bims-biprem Biomed News
on Bioprinting for regenerative medicine
Issue of 2024–09–01
six papers selected by
Seerat Maqsood, University of Teramo



  1. Bioengineering (Basel). 2024 Jul 31. pii: 777. [Epub ahead of print]11(8):
      Since three-dimensional (3D) bioprinting has emerged, it has continuously to evolved as a revolutionary technology in surgery, offering new paradigms for reconstructive and regenerative medical applications. This review highlights the integration of 3D printing, specifically bioprinting, across several surgical disciplines over the last five years. The methods employed encompass a review of recent literature focusing on innovations and applications of 3D-bioprinted tissues and/or organs. The findings reveal significant advances in the creation of complex, customized, multi-tissue constructs that mimic natural tissue characteristics, which are crucial for surgical interventions and patient-specific treatments. Despite the technological advances, the paper introduces and discusses several challenges that remain, such as the vascularization of bioprinted tissues, integration with the host tissue, and the long-term viability of bioprinted organs. The review concludes that while 3D bioprinting holds substantial promise for transforming surgical practices and enhancing patient outcomes, ongoing research, development, and a clear regulatory framework are essential to fully realize potential future clinical applications.
    Keywords:  3D bioprinting; bioinks; ophthalmology; orthopedic surgery; plastic and reconstructive surgery; regenerative medicine; surgical implants; tissue engineering
    DOI:  https://doi.org/10.3390/bioengineering11080777
  2. Biomolecules. 2024 Aug 16. pii: 1019. [Epub ahead of print]14(8):
      The incidence of liver diseases is high worldwide. Many factors can cause liver fibrosis, which in turn can lead to liver cirrhosis and even liver cancer. Due to the shortage of donor organs, immunosuppression, and other factors, only a few patients are able to undergo liver transplantation. Therefore, how to construct a bioartificial liver that can be transplanted has become a global research hotspot. With the rapid development of three-dimensional (3D) bioprinting in the field of tissue engineering and regenerative medicine, researchers have tried to use various 3D bioprinting technologies to construct bioartificial livers in vitro. In terms of the choice of bioinks, liver decellularized extracellular matrix (dECM) has many advantages over other materials for cell-laden hydrogel in 3D bioprinting. This review mainly summarizes the acquisition of liver dECM and its application in liver 3D bioprinting as a bioink with respect to availability, printability, and biocompatibility in many aspects and puts forward the current challenges and prospects.
    Keywords:  3D bioprinting; bioink; biomaterials; decellularized extracellular matrix (dECM); organoid
    DOI:  https://doi.org/10.3390/biom14081019
  3. Front Bioeng Biotechnol. 2024 ;12 1439499
      Tympanic membrane perforation (TMP) is one of the most common conditions in otolaryngology worldwide, and hearing damage caused by inadequate or prolonged healing can be distressing for patients. This article examines the rationale for utilizing three-dimensional (3D) printing to produce scaffolds for repairing TMP, compares the advantages and disadvantages of 3D printed and bioprinted grafts with traditional autologous materials and other tissue engineering materials in TMP repair, and highlights the practical and clinical significance of 3D printing in TMP repair while discussing the current progress and promising future of 3D printing and bioprinting. There is a limited number of reviews specifically dedicated to 3D printing for TMP repair. The majority of reviews offer a general overview of the applications of 3D printing in the broader realm of tissue regeneration, with some mention of TMP repair. Alternatively, they explore the biopolymers, cells, and drug molecules utilized for TMP repair. However, more in-depth analysis is needed on the strategies for selecting bio-inks that integrate biopolymers, cells, and drug molecules for tympanic membrane repair.
    Keywords:  3D printing; repair; tissue engineering; tympanic membrane perforation; wound healing
    DOI:  https://doi.org/10.3389/fbioe.2024.1439499
  4. Biomimetics (Basel). 2024 Aug 09. pii: 480. [Epub ahead of print]9(8):
      The periodontal tissue is made up of supporting tissues and among its functions, it promotes viscoelastic properties, proprioceptive sensors, and dental anchorage. Its progressive destruction by disease leads to the loss of bone and periodontal ligaments. For this reason, biomaterials are constantly being developed to restore tissue function. Various techniques are being used to promote regenerative dentistry, including 3D bioprinting with bioink formulations. This paper aims to review the different types of bioink formulations and 3D bioprinting techniques used in periodontal tissue regeneration. Different techniques have been formulated, and the addition of different materials into bioinks has been conducted, with the intention of improving the process and creating a bioink that supports cell viability, proliferation, differentiation, and stability for periodontal tissue regeneration.
    Keywords:  bioprinting; periodontal ligament; tissue engineering
    DOI:  https://doi.org/10.3390/biomimetics9080480
  5. J Biomater Appl. 2024 Aug 28. 8853282241276799
      The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.
    Keywords:  Tissue engineering; biomaterials; bioprinting; regenerative medicine; scaffolds; skin regeneration
    DOI:  https://doi.org/10.1177/08853282241276799
  6. Smart Med. 2022 Dec;1(1): e20220006
      Infertility is a rising global health issue with a far-reaching impact on the socioeconomic livelihoods. As there are highly complex causes of male and female infertility, it is highly desired to promote and maintain reproductive health by the integration of advanced technologies. Biomedical engineering, a mature technology applied in the fields of biology and health care, has emerged as a powerful tool in the diagnosis and treatment of infertility. Nowadays, various promising biomedical engineering approaches are under investigation to address human infertility. Biomedical engineering approaches can not only improve our fundamental understanding of sperm and follicle development in bioengineered devices combined with microfabrication, biomaterials, and relevant cells, but also be applied to repair uterine, ovary, and cervicovaginal tissues and restore tissue function. Here, we introduce the infertility in male and female and provide a comprehensive summary of the various promising biomedical engineering technologies and their applications in reproductive medicine. Also, the challenges and prospects of biomedical engineering technologies for clinical transformation are discussed. We believe that this review will promote communications between engineers, biologists, and clinicians and potentially contribute to the clinical transformation of these innovative research works in the immediate future.
    Keywords:  3D printing; biomaterials; biomedical engineering; infertility; microfluidic technology; reproductive medicine
    DOI:  https://doi.org/10.1002/SMMD.20220006