. 2021 Oct 01. 32(20): 1107-1108
      Even with recent advances in lineage tracing and multiomics analyses, it is difficult to specifically identify and target heterogeneous fibroblast populations in an organ-specific manner. This study combined robust multi-organ in vitro, in vivo, and high-throughput gene expression analyses of mouse fibroblast populations derived from various organs to define organ-specific transcriptional signatures. The analyses revealed that fibroblasts derived from different organs retain transcriptional embryonic gene signatures as organ-of-origin identifiers in adulthood. Moreover, organ-specific transcriptome identities of fibroblast populations were maintained in fibroblast co-cultures in vitro and ectopic transplants in vivo. These studies advance our current understanding of the heterogeneity of fibroblast populations and suggest opportunities for their exploitation and targetability in an organ-specific manner.
    DOI:  https://doi.org/10.1091/mbc.E21-10-0123p
  27. Nat Commun. 2021 Sep 17. 12(1): 5525
      Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.
    DOI:  https://doi.org/10.1038/s41467-021-25468-9
  28. Cancer Res. 2021 Sep 17. pii: canres.1180.2021. [Epub ahead of print]
      High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a pro-metastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKCα pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacological blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a platelet-adoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKCα pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-1180
  29. Trends Endocrinol Metab. 2021 Sep 13. pii: S1043-2760(21)00201-0. [Epub ahead of print]
      Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are established as stress-responsive cytokines that can modulate energy balance by increasing energy expenditure or suppressing food intake, respectively. Despite their pharmacologically induced beneficial effects on obesity and comorbidities, circulating levels of both cytokines are elevated during obesity and related metabolic complications. On the other hand, endocrine crosstalk via FGF21 and GDF15 was also reported to play a crucial role in genetically modified mouse models of mitochondrial perturbations leading to diet-induced obesity (DIO) resistance. This review aims to dissect the complexities of endogenous FGF21 and GDF15 action in obesity versus DIO resistance for the regulation of energy balance in metabolic health and disease.
    Keywords:  FGF21; GDF15; adipose tissue; energy balance; mitochondrial integrated stress response; muscle; obesity resistance
    DOI:  https://doi.org/10.1016/j.tem.2021.08.008
  30. Immunity. 2021 Sep 14. pii: S1074-7613(21)00357-5. [Epub ahead of print]54(9): 1933-1947
      Stress is an essential adaptive response that enables the organism to cope with challenges and restore homeostasis. Different stressors require distinctive corrective responses in which immune cells play a critical role. Hence, effects of stress on immunity may vary accordingly. Indeed, epidemiologically, stress can induce either inflammation or immune suppression in an organism. However, in the absence of a conceptual framework, these effects appear chaotic, leading to confusion. Here, we examine how stressor diversity is imbedded in the neuroimmune axis. Stressors differ in the brain patterns they induce, diversifying the neuronal and endocrine mediators dispatched to the periphery and generating a wide range of potential immune effects. Uncovering this complexity and diversity of the immune response to different stressors will allow us to understand the involvement of stress in pathological conditions, identify ways to modulate it, and even harness the therapeutic potential embedded in an adaptive response to stress.
    DOI:  https://doi.org/10.1016/j.immuni.2021.08.023
  31. Aging Cell. 2021 Sep 18. e13439
      Several biomarkers of healthy aging have been proposed in recent years, including the epigenetic clocks, based on DNA methylation (DNAm) measures, which are getting increasingly accurate in predicting the individual biological age. The recently developed "next-generation clock" DNAmGrimAge outperforms "first-generation clocks" in predicting longevity and the onset of many age-related pathological conditions and diseases. Additionally, the total number of stochastic epigenetic mutations (SEMs), also known as the epigenetic mutation load (EML), has been proposed as a complementary DNAm-based biomarker of healthy aging. A fundamental biological property of epigenetic, and in particular DNAm modifications, is the potential reversibility of the effect, raising questions about the possible slowdown of epigenetic aging by modifying one's lifestyle. Here, we investigated whether improved dietary habits and increased physical activity have favorable effects on aging biomarkers in healthy postmenopausal women. The study sample consists of 219 women from the "Diet, Physical Activity, and Mammography" (DAMA) study: a 24-month randomized factorial intervention trial with DNAm measured twice, at baseline and the end of the trial. Women who participated in the dietary intervention had a significant slowing of the DNAmGrimAge clock, whereas increasing physical activity led to a significant reduction of SEMs in crucial cancer-related pathways. Our study provides strong evidence of a causal association between lifestyle modification and slowing down of DNAm aging biomarkers. This randomized trial elucidates the causal relationship between lifestyle and healthy aging-related epigenetic mechanisms.
    Keywords:  DNA methylation; dietary habits; epigenetic clock; epigenetic mutation load; physical activity; postmenopausal women; primary prevention trial
    DOI:  https://doi.org/10.1111/acel.13439
  32. Mech Ageing Dev. 2021 Sep 10. pii: S0047-6374(21)00139-1. [Epub ahead of print] 111567
      NAD+ is a fundamental molecule in human life and health as it participates in energy metabolism, cell signalling, mitochondrial homeostasis, and in dictating cell survival or death. Emerging evidence from preclinical and human studies indicates an age-dependent reduction of cellular NAD+, possibly due to reduced synthesis and increased consumption. In preclinical models, NAD+ repletion extends healthspan and / or lifespan and mitigates several conditions, such as premature ageing diseases and neurodegenerative diseases. These findings suggest that NAD+ replenishment through NAD+ precursors has great potential as a therapeutic target for ageing and age-predisposed diseases, such as Alzheimer's disease. Here, we provide an updated review on the biological activity, safety, and possible side effects of NAD+ precursors in preclinical and clinical studies. Major NAD+ precursors focused on by this review are nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and the new discovered dihydronicotinamide riboside (NRH). In summary, NAD+ precursors have an exciting therapeutic potential for ageing, metabolic and neurodegenerative diseases.
    Keywords:  Alzheimer’s disease; NAD(+); ageing; healthspan
    DOI:  https://doi.org/10.1016/j.mad.2021.111567
  33. JAMA Oncol. 2021 Sep 16.
       Importance: Pathogenic germline variants in the ATM gene have been associated with pancreatic cancer risk. Although genetic testing identifies these variants in approximately 1% to 3% of unselected patients with pancreatic cancer, the lifetime risk of pancreatic cancer among individuals with pathogenic ATM variants has not been well estimated.
    Objective: To estimate age-specific penetrance of pancreatic cancer in individuals with a pathogenic variant in the ATM gene.
    Design, Setting, and Participants: This was a multicenter cohort study of pancreatic cancer family registries in the US and Canada using pedigree data from 130 pancreatic cancer kindreds with a pathogenic germline ATM variant. Data analyses were performed from January 2020 to February 2021.
    Main Outcomes and Measures: Observational age-specific risk of pancreatic cancer. Penetrance was estimated using modified segregation analysis.
    Results: The study population of 130 families (123 [95%] White families) comprised 2227 family members (mean age [SD], 58 [22] years; 1096 [49%] women) with complete records (ie, including familial relationships, pancreatic cancer diagnosis, ATM status, proband status, and age), of which 155 individuals had positive results for an ATM pathogenic variant, 16 had a negative result, and the remainder did not have a test result. In these 130 families, 217 individuals had pancreatic cancer: 78 families had 1 such member; 34 families had 2 such members; and 18 families had 3 or more members with pancreatic cancer. The average (range) age at diagnosis was 64 (31-98) years. The cumulative risk of pancreatic cancer among individuals with a germline pathogenic ATM variant was estimated to be 1.1% (95% CI, 0.8%-1.3%) by age 50 years; 6.3% (95% CI, 3.9%-8.7%) by age 70 years; and 9.5% (95% CI, 5.0%-14.0%) by age 80 years. Overall, the relative risk of pancreatic cancer was 6.5 (95% CI, 4.5-9.5) in ATM variant carriers compared with noncarriers.
    Conclusions and Relevance: This multicenter cohort study found that individuals with a germline pathogenic ATM variant were at an increased lifetime risk of pancreatic cancer. These risk estimates can help guide decision-making when evaluating the risks and benefits of enhanced early detection surveillance.
    DOI:  https://doi.org/10.1001/jamaoncol.2021.3701
  34. J Cell Biol. 2021 Nov 01. pii: e202101165. [Epub ahead of print]220(11):
      Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.
    DOI:  https://doi.org/10.1083/jcb.202101165
  35. Cancer Epidemiol Biomarkers Prev. 2021 Sep 15. pii: cebp.0353.2021. [Epub ahead of print]
       BACKGROUND: The mitochondrial metabolism has been associated with pancreatic ductal adenocarcinoma (PDAC) risk. Recent evidence also suggests the involvement of the genetic variability of the mitochondrial function in several traits involved in PDAC aetiology. However, a systematic investigation of the genetic variability of mitochondrial genome (mtSNPs) and of all the nuclear genes involved in its functioning (n-mtSNPs) has never been reported.
    METHODS: We conducted a two-phase association study of mtSNPs and n-mtSNPs to assess their effect on PDAC risk. We analysed 35,297 n-mtSNPs and 101 mtSNPs in up to 55,870 individuals (12,884 PDAC cases and 42,986 controls). In addition, we also conducted a gene-based analysis on 1,588 genes involved in mitochondrial metabolism using MAGMA software.
    RESULTS: In the discovery phase we identified 49 n-mtSNPs and no mtSNPs associated with PDAC risk (P <0.05). In the second phase none of the findings were replicated. In the gene-level analysiswe observed that three genes (TERT, SUGCT and SURF1) involved in the mitochondrial metabolismshowed an association below the Bonferroni-corrected threshold of statistical significance (P=0.05/1588=3.1 x10-5).
    CONCLUSIONS: Even though the mitochondrial metabolism might be involved in PDAC aetiology, our results, obtained in a study with one of the largest sample sizes to date, show that neither n-mtSNPs nor mtSNPs are associated with PDAC risk.
    IMPACT: This large case-control study does not support a role of the genetic variability of the mitochondrial function in PDAC risk.
    DOI:  https://doi.org/10.1158/1055-9965.EPI-21-0353
  36. Pancreatology. 2021 Sep 08. pii: S1424-3903(21)00568-8. [Epub ahead of print]
       BACKGROUND: Pancreatic carcinoma carries a devastating prognosis and is the 4th leading cause for cancer related death in the US and most European countries. Apart from imaging and CA 19-9, pancreatic carcinoma is still lacking reliable markers to assess tumor dynamics and to monitor treatment response over time. The aim of this study was to evaluate the feasibility of cell free tumor-DNA (cft-DNA), respectively KRAS mutation in peripheral blood, detection as a prognostic and predictive value for chemotherapy monitoring.
    METHODS: Serial plasma samples from 42 patients with KRAS mutated pancreatic cancer were prospectively collected and the ctKRAS Mutation Assay (Idylla™, Biocartis, Mechelen, Belgium) of cft-DNA was performed on 29 patients that did not receive curative surgery and went on to palliative chemotherapy. To monitor cft-DNA KRAS mutation levels during treatment quantitative assessment of cft-DNA was performed at baseline and during follow up at predetermined times.
    RESULTS: All 29 patients included in our analyses had a detected KRAS mutation in the tumor biopsy. In almost half (48.2%) of patients a KRAS mutation could also be detected in peripheral plasma. Patients with detectable KRAS mutations before treatment start in plasma had a significantly worse survival (16.8 months vs not reached, p < 0.031 and HR 3.303). Looking for a dynamic assessment of tumor response, we found a statistically significant association between the KRAS mutant ratio from first staging CT scan to basal levels with tumor response or progress (p = 0.014).
    CONCLUSION: Performing KRAS testing from peripheral blood for patients, who have no elevated tumor markers, might be a novel option for treatment monitoring complementing routine imaging techniques.
    Keywords:  Idylla; KRAS; Pancreatic cancer; Survival; cf-DNA
    DOI:  https://doi.org/10.1016/j.pan.2021.09.004
  37. Cell Commun Signal. 2021 Sep 16. 19(1): 94
       BACKGROUND: Cell-to-cell heterogeneity is an inherent feature of multicellular organisms and is central in all physiological and pathophysiological processes including cellular signal transduction. The cytokine IL-6 is an essential mediator of pro- and anti-inflammatory processes. Dysregulated IL-6-induced intracellular JAK/STAT signalling is associated with severe inflammatory and proliferative diseases. Under physiological conditions JAK/STAT signalling is rigorously controlled and timely orchestrated by regulatory mechanisms such as expression of the feedback-inhibitor SOCS3 and activation of the protein-tyrosine phosphatase SHP2 (PTPN11). Interestingly, the function of negative regulators seems not to be restricted to controlling the strength and timely orchestration of IL-6-induced STAT3 activation. Exemplarily, SOCS3 increases robustness of late IL-6-induced STAT3 activation against heterogenous STAT3 expression and reduces the amount of information transferred through JAK/STAT signalling.
    METHODS: Here we use multiplexed single-cell analyses and information theoretic approaches to clarify whether also SHP2 contributes to robustness of STAT3 activation and whether SHP2 affects the amount of information transferred through IL-6-induced JAK/STAT signalling.
    RESULTS: SHP2 increases robustness of both basal, cytokine-independent STAT3 activation and early IL-6-induced STAT3 activation against differential STAT3 expression. However, SHP2 does not affect robustness of late IL-6-induced STAT3 activation. In contrast to SOCS3, SHP2 increases the amount of information transferred through IL-6-induced JAK/STAT signalling, probably by reducing cytokine-independent STAT3 activation and thereby increasing sensitivity of the cells. These effects are independent of SHP2-dependent MAPK activation.
    CONCLUSION: In summary, the results of this study extend our knowledge of the functions of SHP2 in IL-6-induced JAK/STAT signalling. SHP2 is not only a repressor of basal and cytokine-induced STAT3 activity, but also ensures robustness and transmission of information. Plain English summary Cells within a multicellular organism communicate with each other to exchange information about the environment. Communication between cells is facilitated by soluble molecules that transmit information from one cell to the other. Cytokines such as interleukin-6 are important soluble mediators that are secreted when an organism is faced with infections or inflammation. Secreted cytokines bind to receptors within the membrane of their target cells. This binding induces activation of an intracellular cascade of reactions called signal transduction, which leads to cellular responses. An important example of intracellular signal transduction is JAK/STAT signalling. In healthy organisms signalling is controlled and timed by regulatory mechanisms, whose activation results in a controlled shutdown of signalling pathways. Interestingly, not all cells within an organism are identical. They differ in the amount of proteins involved in signal transduction, such as STAT3. These differences shape cellular communication and responses to intracellular signalling. Here, we show that an important negative regulatory protein called SHP2 (or PTPN11) is not only responsible for shutting down signalling, but also for steering signalling in heterogeneous cell populations. SHP2 increases robustness of STAT3 activation against variable STAT3 amounts in individual cells. Additionally, it increases the amount of information transferred through JAK/STAT signalling by increasing the dynamic range of pathway activation in heterogeneous cell populations. This is an amazing new function of negative regulatory proteins that contributes to communication in heterogeneous multicellular organisms in health and disease. Video Abstract.
    Keywords:  Channel Capacity; Information theory; JAK/STAT; MAPK; Mutual Information; PTPN11; SHP2; Signal transduction
    DOI:  https://doi.org/10.1186/s12964-021-00770-7
  38. Nucleic Acids Res. 2021 Sep 17. pii: gkab804. [Epub ahead of print]
      Syngeneic mouse models are tumors derived from murine cancer cells engrafted on genetically identical mouse strains. They are widely used tools for studying tumor immunity and immunotherapy response in the context of a fully functional murine immune system. Large volumes of syngeneic mouse tumor expression profiles under different immunotherapy treatments have been generated, although a lack of systematic collection and analysis makes data reuse challenging. We present Tumor Immune Syngeneic MOuse (TISMO), a database with an extensive collection of syngeneic mouse model profiles with interactive visualization features. TISMO contains 605 in vitro RNA-seq samples from 49 syngeneic cancer cell lines across 23 cancer types, of which 195 underwent cytokine treatment. TISMO also includes 1518 in vivo RNA-seq samples from 68 syngeneic mouse tumor models across 19 cancer types, of which 832 were from immune checkpoint blockade (ICB) studies. We manually annotated the sample metadata, such as cell line, mouse strain, transplantation site, treatment, and response status, and uniformly processed and quality-controlled the RNA-seq data. Besides data download, TISMO provides interactive web interfaces to investigate whether specific gene expression, pathway enrichment, or immune infiltration level is associated with differential immunotherapy response. TISMO is available at http://tismo.cistrome.org.
    DOI:  https://doi.org/10.1093/nar/gkab804
  39. Biochem Biophys Rep. 2021 Dec;28 101126
      Cell-to-cell interactions (CCIs) through ligand-receptor (LR) pairs in the tumor microenvironment underlie the poor prognosis of pancreatic ductal adenocarcinoma (PDAC). However, there is scant knowledge of the association of CCIs with PDAC prognosis, which is critical to the identification of potential therapeutic candidates. Here, we sought to identify the LR pairs associated with PDAC patient prognosis by integrating survival analysis and single-cell CCI prediction. Via survival analysis using gene expression from cancer cohorts, we found 199 prognostic LR pairs. CCI prediction based on single-cell RNA-seq data revealed the enriched LR pairs associated with poor prognosis. Notably, the CCIs involved epithelial tumor cells, cancer-associated fibroblasts, and tumor-associated macrophages through integrin-related and ANXA1-FPR pairs. Finally, we determined that CCIs involving 33 poor-prognostic LR pairs were associated with tumor grade. Although the clinical implication of the set of LR pairs must be determined, our results may provide potential therapeutic targets in PDAC.
    Keywords:  Cell-cell communication; Ligand-receptor pairs; Pancreatic ductal adenocarcinoma; Survival analysis; scRNA-seq
    DOI:  https://doi.org/10.1016/j.bbrep.2021.101126
  40. Nat Commun. 2021 Sep 17. 12(1): 5514
      Human shelterin components POT1 and TPP1 form a stable heterodimer that protects telomere ends from ATR-dependent DNA damage responses and regulates telomerase-dependent telomere extension. Mice possess two functionally distinct POT1 proteins. POT1a represses ATR/CHK1 DNA damage responses and the alternative non-homologous end-joining DNA repair pathway while POT1b regulates C-strand resection and recruits the CTC1-STN1-TEN1 (CST) complex to telomeres to mediate C-strand fill-in synthesis. Whether POT1a and POT1b are involved in regulating the length of the telomeric G-strand is unclear. Here we demonstrate that POT1b, independent of its CST function, enhances recruitment of telomerase to telomeres through three amino acids in its TPP1 interacting C-terminus. POT1b thus coordinates the synthesis of both telomeric G- and C-strands. In contrast, POT1a negatively regulates telomere length by inhibiting telomerase recruitment to telomeres. The identification of unique amino acids between POT1a and POT1b helps us understand mechanistically how human POT1 switches between end protective functions and promoting telomerase recruitment.
    DOI:  https://doi.org/10.1038/s41467-021-25799-7
  41. J Cell Biol. 2021 Nov 01. pii: e202107103. [Epub ahead of print]220(11):
      The subcellular localization of RAS GTPases defines the operational compartment of the EGFR-ERK1/2 signaling pathway within cells. Hence, we used live-cell imaging to demonstrate that endogenous KRAS and NRAS tagged with mNeonGreen are predominantly localized to the plasma membrane. NRAS was also present in the Golgi apparatus and a tubular, plasma-membrane derived endorecycling compartment, enriched in recycling endosome markers (TERC). In EGF-stimulated cells, there was essentially no colocalization of either mNeonGreen-KRAS or mNeonGreen-NRAS with endosomal EGFR, which, by contrast, remained associated with endogenous Grb2-mNeonGreen, a receptor adaptor upstream of RAS. ERK1/2 activity was diminished by blocking cell surface EGFR with cetuximab, even after most ligand-bound, Grb2-associated EGFRs were internalized. Endogenous mCherry-tagged RAF1, an effector of RAS, was recruited to the plasma membrane, with subsequent accumulation in mNG-NRAS-containing TERCs. We propose that a small pool of surface EGFRs sustain signaling within the RAS-ERK1/2 pathway and that RAS activation persists in TERCs, whereas endosomal EGFR does not significantly contribute to ERK1/2 activity.
    DOI:  https://doi.org/10.1083/jcb.202107103