bims-biprem Biomed News
on Bioprinting for regenerative medicine
Issue of 2023–12–24
thirteen papers selected by
Seerat Maqsood, University of Teramo



  1. Bioengineering (Basel). 2023 Dec 07. pii: 1400. [Epub ahead of print]10(12):
      In recent years, we have witnessed remarkable progress in the field of regenerative medicine, in large part fuelled by developments in advanced biofabrication technologies such as three-dimensional (3D) bioprinting [...].
    DOI:  https://doi.org/10.3390/bioengineering10121400
  2. Gels. 2023 Dec 07. pii: 960. [Epub ahead of print]9(12):
      Hydrogels have emerged as a versatile and promising class of materials in the field of 3D printing, offering unique properties suitable for various applications. This review delves into the intersection of hydrogels and 3D printing, exploring current research, technological advancements, and future directions. It starts with an overview of hydrogel basics, including composition and properties, and details various hydrogel materials used in 3D printing. The review explores diverse 3D printing methods for hydrogels, discussing their advantages and limitations. It emphasizes the integration of 3D-printed hydrogels in biomedical engineering, showcasing its role in tissue engineering, regenerative medicine, and drug delivery. Beyond healthcare, it also examines their applications in the food, cosmetics, and electronics industries. Challenges like resolution limitations and scalability are addressed. The review predicts future trends in material development, printing techniques, and novel applications.
    Keywords:  3D printing; biomedical applications; hydrogels; natural hydrogels; synthetic hydrogels
    DOI:  https://doi.org/10.3390/gels9120960
  3. Neural Regen Res. 2024 Aug 01. 19(8): 1751-1758
      Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system. Following surgery, the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality. Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord. Consequently, there is a critical need to develop new treatments to promote functional repair after spinal cord injury. Over recent years, there have been several developments in the use of stem cell therapy for the treatment of spinal cord injury. Alongside significant developments in the field of tissue engineering, three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures. This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization. These three-dimensional bioprinting scaffolds could repair damaged neural circuits and had the potential to repair the damaged spinal cord. In this review, we discuss the mechanisms underlying simple stem cell therapy, the application of different types of stem cells for the treatment of spinal cord injury, and the different manufacturing methods for three-dimensional bioprinting scaffolds. In particular, we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
    DOI:  https://doi.org/10.4103/1673-5374.385842
  4. Digit Health. 2023 Jan-Dec;9:9 20552076231221899
      This educational article discusses the use of 3D printing or additive manufacturing in hospitals, not just for rapid prototyping but also for creating end-use products, such as clinical, diagnostic, and educational tools. The flexibility of 3D printing is valuable for creating patient-specific medical devices, custom surgical tools, anatomical models, implants, research tools and on-demand parts, among others. The advantages of and requirements for implementing a clinical 3D printing service in a hospital environment are discussed, including centralized 3D printing management, technology, example use cases, and considerations for implementation. The article provides an overview for other institutions to reference in setting up or organizing their clinical 3D printing services and is applicable to general hospitals or various sub-specialty practices.
    Keywords:  3D printing; additive manufacturing; personalized medicine
    DOI:  https://doi.org/10.1177/20552076231221899
  5. ACS Biomater Sci Eng. 2023 Dec 20.
      The number of patients with bone defects caused by trauma, bone tumors, and osteoporosis has increased considerably. The repair of irregular, recurring, and large bone defects poses a great challenge to clinicians. Bone tissue engineering is emerging as an appropriate strategy to replace autologous bone grafting in the repair of critically sized bone defects. However, the suitability of bone tissue engineering scaffolds in terms of structure, mechanics, degradation, and the microenvironment is inadequate. Three-dimensional (3D) printing is an advanced additive-manufacturing technology widely used for bone repair. 3D printing constructs personalized structurally adapted scaffolds based on 3D models reconstructed from CT images. The contradiction between the mechanics and degradation is resolved by altering the stacking structure. The local microenvironment of the implant is improved by designing an internal pore structure and a spatiotemporal factor release system. Therefore, there has been a boom in the 3D printing of personalized bone repair scaffolds. In this review, successful research on the preparation of highly bioadaptive bone tissue engineering scaffolds using 3D printing is presented. The mechanisms of structural, mechanical, degradation, and microenvironmental adaptations of bone prostheses and their interactions were elucidated to provide a feasible strategy for constructing highly bioadaptive bone tissue engineering scaffolds.
    Keywords:  3D printing; bioadaptation; bone tissue engineering; scaffold
    DOI:  https://doi.org/10.1021/acsbiomaterials.3c01129
  6. Tissue Eng Part B Rev. 2023 Dec 22.
      Bone defects are a prevalent clinical issue that presents a serious medical challenge. Bone tissue engineering (BTE) has emerged as an effective approach for treating large bone defects. Hydrogels, as hydrophilic three-dimensional polymers, are recognized as suitable material for BTE due to their excellent biocompatibility and degradability. However, the sub-micron and nano-porous structure of hydrogels limits the survival of osteoblasts, hindering bone tissue regeneration. In recent years, 3D printing technology has attracted appreciable attention. Use of hydrogels as 3D-printed ink facilitates the printing of hydrogels in any desired shape, enabling personalized or more complex requirements. This article provides a systematic review of the latest applications of 3D-printed hydrogels in BTE. These hydrogels sever as a multifunctional platform for the next generation technology in treating bone defects. The advantages and limitations of 3D-printed hydrogels in BTE are discussed, and future research directions are explored. This review can form the basis for future hydrogel design.
    DOI:  https://doi.org/10.1089/ten.TEB.2023.0218
  7. Adv Healthc Mater. 2023 Dec 20. e2302713
      Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, and biophysics, and for controling biological processes. The layer-by-layer (LbL) assembly technology is a highly versatile methodology introduced 30 years ago, which consists in assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its versatility, simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and of supporting carriers, and to modify the film mechanical properties via crosslinking. In this review, we focus on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. We highlight possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering. In addition, we present the most recent technological developments in the field of films construction, such as high content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL. This article is protected by copyright. All rights reserved.
    Keywords:  biomaterials; cell signaling; drug delivery; growth factors; layer-by-layer; regenerative medicine; tissue engineering
    DOI:  https://doi.org/10.1002/adhm.202302713
  8. Bone Res. 2023 Dec 20. 11(1): 65
      The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
    DOI:  https://doi.org/10.1038/s41413-023-00302-8
  9. Materials (Basel). 2023 Dec 06. pii: 7531. [Epub ahead of print]16(24):
      Additive manufacturing, with its wide range of printable materials, and ability to minimize material usage, reduce labor costs, and minimize waste, has sparked a growing enthusiasm among researchers for the production of advanced multifunctional composites. This review evaluates recent reports on polymer composites used in 3D printing, and their printing techniques, with special emphasis on composites containing different types of additives (inorganic and biomass-derived) that support the structure of the prints. Possible applications for additive 3D printing have also been identified. The biodegradation potential of polymeric biocomposites was analyzed and possible pathways for testing in different environments (aqueous, soil, and compost) were identified, including different methods for evaluating the degree of degradation of samples. Guidelines for future research to ensure environmental safety were also identified.
    Keywords:  3D printing; AM technology; biocomposites; biodegradability composites; biofibers; biomass; methods assessing biodegradability; multifunctional composites; natural fillers
    DOI:  https://doi.org/10.3390/ma16247531
  10. Molecules. 2023 Dec 06. pii: 7974. [Epub ahead of print]28(24):
      Pectin has recently drawn much attention in biomedical applications due to its distinctive chemical and biological properties. Polymers like pectin with cell-instructive properties are attractive natural biomaterials for tissue repair and regeneration. In addition, bioactive pectin and pectin-based composites exhibit improved characteristics to deliver active molecules. Pectin and pectin-based composites serve as interactive matrices or scaffolds by stimulating cell adhesion and cell proliferation and enhancing tissue remodeling by forming an extracellular matrix in vivo. Several bioactive properties, such as immunoregulatory, antibacterial, anti-inflammatory, anti-tumor, and antioxidant activities, contribute to the pectin's and pectin-based composite's enhanced applications in tissue engineering and drug delivery systems. Tissue engineering scaffolds containing pectin and pectin-based conjugates or composites demonstrate essential features such as nontoxicity, tunable mechanical properties, biodegradability, and suitable surface properties. The design and fabrication of pectic composites are versatile for tissue engineering and drug delivery applications. This article reviews the promising characteristics of pectin or pectic polysaccharides and pectin-based composites and highlights their potential biomedical applications, focusing on drug delivery and tissue engineering.
    Keywords:  biomedical applications; composites; drug delivery; pectin; tissue engineering
    DOI:  https://doi.org/10.3390/molecules28247974
  11. Foods. 2023 Dec 15. pii: 4490. [Epub ahead of print]12(24):
      Three-dimensional (3D) printing is a rapidly developing additive manufacturing technique consisting of the deposition of materials layer-by-layer to produce physical 3D structures. The technique offers unique opportunities to design and produce new products that cater to consumer experience and nutritional requirements. In the past two decades, a wide range of materials, especially plant-protein-based materials, have been documented for the development of personalized food owing to their nutritional and environmental benefits. Despite these benefits, 3D printing with plant-protein-based materials present significant challenges because there is a lack of a comprehensive study that takes into account the most relevant aspects of the processes involved in producing plant-protein-based printable items. This review takes into account the multi-dimensional aspects of processes that lead to the formulation of successful printable products which includes an understanding of rheological characteristics of plant proteins and 3D-printing parameters, as well as elucidating the appropriate concentration and structural hierarchy that are required to maintain stability of the substrate after printing. This review also highlighted the significant and most recent research on 3D food printing with a wide range of plant proteins. This review also suggests a future research direction of 3D printing with plant proteins.
    Keywords:  3D food printing; plant protein; printer parameters; texture
    DOI:  https://doi.org/10.3390/foods12244490
  12. Regen Ther. 2024 Mar;25 10-23
      Premature ovarian insufficiency (POI), also known as premature ovarian failure (POF), is a complex endocrine disease that commonly affects women under the age of 40. It is characterized by the cessation of ovarian function before the age of 40, leading to infertility and hormonal imbalances. The currently available treatment options for POI are limited and often ineffective. Tissue engineering and stem cell-based therapeutic strategies have emerged as promising approaches to restore ovarian function and improve the quality of life for women affected by POI. This review aims to provide a comprehensive overview of the types of stem cells and biomaterials used in the treatment of POI, including their biological characteristics and mechanisms of action. It explores various sources of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, and their potential applications in regenerating ovarian tissue. Additionally, this paper discusses the development of biomaterials and scaffolds that mimic the natural ovarian microenvironment and support the growth and maturation of ovarian cells and follicles. Furthermore, the review highlights the challenges and ethical considerations associated with tissue engineering and stem cell-based therapies for POI and proposes potential solutions to address these issues. Overall, this paper aims to provide a comprehensive overview of the current state of research in tissue engineering and stem cell-based therapeutic strategies for POI and offers insights into future directions for improving treatment outcomes in this debilitating condition.
    Keywords:  Biomaterials; Primary ovarian failure; Regenerative medicine; Stem cells; Tissue engineering
    DOI:  https://doi.org/10.1016/j.reth.2023.11.007
  13. Nanomaterials (Basel). 2023 Dec 15. pii: 3148. [Epub ahead of print]13(24):
      The integration of 3D printed sensors into hosting structures has become a growing area of research due to simplified assembly procedures, reduced system complexity, and lower fabrication cost. Embedding 3D printed sensors into structures or bonding the sensors on surfaces are the two techniques for the integration of sensors. This review extensively discusses the fabrication of sensors through different additive manufacturing techniques. Various additive manufacturing techniques dedicated to manufacture sensors as well as their integration techniques during the manufacturing process will be discussed. This review will also discuss the basic sensing mechanisms of integrated sensors and their applications. It has been proven that integrating 3D printed sensors into infrastructures can open new possibilities for research and development in additive manufacturing and sensor materials for smart goods and the Internet of Things.
    Keywords:  3D printing; additive manufacturing; embedded sensor; sensor integration
    DOI:  https://doi.org/10.3390/nano13243148