bims-biprem Biomed News
on Bioprinting for regenerative medicine
Issue of 2024‒09‒15
ten papers selected by
Seerat Maqsood, University of Teramo



  1. Environ Sci Pollut Res Int. 2024 Sep 09.
      The high-throughput method based on the micron-level structure that 3D bioprinting technology offers for various environmental microbiological engineering applications is made possible by its several printing paths and precision programming control. This versatility makes it an on-demand manufacturing technology. A novel 3D manufacturing technique called 3D bioprinting may be used to precisely uptake and disperse bacteria to create microbial active substances with a variety of intricate functionalities for environmental applications. The technological challenges that the current 3D bioprinting technology must face include the mechanical properties of materials, the creation of specific bioinks to adapt to different strains, and the exploration of 4D bioprinting for intelligent applications. Therefore, this analysis delves deeply into the core technological ideas of 3D bioprinting, bioink materials, and their environmental applications. It also offers recommendations about the challenges and opportunities associated with 3D bioprinting. Combined with the present advancements in microbe enhancement technology, 3D bioprinting will provide an enabling platform for multifunctional microorganisms and facilitate the management of in situ directional responses in the environmental domain. This review highlights the applications of 3D bioprinting in the environmental monitoring and bioremediation. 3D printing in solid waste management is also discussed in detail.
    Keywords:  3D bioprinting; Bioink; Biomaterial; Integrated biomaterials
    DOI:  https://doi.org/10.1007/s11356-024-34921-3
  2. Biomed Phys Eng Express. 2024 Sep 11.
      This paper reviews 3D bioprinting technologies and Bio-inks materials in brain neuroscience applications. The integration of 3D bioprinting technology in neuroscience research offers a unique platform to create complex brain and tissue architectures that mimic the mechanical, architectural, and biochemical properties of native tissues, providing a robust tool for modeling, repair, and drug screening applications. The review provides discussions and conclusions to highlight the current research, research gaps and recommendations for the future research on 3D bioprinting in neuroscience. The investigation shows that 3D bioprinting has a great potential to fabricate brain-like tissue constructs, holds great promise for regenerative medicine and drug testing models, offering new avenues for studying brain diseases and potential treatments. It is also found that the future of bioinks requires continuous improvement and innovation to meet the needs of applications in the field of neuroscience, aiming to improve the functionality and performance of bioink materials for neural tissue engineering.&#xD.
    Keywords:  3D bioprinting; Biocompatible materials; Bioinks; Brain neuroscience applications; Disease modeling; Neural tissue engineering; Tissue engineering
    DOI:  https://doi.org/10.1088/2057-1976/ad795c
  3. Int J Mol Sci. 2024 Sep 04. pii: 9592. [Epub ahead of print]25(17):
      Spinal cord injury (SCI) is a catastrophic condition that disrupts neurons within the spinal cord, leading to severe motor and sensory deficits. While current treatments can alleviate pain, they do not promote neural regeneration or functional recovery. Three-dimensional (3D) bioprinting offers promising solutions for SCI repair by enabling the creation of complex neural tissue constructs. This review provides a comprehensive overview of 3D bioprinting techniques, bioinks, and stem cell applications in SCI repair. Additionally, it highlights recent advancements in 3D bioprinted scaffolds, including the integration of conductive materials, the incorporation of bioactive molecules like neurotrophic factors, drugs, and exosomes, and the design of innovative structures such as multi-channel and axial scaffolds. These innovative strategies in 3D bioprinting can offer a comprehensive approach to optimizing the spinal cord microenvironment, advancing SCI repair. This review highlights a comprehensive understanding of the current state of 3D bioprinting in SCI repair, offering insights into future directions in the field of regenerative medicine.
    Keywords:  bioprinting; conductive material; multi-channel; neurotrophic factors; spinal cord injury; stem cells
    DOI:  https://doi.org/10.3390/ijms25179592
  4. Biofabrication. 2024 Sep 10.
      Tissue engineered constructs prepared using conventional scaffold-based approaches have the potential to repair or regenerate damaged tissues and organs. Various scaffold fabrication strategies such as electrospinning, solvent casting, particulate leaching, gas foaming, hydrogels, freeze-drying, and 3D bioprinting have been used to fabricate artificial tissues. In recent times, 3D bioprinting has been predominantly used in various biomedical fields, including healthcare and pharmaceutical applications due to precision in 3D geometry. However, there are no viable strategies to preserve bioprinted constructs for on-demand applications because of the lack of specialized techniques or cryopreservation agents to maintain the cell viability and functionality of the bioprinted tissues. To solve this issue, cryopreservation of bioprinted tissues has emerged in recent years to develop methods to create and cryopreserve bioprinted constructs for on-demand applications. This review discusses various techniques used for producing ready-to-use tissue engineered products such electrospinning, hydrogels, 3D bioprinting, and other bioprinting approaches. Further, the factors influencing the bioprinted tissues, such as cryoprotectants, polymer types and crosslinker concentrations, crosslinking approaches, viscoelastic properties, storage facilities, etc., were also discussed in detail. The potential of cryopreservable bioprinted tissues in various healthcare applications are elaborated with lucid examples. Finally, the conclusions and possible future directions for the fabrication and cryopreservation of tissue engineered products are highlighted.
    Keywords:  Bioprinting; Cryopreservation; Electrospinning; Hydrogels; Ready-to-use; Tissue engineered constructs
    DOI:  https://doi.org/10.1088/1758-5090/ad7906
  5. Polymers (Basel). 2024 Aug 29. pii: 2456. [Epub ahead of print]16(17):
      Chronic wounds, such as diabetic foot ulcers, pressure ulcers, and venous ulcers, pose significant clinical challenges and burden healthcare systems worldwide. The advent of 3D bioprinting technologies offers innovative solutions for enhancing chronic wound care. This scoping review evaluates the applications, methodologies, and effectiveness of 3D-printed bioinks in chronic wound healing, focusing on bioinks incorporating living cells to facilitate wound closure and tissue regeneration. Relevant studies were identified through comprehensive searches in databases, including PubMed, Scopus, and Web of Science databases, following strict inclusion criteria. These studies employ various 3D bioprinting techniques, predominantly extrusion-based, to create bioinks from natural or synthetic polymers. These bioinks are designed to support cell viability, promote angiogenesis, and provide structural integrity to the wound site. Despite these promising results, further research is necessary to optimize bioink formulations and printing parameters for clinical application. Overall, 3D-printed bioinks offer a transformative approach to chronic wound care, providing tailored and efficient solutions. Continued development and refinement of these technologies hold significant promise for improving chronic wound management and patient outcomes.
    Keywords:  3D printing; bioink; cell-laden; chronic wound healing; regenerative medicine
    DOI:  https://doi.org/10.3390/polym16172456
  6. Asian J Pharm Sci. 2024 Aug;19(4): 100940
      Three-dimensional (3D) printing is an innovative manufacturing method with the potential to revolutionize topical and transdermal dosage forms. Nowadays, it is established that Vat-based photopolymerization (VP) 3D printing technologies offer superior printing efficiency and versatility compared to other 3D printing technologies available on the market. However, there are some limitations that impair their full application in pharmaceutical contexts, such as the lack of a range of biocompatible materials for topical and transdermal applications. This review article explores all types of VP-based 3D printing and discusses the relevance of implementing this kind of technology. We start with a detailed description of the printing process, focusing on the commercial materials available and lab-made resins proposed by different authors. We also review recent studies in this field, which mainly focus on the fabrication of transdermal devices based on microneedle arrays. In the future, it is expected that the manufacturers of 3D printers invest in modifications to the printing apparatus to allow the simultaneous printing of different resins and/or compound types, which will open frontiers to the personalization of treatment approaches.
    Keywords:  Photoinitiators; Resins; Topical delivery; Transdermal delivery; Vat-based photopolymerization 3D printing
    DOI:  https://doi.org/10.1016/j.ajps.2024.100940
  7. Surg Neurol Int. 2024 ;15 297
      Background: The emerging use of three-dimensional printing (3DP) offers improved surgical planning and personalized care. The use of 3DP technology in spinal surgery has several common applications, including models for preoperative planning, biomodels, surgical guides, implants, and teaching tools.Methods: A literature review was conducted to examine the current use of 3DP technology in spinal surgery and identify the challenges and limitations associated with its adoption.
    Results: The review reveals that while 3DP technology offers the benefits of enhanced stability, improved surgical outcomes, and the feasibility of patient-specific solutions in spinal surgeries, several challenges remain significant impediments to widespread adoption. The obvious expected limitation is the high cost associated with implementing and maintaining a 3DP facility and creating customized patient-specific implants. Technological limitations, including the variability between medical imaging and en vivo surgical anatomy, along with the reproduction of intricate high-fidelity anatomical detail, pose additional challenges. Finally, the lack of comprehensive clinical monitoring, inadequate sample sizes, and high-quality scientific evidence all limit our understanding of the full scope of 3DP's utility in spinal surgery and preclude widespread adoption and implementation.
    Conclusion: Despite the obvious challenges and limitations, ongoing research and development efforts are expected to address these issues, improving the accessibility and efficacy of 3DP technology in spinal surgeries. With further advancements, 3DP technology has the potential to revolutionize spinal surgery by providing personalized implants and precise surgical planning, ultimately improving patient outcomes and surgical efficiency.
    Keywords:  3D implants; 3D spine models; 3D-printing; Additive manufacturing; Spine surgery
    DOI:  https://doi.org/10.25259/SNI_460_2024
  8. Mater Adv. 2024 Sep 10.
      Modern regenerative medicine approaches can rely on the fabrication of personalised medical devices and implants; however, many of these can fail due to infections, requiring antibiotics and revision surgeries. Given the rise in multidrug resistant bacteria, developing implants with antimicrobial activity without the use of traditional antibiotics is crucial for successful implant integration and improving patient outcomes. 3D printed gelatin-based implants have a broad range of applications in regenerative medicine due to their biocompatibility, ease of modification and degradability. In this paper, we report on the development of gelatin biomaterial inks loaded with the antimicrobial peptide, nisin, for extrusion-based 3D printing to produce scaffolds with controlled porosity, high shape fidelity, and structural stability. Rheological properties were comprehensively studied to develop inks that had shear thinning behaviour and viscoelastic properties to ensure optimal printability and extrudability, and enable precise deposition and structural integrity during 3D printing. The 3D printed scaffolds fabricated from the gelatin/nisin inks demonstrated excellent antimicrobial efficacy (complete kill) against Gram positive bacteria methicillin-resistant Staphylococcus aureus (MRSA). Overall, this ink's high printability and antimicrobial efficacy with the model antimicrobial peptide, nisin, offers the potential to develop customisable regenerative medicine implants that can effectively combat infection without contributing to the development of multidrug resistant bacteria.
    DOI:  https://doi.org/10.1039/d4ma00544a
  9. Biomater Res. 2024 ;28 0076
      Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.
    DOI:  https://doi.org/10.34133/bmr.0076
  10. Heliyon. 2024 Aug 30. 10(16): e35836
      Stem cell transplantation has emerged as a promising avenue in regenerative medicine, potentially facilitating tissue repair in degenerative diseases and injuries. This review comprehensively examines recent developments and challenges in stem cell transplantation. It explores the identification and isolation of various stem cell types, including embryonic, induced pluripotent, and adult stem cells derived from multiple sources. Additionally, the review highlights the tissue-specific applications of these stem cells, focusing on bone and cartilage regeneration, treatment of neurological disorders, and management of hematological conditions. Future advancements and effective resolution of current challenges will be crucial in fully realizing the potential of stem cell transplantation in regenerative medicine. With responsible and ethical practices, the field can potentially transform disease and injury treatment, ultimately improving the quality of life for countless individuals.
    Keywords:  Applications and challenges; Regenerative medicine; Stem cell transplantation
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e35836