bims-biprem Biomed News
on Bioprinting for regenerative medicine
Issue of 2024–01–07
nine papers selected by
Seerat Maqsood, University of Teramo



  1. Int J Nanomedicine. 2023 ;18 8039-8057
      The tumor microenvironment plays a crucial role in cancer development and treatment. Traditional 2D cell cultures fail to fully replicate the complete tumor microenvironment, while mouse tumor models suffer from time-consuming procedures and complex operations. However, in recent years, 3D bioprinting technology has emerged as a vital tool in studying the tumor microenvironment. 3D bioprinting is a revolutionary biomanufacturing technique that involves layer-by-layer stacking of biological materials, such as cells and biomaterial scaffolds, to create highly precise 3D biostructures. This technology enables the construction of intricate tissue and organ models in the laboratory, which are utilized for biomedical research, drug development, and personalized medicine. The application of 3D bioprinting has brought unprecedented opportunities to fields such as cancer research, tissue engineering, and organ transplantation. It has opened new possibilities for addressing real-world biological challenges and improving medical treatment outcomes. This review summarizes the applications of 3D bioprinting technology in the context of the tumor microenvironment, aiming to explore its potential impact on cancer research and treatment. The use of this cutting-edge technology promises significant advancements in understanding cancer biology and enhancing medical interventions.
    Keywords:  3D bioprinting; tumor microenvironment; tumor microenvironment research
    DOI:  https://doi.org/10.2147/IJN.S435845
  2. Regen Med. 2024 Jan 05.
      Tweetable abstract Inflammatory skin diseases account for most chronic skin conditions. 3D bioprinting is an exciting technology that can revolutionize the understanding and approach to treatment of atopic dermatitis and graft-versus-host disease.
    Keywords:  atopic dermatitis; bioprinting; graft-versus-host disease; human skin equivalent; skin and wound care; skin disease
    DOI:  https://doi.org/10.2217/rme-2023-0216
  3. Mater Today Bio. 2023 Dec;23 100870
      Human cartilage tissue can be categorized into three types: hyaline cartilage, elastic cartilage and fibrocartilage. Each type of cartilage tissue possesses unique properties and functions, which presents a significant challenge for the regeneration and repair of damaged tissue. Bionics is a discipline in which humans study and imitate nature. A bionic strategy based on comprehensive knowledge of the anatomy and histology of human cartilage is expected to contribute to fundamental study of core elements of tissue repair. Moreover, as a novel tissue-engineered technology, 3D bioprinting has the distinctive advantage of the rapid and precise construction of targeted models. Thus, by selecting suitable materials, cells and cytokines, and by leveraging advanced printing technology and bionic concepts, it becomes possible to simultaneously realize multiple beneficial properties and achieve improved tissue repair. This article provides an overview of key elements involved in the combination of 3D bioprinting and bionic strategies, with a particular focus on recent advances in mimicking different types of cartilage tissue.
    Keywords:  Bionics; Bioprinting; Cartilage; Tissue engineering
    DOI:  https://doi.org/10.1016/j.mtbio.2023.100870
  4. Int J Stem Cells. 2024 Jan 02.
      Induced pluripotent stem cell (iPSC) technology has revolutionized various fields, including stem cell research, disease modeling, and regenerative medicine. The evolution of iPSC-based models has transitioned from conventional two-dimensional systems to more physiologically relevant three-dimensional (3D) models such as spheroids and organoids. Nonetheless, there still remain challenges including limitations in creating complex 3D tissue geometry and structures, the emergence of necrotic core in existing 3D models, and limited scalability and reproducibility. 3D bioprinting has emerged as a revolutionary technology that can facilitate the development of complex 3D tissues and organs with high scalability and reproducibility. This innovative approach has the potential to effectively bridge the gap between conventional iPSC models and complex 3D tissues in vivo. This review focuses on current trends and advancements in the bioprinting of iPSCs. Specifically, it covers the fundamental concepts and techniques of bioprinting and bioink design, reviews recent progress in iPSC bioprinting research with a specific focus on bioprinting undifferentiated iPSCs, and concludes by discussing existing limitations and future prospects.
    Keywords:  3D bioprinting; Induced pluripotent stem cells; Tissue engineering
    DOI:  https://doi.org/10.15283/ijsc23146
  5. J Control Release. 2024 Jan 03. pii: S0168-3659(23)00835-0. [Epub ahead of print]
      Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
    Keywords:  3D-printing; Drug delivery; Infectious disease; Probiotics
    DOI:  https://doi.org/10.1016/j.jconrel.2023.12.051
  6. J Orthop. 2024 Apr;50 22-28
      Incorporation of three-dimensional (3D) printing technology into the field of spinal surgery is on the rise. A bibliometric analysis of the current topic was carried out to elaborate the trend and to navigate future research. A Scopus database search was conducted with keywords related to 3D printing, spine, and surgery. The final 792 articles were extracted and further analyzed with VOSviewer 1.6.19 and Biblioshiny. The first published article was in 2002. A notable increase in articles in 2014 might be attributable to the availability of cheaper 3D printers which rose significantly on a global scale in 2011. China leads in terms of published research on 3D printing in spinal surgery, followed by the US, Australia, and India. The author's keyword co-occurrence analysis reveals 8 theme clusters, including preoperative and intraoperative measures, biomodelling, spinal neoplasms, biomechanics of 3D-printed materials, degenerative spinal diseases, minimally invasive surgery, and bioprinting. The top 15 of the most recently cited keywords are listed to provide future researchers to produce impactful articles. Two strategic diagrams of 2 periods (2002-2018 and 2018-2023) show the theme's evolution. We found 6 consistent themes in keyword co-occurrence analysis and the strategic diagram analysis, that are promising subjects for future research. Overall, this bibliographic study indicates the expanding importance of 3D printing in spinal surgery and suggests several critical themes and impactful keywords for future researchers.
    Keywords:  Additive manufacturing; Bibliometric study; Review; Spine surgery; Three dimensional printing
    DOI:  https://doi.org/10.1016/j.jor.2023.11.054
  7. Nanotheranostics. 2024 ;8(1): 1-11
      In vitro metastatic models are foreseen to introduce a breakthrough in the field of preclinical screening of more functional small-molecule pharmaceuticals and biologics. To achieve this goal, the complexity of current in vitro systems requests an appropriate upgrade to approach the three-dimensional (3D) in vivo metastatic disease. Here, we explored the potential of our 3D β-tricalcium phosphate (β-TCP) model of neuroblastoma bone metastasis for drug toxicity assessment. Tailor-made scaffolds with interconnected channels were produced by combining 3D printing and slip casting method. The organization of neuroblastoma cells into a mesenchymal stromal cell (MSC) network, cultured under bioactive conditions provided by β-TCP, was monitored by two-photon microscopy. Deposition of extracellular matrix protein Collagen I by MSCs and persistent growth of tumor cells confirmed the cell-supportive performance of our 3D model. When different neuroblastoma cells were treated with conventional chemotherapeutics, the β-TCP model provided the necessary reproducibility and accuracy of experimental readouts. Drug efficacy evaluation was done for 3D and 2D cell cultures, highlighting the need for a higher dose of chemotherapeutics under 3D conditions to achieve the expected cytotoxicity in tumor cells. Our results confirm the importance of 3D geometry in driving native connectivity between nonmalignant and tumor cells and sustain β-TCP scaffolds as a reliable and affordable drug screening platform for use in the early stages of drug discovery.
    Keywords:  3D geometry; bone metastatic niche; drug screening; neuroblastoma
    DOI:  https://doi.org/10.7150/ntno.85439
  8. Anal Methods. 2024 Jan 03.
      Three-dimensional (3D) printing in tissue engineering and biosensing of analytes by using biocompatible materials or modifying surface structures is an upcoming area of study. This review discusses three common surface modification techniques, viz. alkaline hydrolysis, UV light photografting, and plasma treatment. Alkaline hydrolysis involves the reaction of an alkaline solution with the surface of a material, causing the surface to develop carboxyl and hydroxyl groups. This technique can enhance the biocompatibility, surface wettability, adhesion, printability, and dyeability of materials, such as acrylonitrile butadiene styrene (ABS), polycarbonate, and polylactic acid (PLA). This review also mentions details about some of the surface-modified 3D-printed diagnostic devices. Although most of the devices are modified using chemical processes, there are always multiple techniques involved while designing a diagnostic device. We have, therefore, mentioned some of the devices based on the materials used instead of categorising them as per modification techniques. 3D printing helps in the design of sophisticated shapes and structures using multiple materials. They can, therefore be used even in the design of microfluidic devices that are very useful for biosensing. We have also mentioned a few materials for printing microfluidic devices.
    DOI:  https://doi.org/10.1039/d3ay01742g
  9. Lab Chip. 2024 Jan 02.
      Biological models with genetic similarities to humans are used for exploratory research to develop behavioral screening tools and understand sensory-motor interactions. Their small, often mm-sized appearance raises challenges in the straightforward quantification of their subtle behavioral responses and calls for new, customisable research tools. 3D printing provides an attractive approach for the manufacture of custom designs at low cost; however, challenges remain in the integration of functional materials like porous membranes. Nanoporous membranes have been integrated with resin exchange using purpose-designed resins by digital light projection 3D printing to yield functionally integrated devices using a simple, economical and semi-automated process. Here, the impact of the layer thickness and layer number on the porous properties - parameters unique for 3D printing - are investigated, showing decreases in mean pore diameter and porosity with increasing layer height and layer number. From the same resin formulation, materials with average pore size between 200 and 600 nm and porosity between 45% and 61% were printed. Membrane-integrated devices were used to study the chemoattractant induced behavioural response of zebrafish embryos and planarians, both demonstrating a predominant behavioral response towards the chemoattractant, spending >85% of experiment time in the attractant side of the observation chamber. The presented 3D printing method can be used for printing custom designed membrane-integrated devices using affordable 3D printers and enable fine-tuning of porous properties through adjustment of layer height and number. This accessible approach is expected to be adopted for applications including behavioural studies, early-stage pre-clinical drug discovery and (environmental) toxicology.
    DOI:  https://doi.org/10.1039/d3lc00488k