Int J Pharm. 2024 Oct 26. pii: S0378-5173(24)01115-3. [Epub ahead of print] 124881
This research focuses on exploring the solid solubility and miscibility of Etoricoxib, a poorly water-soluble anti-inflammatory drug, within Soluplus®, a polymer used as a matrix for 3D-printed tablets. By utilizing hot-melt extrusion (HME), the drug was dispersed within Soluplus® to enhance its solubility. The extrudates were then employed in 3D printing to create customized solid oral dosage form. This study's novelty lies in combining HME and 3D printing, aiming to improve drug incorporation, stability, and effectiveness in the final formulation. Comprehensive characterization techniques, including hot stage microscopy (HSM), scanning electron microscopy (SEM), micro-computed tomography (Micro-CT), florescence microscopy, optical microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), solubility studies, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and aqueous solubility study were utilized to elucidate the physicochemical properties, thermal stability, and structural integrity for the extruded filaments (the printing ink), and 3D printed tablets made thereof. Furthermore, the in vitro drug release profile of the 3D printed tablet was systematically evaluated, revealing a controlled drug release pattern from the finished dosage form. The systematic investigation reported herein, starting from theoretical miscibility to the printing ink development through HME, detailed characterization of the extruded filaments, and further solid oral formulation development by additive manufacturing can be utilized as a platform technology or a pathway for the development of personalized medicine with drugs having similar physicochemical properties.
Keywords: 3D printed tablet; Additive manufacturing; Drug-polymer miscibility; Etoricoxib; Soluplus