Eur J Ophthalmol. 2021 Jul 07.
11206721211031409
The ciliary body (CB) is part of the uvea and is a complex, highly specialized structure with multiple functions and significant relationships with nearby structures. Its functions include the aqueous humor (AH) production in the ciliary processes, the regulation of the AH output through the uveoscleral pathway, and accommodation, which depends on the ciliary muscle. Also, the CB is an important determinant of angle width as it forms part of the ciliary sulcus. Until recently, knowledge of the CB was based on histological studies. However, this structure can currently be assessed in vivo using imaging techniques such as ultrasound biomicroscopy (UBM) and optical coherence tomography (OCT). Both techniques have shown good reproducibility of their measurements allowing for quantification of CB dimensions and their localization. In effect, studies have shown a larger CB in myopia and its diminishing size with age. Swept-source OCT devices offer fast, non-invasive high-resolution imaging allowing the identification of multiple structures. UBM requires contact and is uncomfortable for the patient. However, this technique offers deeper imaging and therefore remains the gold standard for assessing the posterior chamber, ciliary processes, or zonula. The clinical utility of CB imaging includes its assessment in different types of glaucoma such as angle-closure, malignant or plateau iris. Diagnostic CB imaging is also invaluable for the assessment of ciliochoroidal detachment when suspected, the position after the implantation of a pre-crystalline or sulcus-sutured lenses, diagnosis or monitoring of cysts or tumors, sclerotomies after retinal surgery, intermediate uveitis, or accommodation.
Keywords: Ciliary body; accommodation; ciliary muscle; glaucoma; optical coherence tomography; ultrasound biomicroscopy