Carbohydr Polym. 2025 Jan 15. pii: S0144-8617(24)01071-3. [Epub ahead of print]348(Pt B): 122845
Polysaccharide hydrogels, which can mimic the natural extracellular matrix and possess appealing physicochemical and biological characteristics, have emerged as significant bioinks for 3D bioprinting. They are highly promising for applications in tissue engineering and regenerative medicine because of their ability to enhance cell adhesion, proliferation, and differentiation in a manner akin to the natural cellular environment. This review comprehensively examines the fabrication methods, characteristics, and applications of polysaccharide hydrogel-driven 3D bioprinting, underscoring its potential in tissue engineering, drug delivery, and regenerative medicine. To contribute pertinent knowledge for future research in this field, this review critically examines key aspects, including the chemistry of carbohydrates, manufacturing techniques, formulation of bioinks, and characterization of polysaccharide-based hydrogels. Furthermore, this review explores the primary advancements and applications of 3D-printed polysaccharide hydrogels, encompassing drug delivery systems with controlled release kinetics and targeted therapy, along with tissue-engineered constructs for bone, cartilage, skin, and vascular regeneration. The use of these 3D bioprinted hydrogels in innovative research fields, including disease modeling and drug screening, is also addressed. Despite notable progress, challenges, including modulating the chemistry and properties of polysaccharides, enhancing bioink printability and mechanical properties, and achieving long-term in vivo stability, have been highlighted.
Keywords: Additive manufacturing; Bioinks; Bioprinting; Polysaccharide modification; Regenerative medicine; Tissue engineering