bims-biprem Biomed News
on Bioprinting for regenerative medicine
Issue of 2024–10–20
eight papers selected by
Seerat Maqsood, University of Teramo



  1. Nanoscale. 2024 Oct 15.
      3D bioprinting has become a leading contender among additive manufacturing techniques in biomedicine, offering the potential to create functional tissues and organs that could eliminate the need for transplants. However, for complex tissues like muscle, neural, bone, and heart, bioinks need significant improvements in properties like printability, mechanical strength, and functionalities crucial for mimicking natural tissues. Nanomaterial-based bioinks offer exciting possibilities. Among these, MXenes stand out due to their excellent biocompatibility, abundant surface groups for cell interaction, conductivity for electrical stimulation, and photothermal properties. This review delves into the potential of MXenes in 3D bioprinting. We explore the advantages of 3D printing for MXene-based biofabrication, followed by a deep dive into MXenes' properties that make them ideal for tissue engineering and regeneratice medicine. We also provide a concise overview of various 3D bioprinting techniques and the essential criteria for bioinks employed in this process. We then discuss the diverse applications of these MXene-incorporated bioprinted constructs. Finally, we address the current challenges and future directions in this promising field. This comprehensive analysis will provide valuable insights for researchers exploring the exciting potential of nanomaterials beyond MXenes in 3D bioprinting for biomedicine advancements.
    DOI:  https://doi.org/10.1039/d4nr02906b
  2. J Tissue Eng. 2024 Jan-Dec;15:15 20417314241286092
      The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
    Keywords:  3D bioprinting; 3D scaffolds; bioink; hepatic organoids; hydrogels
    DOI:  https://doi.org/10.1177/20417314241286092
  3. Adv Mater. 2024 Oct 17. e2408032
      Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
    Keywords:  additive manufacturing; bioinks; biomaterials; bioprinting; organ‐on‐a‐chips; tissue engineering
    DOI:  https://doi.org/10.1002/adma.202408032
  4. Stem Cell Rev Rep. 2024 Oct 10.
      The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment. Tissue engineering is becoming more dynamic with materials that can modify their surroundings with the advent of hydrogels and smart biomaterials. Advances in spheroids and organoids are not only bringing us towards more effective and customized therapies, but they are also improving their ability to resemble actual human tissues. Confocal and two-photon microscopy are examples of advanced imaging methods that provide precise images of the functioning and interaction of cells. Artificial Intelligence models have applications for enhanced scaffold designs and for predicting the response of tissues to medications. Furthermore, via strengthening predictive models, optimizing data analysis, and simplifying 3D cell culture design, artificial intelligence is revolutionizing this field. When combined, these technologies are improving our ability to conduct research and moving us toward more individualized and effective medical interventions.
    Keywords:  3D cell culture; Biological scaffolds; Biomedical engineering; Cancer microenvironment; Drug discovery; Extra cellular matrix; Hydrogels; Tissue engineering
    DOI:  https://doi.org/10.1007/s12015-024-10800-9
  5. J Transl Med. 2024 Oct 17. 22(1): 946
       BACKGROUND: Intracerebral hemorrhage (ICH) is a severe form of stroke characterized by high incidence and mortality rates. Currently, there is a significant lack of effective treatments aimed at improving clinical outcomes. Our research team has developed a three-dimensional (3D) biological scaffold that incorporates Bergenin, allowing for the sustained release of the compound.
    METHODS: This 3D biological scaffold was fabricated using a combination of photoinitiator, GEMA, silk fibroin, and decellularized brain matrix (dECM) to encapsulate Bergenin through advanced 3D bioprinting techniques. The kinetics of drug release were evaluated through both in vivo and in vitro studies. A cerebral hemorrhage model was established, and a 3D biological scaffold containing Bergenin was transplanted in situ. Levels of inflammatory response, oxidative stress, and apoptosis were quantified. The neurological function of rats with cerebral hemorrhage was assessed on days 1, 3, and 5 using the turning test, forelimb placement test, Longa score, and Bederson score.
    RESULTS: The 3D biological scaffold incorporating Bergenin significantly enhances the maintenance of drug concentration in the bloodstream, leading to a marked reduction in inflammatory markers such as IL-6, iNOS, and COX-2 levels in a cerebral hemorrhage model, primarily through the inhibition of the NF-κB pathway. Additionally, the scaffold effectively reduces the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in primary cultured astrocytes, which in turn decreases the production of reactive oxygen species (ROS) and inhibits IL-6 production induced by hemin. Subsequent experiments reveal that the 3D biological scaffold containing Bergenin promotes the activation of the Nrf-2/HO-1 signaling pathway, both in vivo and in vitro, thereby preventing cell death. Moreover, the application of this 3D biological scaffold has been demonstrated to improve drug retention in the bloodstream.
    CONCLUSION: This strategy effectively mitigates inflammation, oxidative stress, and cell death in rats with cerebral hemorrhage by inhibiting the NF-κB pathway while concurrently activating the Nrf-2/HO-1 pathway.
    Keywords:  3D biological scaffold; Bergenin; Intracerebral hemorrhage; Neuroinflammation; Photocurable hydrogel; Silk fibroin; dECM
    DOI:  https://doi.org/10.1186/s12967-024-05735-1
  6. Biotechnol Bioeng. 2024 Oct 14.
      Due to its high heterogeneity and significant impact on women's health globally, breast cancer necessitates robust preclinical models to understand tumor biology and guide personalized treatment strategies. Three-dimensional (3D) in vitro tumor models hold immense promise in this regard. These tumor models not only mimic the spatial structure and growth environment of tumors in vivo, but also retain the pathological and genetic characteristics of solid tumors. This fidelity makes them powerful tools for accelerating advancements in fundamental research and translational medicine. The diversity, modularity, and efficacy of 3D tumor models are driving a biotechnological revolution. As these technologies become increasingly sophisticated, 3D tumor models are poised to become powerful weapons in the fight against breast cancer. This article expounds on the progress made in utilizing 3D tumor models for breast cancer research.
    Keywords:  breast cancer; in vitro culture; three‐dimensional; tumor models
    DOI:  https://doi.org/10.1002/bit.28860
  7. Tissue Eng Regen Med. 2024 Oct 16.
       BACKGROUND: In vitro cell culture is crucial for studying human diseases and development. Compared to traditional monolayer cultures, 3D culturing with organoids offers significant advantages by more accurately replicating natural tissues' structural and functional features. This advancement enhances disease modeling, drug testing, and regenerative medicine applications. Organoids, derived from stem cells, mimic tissue physiology in a more relevant manner. Despite their promise, the clinical use of regenerative medicine currently needs to be improved by reproducibility, scalability, and maturation issues.
    METHODS: This article overviews recent organoid research, focusing on their types, sources, 3D culturing methods, and applications in regenerative medicine. A literature review of "organoid" and "regenerative medicine" in PubMed/MEDLINE highlighted relevant studies published over the past decade, emphasizing human-sourced organoids and their regenerative benefits, as well as the availability of free full-text articles. The review uses descriptive data, including tables and text, to illustrate the challenges and potential of organoids in regenerative medicine.
    RESULTS: The transition from 2D to 3D models, particularly organoids, has significantly advanced in vitro research. This review covers a decade of progress in various organoid types-such as liver, cholangiocyte, intestinal, pancreatic, cardiac, brain, thymus, and mammary organoids-and their 3D culture methods and applications. It addresses critical issues of maturity, scalability, and reproducibility and underscores the need for standardization and improved production techniques to facilitate broader clinical applications in regenerative medicine.
    CONCLUSIONS: Successful therapy requires increased scalability and standardization. Organoids have enormous potential in biological research, notwithstanding obstacles.
    Keywords:  3D cell culture; In vitro models; Organoids; Regenerative medicine; Stem cells; Tissue engineering
    DOI:  https://doi.org/10.1007/s13770-024-00672-y
  8. RSC Adv. 2024 Oct 09. 14(44): 32398-32410
      Tissue engineering is set to revolutionise regenerative medicine, drug discovery, and cancer biology. For this to succeed, improved 3D imaging methods that penetrate non-invasively into the developing tissue is fundamental to guide the design of new and improved 3D supports. In particular, it is very important to characterise the time- and space-heterogeneous pore network that continuously changes as the tissue grows, since delivery of nutrients and removal of waste is key to avoid the development of necrotic tissues. In this paper, we combine high-resolution microfocus Computed Tomography (μCT) imaging and in silico simulations to calculate the diffusion tensor of molecules diffusing in the actual pore structure of a tissue grown on 3D-printed plastic scaffolds. We use such tensors to derive information about the changing pore network and derive tortuosity, a key parameter to understand how pore interconnection changes with cell proliferation. Such information can be used to improve the design of 3D-printed supports as well as to validate and improve cell culture protocols.
    DOI:  https://doi.org/10.1039/d4ra05362a