bims-biprem Biomed News
on Bioprinting for regenerative medicine
Issue of 2024–11–17
eight papers selected by
Seerat Maqsood, University of Teramo



  1. ACS Omega. 2024 Nov 05. 9(44): 44076-44100
      The continuous interaction between tumor cells and the local microenvironment plays a decisive role in tumor development. Selecting effective models to simulate the tumor microenvironment to study the physiological processes of tumorigenesis and progression is extremely important and challenging. Currently, three-dimensional (3D) bioprinting technology makes it possible to replicate a physiologically relevant tumor microenvironment and induce genomic and proteomic expression to better mimic tumors in vivo. Meanwhile, it plays a crucial role in the prevention and treatment of human diseases, contributing to drug delivery and drug screening, tissue development and regenerative medicine. This paper provides an overview of the categories of 3D bioprinting technology, and the recent advances in the bioinks required for printing. In addition, we summarize the current tumor models based on 3D bioprinting and provide an assessment of possible future biological applications.
    DOI:  https://doi.org/10.1021/acsomega.4c06051
  2. Biomater Sci. 2024 Nov 13.
      Over eight million surgical procedures are conducted annually in the United Stats to address organ failure or tissue losses. In response to this pressing need, recent medical advancements have significantly improved patient outcomes, primarily through innovative reconstructive surgeries utilizing tissue grafting techniques. Despite tremendous efforts, repairing damaged tissues remains a major clinical challenge for bioengineers and clinicians. 3D bioprinting is an additive manufacturing technique that holds significant promise for creating intricately detailed constructs of tissues, thereby bridging the gap between engineered and actual tissue constructs. In contrast to non-biological printing, 3D bioprinting introduces added intricacies, including considerations for material selection, cell types, growth, and differentiation factors. However, technical challenges arise, particularly concerning the delicate nature of living cells in bioink for tissue construction and limited knowledge about the cell fate processes in such a complex biomechanical environment. A bioink must have appropriate viscoelastic and rheological properties to mimic the native tissue microenvironment and attain desired biomechanical properties. Hence, the properties of bioink play a vital role in the success of 3D bioprinted substitutes. This review comprehensively delves into the scientific aspects of tissue-centric or tissue-specific bioinks and sheds light on the current challenges of the translation of bioinks and bioprinting.
    DOI:  https://doi.org/10.1039/d4bm01192a
  3. Molecules. 2024 Oct 31. pii: 5159. [Epub ahead of print]29(21):
      3D printing has garnered significant attention across academia and industry due to its capability to design and fabricate complex architectures. Applications such as those requiring intricate geometries or custom designs, including footwear, healthcare, energy storage, and electronics applications, greatly benefit from exploiting 3D printing processes. Despite the recent advancement of structural 3D printing, its use in functional devices remains limited, requiring the need for the development of functional materials suitable for 3D printing in device fabrication. In this review, we briefly introduce various 3D printing techniques, including material extrusion and vat polymerization, and highlight the recent advances in 3D printing for energy and biomedical devices. A summary of future perspectives in this area is also presented. By highlighting recent developments and addressing key challenges, this review aims to inspire future directions in the development of functional devices.
    Keywords:  3D printing; functional devices; hybrid nanocomposites
    DOI:  https://doi.org/10.3390/molecules29215159
  4. Life Sci Space Res (Amst). 2024 Nov;pii: S2214-5524(24)00088-9. [Epub ahead of print]43 82-91
      We bioprinted meniscus tissue on the International Space Station (ISS) using the onboard BioFabrication Facility (BFF). The three dimensional (3D) printing bioink, cells, culture media and fixative were delivered to the ISS on NG-18 and SpX-27 vehicles and stored prior to the printing operation. The meniscus tissue was fabricated from ink composed of collagens type I and II, chondroitin sulfate and mesenchymal stem cells. Following printing, the meniscus tissue was cultured for 2 weeks in growth media, then stored at 4 °C and returned to earth for analysis. The print showed good overall shape fidelity, and dimensions were comparable to control meniscus tissue printed on Earth. Young's modulus of the ISS printed meniscus was approximately 4-fold lower than the control. Histologic evaluation showed good cell distribution within the print. Though logistical challenges were encountered during payload delivery to the ISS and operational challenges limited the cell culture portion of this study, this investigation demonstrated the feasibility for 3D printed musculoskeletal tissue in microgravity. The completed meniscus tissue print is the largest tissue engineered model 3D printed on the ISS to date, the first to be 3D bioprinted using an ink similar in composition to native tissue, and the first to be fabricated on the ISS in an anatomically relevant shape. These experiments help advance the field of tissue engineering in low or microgravity where 3D bioprinting may have a role in future long term space flight or extraterrestrial habitation.
    Keywords:  3D printing; International space station; Meniscus; Stem cells
    DOI:  https://doi.org/10.1016/j.lssr.2024.09.004
  5. J Med Phys. 2024 Jul-Sep;49(3):49(3): 319-325
      Three-dimensional (3D) printing technology has revolutionized surgical practices, offering precise solutions for planning, education, and patient care. Surgeons now wield tangible, patient-specific 3D models derived from imaging data, allowing for meticulous presurgical planning. These models enhance surgical precision, reduce operative times, and minimize complications, ultimately improving patient outcomes. The technology also serves as a powerful educational tool, providing hands-on learning experiences for medical professionals and clearer communication with patients and their families. Despite its advantages, challenges such as model accuracy and material selection exist. Ongoing advancements, including bioactive materials and artificial intelligence integration, promise to further enhance 3D printing's impact. The future of 3D printing in surgery holds potential for regenerative medicine, increased global accessibility, and collaboration through telemedicine. Interdisciplinary collaboration between medical and engineering fields is crucial for responsible and innovative use of this technology.
    Keywords:  Anatomical models; surgical innovation; surgical planning; technology; three-dimensional printing
    DOI:  https://doi.org/10.4103/jmp.jmp_89_24
  6. Cell Transplant. 2024 Jan-Dec;33:33 9636897241273562
      Damage to bones resulting from trauma and tumors poses a significant challenge to human health. Consequently, current research in bone damage healing centers on developing three-dimensional (3D) scaffolding materials that facilitate and enhance the regeneration of fractured bone tissues. In this context, the careful selection of materials and preparation processes is essential for creating demanding scaffolds for bone tissue engineering. This is done to optimize the regeneration of fractured bones. This study comprehensively analyses the latest scientific advancements and difficulties in developing scaffolds for bone tissue creation. Initially, we clarified the composition and process by which bone tissue repairs itself. The review summarizes the primary uses of materials, both inorganic and organic, in scaffolds for bone tissue engineering. In addition, we present a comprehensive study of the most recent advancements in the mainstream techniques used to prepare scaffolds for bone tissue engineering. We also examine the distinct advantages of each method in great detail. This article thoroughly examines potential paths and obstacles in bone tissue engineering scaffolds for clinical applications.
    Keywords:  3D-implants; biocompatibility; clinical applications; regenerative medicine
    DOI:  https://doi.org/10.1177/09636897241273562
  7. Eur J Dent. 2024 Nov 07.
      This review aims to provide an overall picture of the three-dimensional (3D) printing contributions to endodontic practice in treatment planning and execution. The methodology entails a comprehensive literature review of the technological processes and 3D printing applications in the field. Some key findings show that 3D printing is highly effective in producing the right dental models for training, helps in complex surgeries, and supports the transition toward personalized therapies. The review reveals that 3D printing has many benefits but that the broader adoption of this technology faces issues, including high technical requirements, high costs, and the need for safety standards. The study concludes that although in the future some challenges need to be addressed, the potential of 3D printing in endodontics is enormous and this means that the treatment methods of dentistry could be more efficient and innovative.
    DOI:  https://doi.org/10.1055/s-0044-1791242
  8. Front Bioeng Biotechnol. 2024 ;12 1425469
      Polymeric biodegradable microspheres are readily utilized to support targeted drug delivery for various diseases clinically. 3D printed tissue engineering scaffolds from polymer filaments with embedded microspheres or nanoparticles, as well as bulk microsphere scaffolds, have been investigated for regenerative medicine and tissue engineering. However, 3D printed scaffolds consisting only of a homogenous microsphere size with an optimized architecture that includes a unique micro- and macroporosity, have been challenging to produce and hence, have not been assessed in the literature yet. Utilizing our recently established 3D-MultiCompositional Microsphere-Adaptive Printing (3D-McMap) method, the present study evaluated the effectiveness of 3D-printed poly (lactic-co-glycolic acid) (PLGA) microsphere scaffolds, consisting of microsphere sizes 50, 100, or 200 μm, on the induction of bone formation when implanted in the calvarial murine regeneration model. Our results showed that PLGA microsphere scaffolds possess unique properties that support bone regeneration by supporting osteoconduction and stimulating, in our opinion, true spontaneous osteoinduction. The study demonstrated that PLGA microsphere-based scaffolds support bone growth in the absence of additional growth factors and promote osteogenesis primarily via their unique geometric configuration. The larger the microspheres were, the greater de novo bone formation was. This proves that bone tissue engineering scaffolds 3D printed from microspheres, enabled by the 3D-McMap method, are superior over bulk material printed scaffolds, as they possess the unique capability of spontaneous induction of new bone formation. With the addition of encapsulated modulatory bone-forming biomolecules they can substantially improve the spatiotemporal control of tissue morphogenesis, potentially leading to new innovative clinical tissue repair therapies that regenerate bone in large defects correctly and fully.
    Keywords:  3D bioplotter; PLGA; bioengineering; bone formation; microsphere scaffolds; orthotopic site; regenerative medicine; tissue engineering
    DOI:  https://doi.org/10.3389/fbioe.2024.1425469