bims-biprem Biomed News
on Bioprinting for regenerative medicine
Issue of 2023‒10‒08
nine papers selected by
Seerat Maqsood, University of Teramo



  1. Heliyon. 2023 Oct;9(10): e20475
      Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
    Keywords:  3D bioprinting; Bioink; Organic; Therapy; cancer
    DOI:  https://doi.org/10.1016/j.heliyon.2023.e20475
  2. Ibrain. 2021 ;7(4): 325-336
      Spinal cord injury (SCI) is a central nervous system disorder that can lead to sensory and motor dysfunction, which can seriously increase pressure and economic burden on families and societies. The current SCI treatment is mainly to stabilize the spine, prevent secondary damage, and control inflammation. Drug treatment is limited to early, large-scale use of steroids to reduce the effects of edema after SCI. In short, there is no direct treatment for SCI. Recent 3D bioprinting development provides a new solution for SCI treatment: a series of spinal cord bionic scaffolds are being developed to improve spinal cord function after injury. This paper reviews the pathophysiological characteristics of SCI, current treatment methods, and the progress of 3D bioprinting in SCI. Finally, its challenges and prospects in SCI treatment are summarized.
    Keywords:  3D bioprinting; scaffold; spinal cord injury; three‐dimensional bioprinting
    DOI:  https://doi.org/10.1002/ibra.12005
  3. Curr Pharm Des. 2023 Sep 27.
      The physicochemical properties of polymeric hydrogels render them attractive for the development of 3D printed prototypes for tissue engineering in regenerative medicine. Significant effort has been made to design hydrogels with desirable attributes that facilitate 3D printability. In addition, there is significant interest in exploring stimuli-responsive hydrogels to support automated 3D printing into more structurally organised prototypes such as customizable bio-scaffolds for regenerative medicine applications. Synthesizing stimuli-responsive hydrogels is dependent on the type of design and modulation of various polymeric materials to open novel opportunities for applications in biomedicine and bio-engineering. In this review, the salient advances made in the design of stimuli-responsive polymeric hydrogels for 3D printing in tissue engineering are discussed with a specific focus on the different methods of manipulation to develop 3D printed stimuli-responsive polymeric hydrogels. Polymeric functionalisation, nano-enabling and crosslinking are amongst the most common manipulative attributes that affect the assembly and structure of 3D printed bio-scaffolds and their stimuli- responsiveness. The review also provides a concise incursion into the various applications of stimuli to enhance the automated production of structurally organized 3D printed medical prototypes.
    Keywords:  3D printing; Polymeric hydrogels; hydrogel stimuli properties; scaffolds; stimuli-responsive polymeric hydrogels; tissue engineering.
    DOI:  https://doi.org/10.2174/0113816128246888230920060802
  4. Biomater Sci. 2023 Oct 02.
      Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
    DOI:  https://doi.org/10.1039/d3bm01214j
  5. Mater Today (Kidlington). 2023 Jul-Aug;67:67 371-398
      Three-dimensional (3D) printing is a rapidly growing technology with a significant capacity for translational applications in both biology and medicine. 3D-printed living and non-living materials are being widely tested as a potential replacement for conventional solutions for testing and combating antimicrobial resistance (AMR). The precise control of cells and their microenvironment, while simulating the complexity and dynamics of an in vivo environment, provides an excellent opportunity to advance the modeling and treatment of challenging infections and other health conditions. 3D-printing models the complicated niches of microbes and host-pathogen interactions, and most importantly, how microbes develop resistance to antibiotics. In addition, 3D-printed materials can be applied to testing and delivering antibiotics. Here, we provide an overview of 3D printed materials and biosystems and their biomedical applications, focusing on ever increasing AMR. Recent applications of 3D printing to alleviate the impact of AMR, including developed bioprinted systems, targeted bacterial infections, and tested antibiotics are presented.
    Keywords:  3D printing; antibiotic; antibiotic delivery; antibiotic testing; antimicrobial resistance; bacteria; bioprinting
    DOI:  https://doi.org/10.1016/j.mattod.2023.05.030
  6. 3D Print Med. 2023 Oct 06. 9(1): 28
      BACKGROUND: Restoration of mobility of the elbow after post-traumatic elbow stiffening due to osteophytes is often a problem.METHODS: The anatomical structures were segmented within the CT-scan. Afterwards, the Multi Jet Fusion 3D-printing was applied to create the model made of biocompatible and steam-sterilizable plastic. Preoperative simulation of osteophyte resection at the 3D-model was performed as well as the direct comparison with the patient anatomy intraoperatively.
    RESULTS: The patient-specific was very helpful for the preoperative simulation of the resection of elbow osteophytes. The 3D anatomical representation improved the preoperative plan its implementation. A high degree of fidelity was found between the 3D Printed Anatomical representation and the actual joint pathology.
    CONCLUSIONS: Arthrolysis of complex post-traumatic bony changes is an important indication for the use of 3D models for preoperative planning. Due to the use of 3D printing and software simulation, accurate resection planning is feasible and residual bony stiffening can be avoided. 3D printing models can lead to an improvement in surgical quality.
    Keywords:  3D-printing; Elbow stiffness; Joint surgery; Patient-specific models; Postoperative control; Preoperative planning
    DOI:  https://doi.org/10.1186/s41205-023-00191-x
  7. BMC Musculoskelet Disord. 2023 Oct 06. 24(1): 796
      PURPOSE: This study aimed to compare the effects of conventional surgery and three-dimension (3D) printing technology-assisted surgery in the treatment of posterolateral tibial plateau fractures (PTPF).METHODS: A cohort of 61 patients afflicted with PTPF, spanning from June 2015 to October 2021, was enrolled. They were divided randomly into two groups: 31 cases of 3D printing group, 30 cases of conventional group. The personalized 3D-printed models were used to simulate the surgical procedures in 3D printing group. The demographic characteristics and clinical data were recorded, encompassing operation duration, intraoperative blood loss, intraoperative fluoroscopy shoots and fracture union time. The radiographic outcomes were gauged, encompassing tibiofemoral angle (FTA), tibial plateau angle (TPA), posterolateral slope angle (PSA) and Rasmussen's anatomical score. The functional outcomes were assessed at the 12-month postoperative juncture, encompassing range of motion, Hospital for Special Surgery (HSS) score and Rasmussen's functional score. Furthermore, fracture complications were evaluated,, encompassing infections, traumatic osteoarthritis, and delayed union.
    RESULTS: The 3D printing group exhibited the operation time of 95.8 ± 30.2 min, intraoperative blood loss of 101.1 ± 55.3 ml, and intraoperative fluoroscopy shoots of 6.3 ± 2.3 times, while the conventional group recorded respective values of 115.5 ± 34.0 min, 137.0 ± 49.2 ml and 9.13 ± 2.5 times. Noteworthy disparities were evident between the conventional and 3D printing groups (p < 0.05). Furthermore, in comparison to the conventional group, the 3D printing group exhibited commendable radiological and functional outcomes both immediately and 12 months post-surgery, although statistical significance was not attained. Moreover, the 3D printing group experienced a paucity of complications compared to the conventional group, although without achieving statistical significance.
    CONCLUSION: This study demonstrated the clinical feasibility of 3D printing combined with anteroposterior cannulated screws for the treatment of posterolateral tibial plateau fracture.
    Keywords:  3D printing; Orthopedics; Posterolateral tibial plateau fracture; Surgery
    DOI:  https://doi.org/10.1186/s12891-023-06887-9
  8. Respir Res. 2023 Oct 05. 24(1): 242
      The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.
    Keywords:  3D hydrogels; ECM stiffness; Extracellular matrix (ECM); Fibrosis; Lung fibroblasts
    DOI:  https://doi.org/10.1186/s12931-023-02548-6