bims-bac4me Biomed News
on Microbiome and trained immunity
Issue of 2024‒06‒23
29 papers selected by
Chun-Chi Chang, University Hospital Zurich

  1. Front Immunol. 2024 ;15 1379042
      Human milk oligosaccharides (HMOs) are present in high numbers in milk of lactating women. They are beneficial to gut health and the habitant microbiota, but less is known about their effect on cells from the immune system. In this study, we investigated the direct effect of three structurally different HMOs on human derived macrophages before challenge with Staphylococcus aureus (S. aureus). The study demonstrates that individual HMO structures potently affect the activation, differentiation and development of monocyte-derived macrophages in response to S. aureus. 6´-Sialyllactose (6'SL) had the most pronounced effect on the immune response against S. aureus, as illustrated by altered expression of macrophage surface markers, pointing towards an activated M1-like macrophage-phenotype. Similarly, 6'SL increased production of the pro-inflammatory cytokines TNF-α, IL-6, IL-8, IFN-γ and IL-1β, when exposing cells to 6'SL in combination with S. aureus compared with S. aureus alone. Interestingly, macrophages treated with 6'SL exhibited an altered proliferation profile and increased the production of the classic M1 transcription factor NF-κB. The HMOs also enhanced macrophage phagocytosis and uptake of S. aureus. Importantly, the different HMOs did not notably affect macrophage activation and differentiation without S. aureus exposure. Together, these findings show that HMOs can potently augment the immune response against S. aureus, without causing inflammatory activation in the absence of S. aureus, suggesting that HMOs assist the immune system in targeting important pathogens during early infancy.
    Keywords:  2′-fucosyllactose; 6′-sialyllactose; Staphylococcus aureus; human milk oligosaccharides; immunology; lacto-N-neotetraose; myeloid activation
  2. J Allergy Clin Immunol. 2024 Jun 10. pii: S0091-6749(24)00605-5. [Epub ahead of print]
    Keywords:  Trained immunity; epigenetic inheritance; immune memory; maternal immune transfer; microbiota; offspring; transgenerational immunity
  3. Biochemistry (Mosc). 2024 May;89(5): 817-838
      In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
    Keywords:  immunometabolism; macrophage polarization; proinflammatory cytokines
  4. Cells. 2024 May 26. pii: 916. [Epub ahead of print]13(11):
      Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6G-Ly6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair.
    Keywords:  Ly6Chi monocytes; OxPhos; chemotaxis; single cell transcriptomics
  5. Int J Mol Sci. 2024 May 28. pii: 5856. [Epub ahead of print]25(11):
      Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.
    Keywords:  Helicobacter pylori; gastritis; immunocompetent cells; trained immunity
  6. Methods Mol Biol. 2024 ;2813 137-144
      Air-liquid interface (ALI) airway culture models serve as a powerful tool to emulate the characteristic features of the respiratory tract in vitro. These models are particularly valuable for studying emerging respiratory viral and bacterial infections. Here, we describe an optimized protocol to obtain the ALI airway culture models using normal human bronchial epithelial cells (NHBECs). The protocol outlined below enables the generation of differentiated mucociliary airway epithelial cultures by day 28 following exposure to air.
    Keywords:  Air-liquid interface (ALI) airway culture; Host-pathogen interaction; In vitro models
  7. Nat Commun. 2024 Jun 20. 15(1): 5282
      During pulmonary mucormycosis, inhaled sporangiospores adhere to, germinate, and invade airway epithelial cells to establish infection. We provide evidence that HIF1α plays dual roles in airway epithelial cells during Mucorales infection. We observed an increase in HIF1α protein accumulation and increased expression of many known HIF1α-responsive genes during in vitro infection, indicating that HIF1α signaling is activated by Mucorales infection. Inhibition of HIF1α signaling led to a substantial decrease in the ability of R. delemar to invade cultured airway epithelial cells. Transcriptome analysis revealed that R. delemar infection induces the expression of many pro-inflammatory genes whose expression was significantly reduced by HIF1α inhibition. Importantly, pharmacological inhibition of HIF1α increased survival in a mouse model of pulmonary mucormycosis without reducing fungal burden. These results suggest that HIF1α plays two opposing roles during mucormycosis: one that facilitates the ability of Mucorales to invade the host cells and one that facilitates the ability of the host to mount an innate immune response.
  8. J Allergy Clin Immunol. 2024 Jun 10. pii: S0091-6749(24)00604-3. [Epub ahead of print]
    Keywords:  Innate immune memory; chronic inflammation; hematopoietic stem and progenitor cells; myelopoiesis; trained immunity
  9. Int J Mol Sci. 2024 Jun 06. pii: 6255. [Epub ahead of print]25(11):
      Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.
    Keywords:  Mycobacterium tuberculosis; apoptosis; autophagy; cell death; necrosis
  10. Cell. 2024 Jun 11. pii: S0092-8674(24)00578-6. [Epub ahead of print]
      NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.
    Keywords:  ASC; DAMP; NLRC5; NLRP12; NLRP3; PAMP; PANoptosis; RIPK3; ROS; TLRs; TNF; apoptosis; caspase; colitis; heme; hemophagocytic lymphohistiocytosis; inflammasome; inflammatory cell death; necroptosis; pyroptosis
  11. J Vis Exp. 2024 May 31.
      We introduce an advanced immunocompetent lung-on-chip model designed to replicate the human alveolar structure and function. This innovative model employs a microfluidic-perfused biochip that supports an air-liquid interface mimicking the environment in the human alveoli. Tissue engineering is used to integrate key cellular components, including endothelial cells, macrophages, and epithelial cells, to create a representative tissue model of the alveolus. The model facilitates in-depth examinations of the mucosal immune responses to various pathogens, including viruses, bacteria, and fungi, thereby advancing our understanding of lung immunity. The primary goal of this protocol is to provide details for establishing this alveolus-on-chip model as a robust in vitro platform for infection studies, enabling researchers to closely observe and analyze the complex interactions between pathogens and the host's immune system within the pulmonary environment. This is achieved through the application of microfluidic-based techniques to simulate key physiological conditions of the human alveoli, including blood flow and biomechanical stimulation of endothelial cells, alongside maintaining an air-liquid interface crucial for the realistic exposure of epithelial cells to air. The model system is compatible with a range of standardized assays, such as immunofluorescence staining, cytokine profiling, and colony-forming unit (CFU)/plaque analysis, allowing for comprehensive insights into immune dynamics during infection. The Alveolus-on-chip is composed of essential cell types, including human distal lung epithelial cells (H441) and human umbilical vein endothelial cells (HUVECs) separated by porous polyethylene terephthalate (PET) membranes, with primary monocyte-derived macrophages strategically positioned between the epithelial and endothelial layers. The tissue model enhances the ability to dissect and analyze the nuanced factors involved in pulmonary immune responses in vitro. As a valuable tool, it should contribute to the advancement of lung research, providing a more accurate and dynamic in vitro model for studying the pathogenesis of respiratory infections and testing potential therapeutic interventions.
  12. Int J Mol Sci. 2024 May 30. pii: 6022. [Epub ahead of print]25(11):
      The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
    Keywords:  beneficial bacteria; dysbiosis; gut barrier; gut microbiome; gut microbiota; host immunity; intestinal flora; intestinal homeostasis; live microorganisms; probiotics
  13. Sci Rep. 2024 06 17. 14(1): 13928
      Respiratory syncytial virus is the major cause of acute lower respiratory tract infections in young children, causing extensive mortality and morbidity globally, with limited therapeutic or preventative options. Cathelicidins are innate immune antimicrobial host defence peptides and have antiviral activity against RSV. However, upper respiratory tract cathelicidin expression and the relationship with host and environment factors in early life, are unknown. Infant cohorts were analysed to characterise early life nasal cathelicidin levels, revealing low expression levels in the first week of life, with increased levels at 9 months which are comparable to 2-year-olds and healthy adults. No impact of prematurity on nasal cathelicidin expression was observed, nor were there effects of sex or birth mode, however, nasal cathelicidin expression was lower in the first week-of-life in winter births. Nasal cathelicidin levels were positively associated with specific inflammatory markers and demonstrated to be associated with microbial community composition. Importantly, levels of nasal cathelicidin expression were elevated in infants with mild RSV infection, but, in contrast, were not upregulated in infants hospitalised with severe RSV infection. These data suggest important relationships between nasal cathelicidin, upper airway microbiota, inflammation, and immunity against RSV infection, with interventional potential.
    Keywords:  Antimicrobial peptide; Cathelicidin; Host defence peptide; LL-37; Microbiome; Nasal; Respiratory; Respiratory syncytial virus; hCAP-18
  14. EMBO Rep. 2024 Jun 12.
      Type I interferons (IFN-I) are implicated in exacerbation of tuberculosis (TB), but the mechanisms are unclear. Mouse macrophages infected with Mycobacterium tuberculosis (Mtb) produce IFN-I, which contributes to their death. Here we investigate whether the same is true for human monocyte-derived macrophages (MDM). MDM prepared by a conventional method markedly upregulate interferon-stimulated genes (ISGs) upon Mtb infection, while MDM prepared to better restrict Mtb do so much less. A mixture of antibodies inhibiting IFN-I signaling prevents ISG induction. Surprisingly, secreted IFN-I are undetectable until nearly two days after ISG induction. These same antibodies do not diminish Mtb-infected MDM death. MDM induce ISGs in response to picogram/mL levels of exogenous IFN-I while depleting similar quantities from the medium. Exogenous IFN-I increase the proportion of dead MDM. We speculate that Mtb-infected MDM produce and respond to minute levels of IFN-I, and that only some of the resultant signaling is susceptible to neutralizing antibodies. Many types of cells may secrete IFN-I in patients with TB, where IFN-I is likely to promote the death of infected macrophages.
    Keywords:  Cell Death; Interferon; Macrophage; Mycobacterium; Tuberculosis
  15. Transl Res. 2024 Jun 17. pii: S1931-5244(24)00113-0. [Epub ahead of print]
      Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
    Keywords:  ALI/ARDS; Epithelial stem cells; Immune cells; Regeneration
  16. Res Sq. 2024 Jun 04. pii: [Epub ahead of print]
      The severity of allergic asthma is driven by the balance between allergen-specific T regulatory (Treg) and T helper (Th)2 cells. However, it is unclear whether specific subsets of conventional dendritic cells (cDCs) promote the differentiation of these two T cell lineaeges. We have identified a subset of lung resident type 2 cDCs (cDC2s) that display high levels of CD301b and have potent Treg-inducing activity ex vivo. Single cell RNA sequencing and adoptive transfer experiments show that during allergic sensitization, many CD301b+ cDC2s transition in a stepwise manner to CD200+ cDC2s that selectively promote Th2 differentiation. GM-CSF augments the development and maintenance of CD301b+ cDC2s in vivo, and also selectively expands Treg-inducing CD301b+ cDC2s derived from bone marrow. Upon their adoptive transfer to recipient mice, lung-derived CD301b+ cDC2s confer immunological tolerance to inhaled allergens. Thus, GM-CSF maintains lung homeostasis by increasing numbers of Treg-inducing CD301b+ cDC2s.
  17. J Leukoc Biol. 2024 Jun 13. pii: qiae137. [Epub ahead of print]
      The metabolic profile of dendritic cells (DCs) shapes their phenotype and functions. Carboxylestrase 1 (CES1) enzyme is highly expressed in mononuclear myeloid cells however its exact role in DCs is elusive. We used a CES1 inhibitor (WWL113) and genetic overexpression to explore the role of CES1 in DCs differentiation in inflammatory models. CES1 expression was analyzed during CD14+ monocytes differentiation to DCs (MoDCs) using quantitative PCR. CES1 Inhibitor (WWL113) was applied during MoDCs differentiation. Surface markers, secreted cytokines, lactic acid production, phagocytic and T cell polarization capacity were analyzed. Transcriptomic and metabolic profile were assessed with RNA-sequencing and mass spectrometry. Cellular respiration was assessed with seahorse respirometry. Transgenic mice were used to assess CES1 overexpression in DCs in inflammatory models. CES1 expression peaks early during MoDCs differentiation. Pharmacological inhibition of CES1 led to higher expression of CD209, CD86 and MHCII. WWL113 treated MoDCs secreted higher quantities of IL6, IL8, TNF and IL10 and demonstrated stronger phagocytic ability and higher capacity to polarize Th17 differentiation in autologous DCs-T cells co-culture model. Transcriptomic profiling revealed enrichment of multiple inflammatory and metabolic pathways. Functional metabolic analysis shows impaired maximal mitochondrial respiration capacity, increased lactate production and decreased intracellular amino acids and TCA intermediates. Transgenic human CES1 overexpression in murine DCs generated less inflammatory phenotype and increased resistance to T cell mediated colitis. In conclusion, CES1 inhibition directs DCs differentiation towards more inflammatory phenotype, that shows stronger phagocytic capacity and supports Th17 skewing. This is associated with disrupted mitochondrial respiration and amino acids depletion.
  18. J Virol. 2024 Jun 13. e0040924
      Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. Staphylococcus aureus and Streptococcus pneumoniae were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.
    Keywords:  aerosol; aerovirology; droplet; influenza A virus; respiratory microbiota; saliva
  19. Int Immunopharmacol. 2024 Jun 20. pii: S1567-5769(24)01037-3. [Epub ahead of print]137 112516
      Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
    Keywords:  Epithelial-mesenchymal transition; Fibroblasts; Fibrosis; Mechanisms; Neutrophil extracellular traps
  20. Acta Biochim Biophys Sin (Shanghai). 2024 Jun 19.
      Tuberculosis (TB), caused by Mycobacterium tuberculosis ( M. tb), remains one of the leading causes of fatal infectious diseases worldwide. The only licensed vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), has variable efficacy against TB in adults. Insufficiency of immune cell function diminishes the protective effects of the BCG vaccine. It is critical to clarify the mechanism underlying the antimycobacterial immune response during BCG vaccination. Macrophage mannose receptor (MR) is important for enhancing the uptake and processing of glycoconjugated antigens from pathogens for presentation to T cells, but the roles of macrophage MR in the BCG-induced immune response against M. tb are not yet clear. Here, we discover that macrophage MR deficiency impairs the antimycobacterial immune response in BCG-vaccinated mice. Mechanistically, macrophage MR triggers JAK-STAT1 signaling, which promotes antigen presentation via upregulated MHC-II and induces IL-12 production by macrophages, contributing to CD4 + T cell activation and IFN-γ production. MR deficiency in macrophages reduces the vaccine efficacy of BCG and increases susceptibility to M. tb H37Ra challenge in mice. Our results suggest that MR is critical for macrophage antigen presentation and the antimycobacterial immune response to BCG vaccination and offer valuable guidance for the preventive strategy of BCG immunization.
    Keywords:  BCG vaccine; antigen presentation; macrophage; mannose receptor
  21. Nat Cell Biol. 2024 Jun 20.
      Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
  22. Cell Commun Signal. 2024 Jun 21. 22(1): 341
      BACKGROUND: Pseudomonas aeruginosa (PA) is an opportunistic pathogen that can cause sight threatening infections in the eye and fatal infections in the cystic fibrosis airway. Extracellular vesicles (EVs) are released by host cells during infection and by the bacteria themselves; however, there are no studies on the composition and functional role of host-derived EVs during PA infection of the eye or lung. Here we investigated the composition and capacity of EVs released by PA infected epithelial cells to modulate innate immune responses in host cells.METHODS: Human telomerase immortalized corneal epithelial cells (hTCEpi) cells and human telomerase immortalized bronchial epithelial cells (HBECs) were treated with a standard invasive test strain of Pseudomonas aeruginosa, PAO1, for 6 h. Host derived EVs were isolated by qEV size exclusion chromatography. EV proteomic profiles during infection were compared using mass spectrometry and functional studies were carried out using hTCEpi cells, HBECs, differentiated neutrophil-like HL-60 cells, and primary human neutrophils isolated from peripheral blood.
    RESULTS: EVs released from PA infected corneal epithelial cells increased pro-inflammatory cytokine production in naïve corneal epithelial cells and induced neutrophil chemotaxis independent of cytokine production. The EVs released from PA infected bronchial epithelial cells were also chemotactic although they failed to induce cytokine secretion from naïve HBECs. At the proteomic level, EVs derived from PA infected corneal epithelial cells exhibited lower complexity compared to bronchial epithelial cells, with the latter having reduced protein expression compared to the non-infected control.
    CONCLUSIONS: This is the first study to comprehensively profile EVs released by corneal and bronchial epithelial cells during Pseudomonas infection. Together, these findings show that EVs released by PA infected corneal and bronchial epithelial cells function as potent mediators of neutrophil migration, contributing to the exuberant neutrophil response that occurs during infection in these tissues.
    Keywords:   Pseudomonas aeruginosa ; Cornea; Epithelium; Extracellular vesicles; Lung; Neutrophils; Proteomics
  23. Methods Mol Biol. 2024 ;2813 39-64
      One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
    Keywords:  Antibody; Bacteria; Complement receptor; Fc receptor; Infection; Inflammation; Macrophage; Neutrophil
  24. Dis Model Mech. 2024 Jun 21. pii: dmm.050670. [Epub ahead of print]
      Structural changes to vocal fold (VF) epithelium, namely loosened intercellular junctions have been reported in VF benign lesions. Potential mechanisms responsible for the disruption of cell junctions do not address the contribution of resident microbial communities to this pathological phenomenon. In this study, we focused on determining the relationship between Streptococcus pseudopneumoniae (SP), a dominant bacterial species associated with benign lesions, and S. salivarius (SS), a commensal bacterium, with human VF epithelial cells, in our three-dimensional model of human VF mucosa. This experimental system enabled direct deposition of bacteria onto constructs at the Air/Liquid interface allowing for the assessment of bacteria-host interactions at cellular, molecular and ultrastructural levels. Our findings demonstrate that SP disrupts VF epithelial integrity and initiates inflammation via exported products, HtrA1 and pneumolysin. In contrast, SS attaches to VF epithelium, reduces inflammation and induces Mmp2-mediated apical desquamation of infected cells to mitigate the impact of pathogens. In conclusion, this study highlights the complexity of microbial involvement in VF pathology and potential VF mucosal restoration in the presence of laryngeal commensals.
    Keywords:  Commensals; Epithelial integrity; Pathogenic bacteria; Remodeling; Vocal fold mucosa
  25. Proc Biol Sci. 2024 Jun;291(2025): 20240735
      Antibiotic resistance genes (ARGs) benefit host bacteria in environments containing corresponding antibiotics, but it is less clear how they are maintained in environments where antibiotic selection is weak or sporadic. In particular, few studies have measured if the direct effect of ARGs on host fitness is fixed or if it depends on the host strain, perhaps marking some ARG-host combinations as selective refuges that can maintain ARGs in the absence of antibiotic selection. We quantified the fitness effects of six ARGs in 11 diverse Escherichia spp. strains. Three ARGs (blaTEM-116, cat and dfrA5, encoding resistance to β-lactams, chloramphenicol, and trimethoprim, respectively) imposed an overall cost, but all ARGs had an effect in at least one host strain, reflecting a significant strain interaction effect. A simulation predicts these interactions can cause the success of ARGs to depend on available host strains, and, to a lesser extent, can cause host strain success to depend on the ARGs present in a community. These results indicate the importance of considering ARG effects across different host strains, and especially the potential of refuge strains to allow resistance to persist in the absence of direct selection, in efforts to understand resistance dynamics.
    Keywords:  antibiotic; antibiotic resistance genes; fitness costs; plasmids; β-lactamase
  26. Infect Immun. 2024 Jun 18. e0015224
      The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence among emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. By creating and analyzing isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates than the historic strains. Via the creation of isogenic mutant strains, we linked the emergent strain "survival" phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found a high ratio of mucosal (i.e., pharyngeal) relative to invasive infections among emm4 GAS. Since ever-increasing virulence is unlikely to be evolutionarily advantageous for a microbial pathogen, our data further understanding of the well-described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a "survival" strategy to outcompete previously circulating isolates.
    Keywords:  Streptococcus; carbonic anhydrase; clonal emergence; emm4; host-pathogen interactions; oxidative stress
  27. Front Immunol. 2024 ;15 1386578
      The immune memory is one of the defensive strategies developed by both unicellular and multicellular organisms for ensuring their integrity and functionality. While the immune memory of the vertebrate adaptive immune system (based on somatic recombination) is antigen-specific, encompassing the generation of memory T and B cells that only recognize/react to a specific antigen epitope, the capacity of vertebrate innate cells to remember past events is a mostly non-specific mechanism of adaptation. This "innate memory" can be considered as germline-encoded because its effector tools (such as innate receptors) do not need somatic recombination for being active. Also, in several organisms the memory-related information is integrated in the genome of germline cells and can be transmitted to the progeny for several generations, but it can also be erased depending on the environmental conditions. Overall, depending on the organism, its environment and its living habits, innate immune memory appears to be a mechanism for achieving better protection and survival against repeated exposure to microbes/stressful agents present in the same environment or occurring in the same anatomical district, able to adapt to changes in the environmental cues. The anatomical and functional complexity of the organism and its lifespan drive the generation of different immune memory mechanisms, for optimal adaptation to changes in the living/environmental conditions. The concept of innate immunity being non-specific needs to be revisited, as a wealth of evidence suggests a significant degree of specificity both in the primary immune reaction and in the ensuing memory-like responses. This is clearly evident in invertebrate metazoans, in which distinct scenarios can be observed, with both non-specific (immune enhancement) or specific (immune priming) memory-like responses. In the case of mammals, there is evidence that some degree of specificity can be attained in different situations, for instance as organ-specific protection rather than microorganism-specific reaction. Thus, depending on the challenges and conditions, innate memory can be non-specific or specific, can be integrated in the germline and transmitted to the progeny or be short-lived, thereby representing an exceptionally plastic mechanism of defensive adaptation for ensuring individual and species survival.
    Keywords:  adaptation; innate immunity; innate memory; specificity; survival
  28. Clin Microbiol Rev. 2024 Jun 20. e0011823
      SUMMARYStaphylococcus capitis is divided into two subspecies, S. capitis subsp. ureolyticus (renamed urealyticus in 1992; ATCC 49326) and S. capitis subsp. capitis (ATCC 27840), and fits with the archetype of clinically relevant coagulase-negative staphylococci (CoNS). S. capitis is a commensal bacterium of the skin in humans, which must be considered an opportunistic pathogen of interest particularly as soon as it is identified in a clinically relevant specimen from an immunocompromised patient. Several studies have highlighted the potential determinants underlying S. capitis pathogenicity, resistance profiles, and virulence factors. In addition, mobile genetic element acquisitions and mutations contribute to S. capitis genome adaptation to its environment. Over the past decades, antibiotic resistance has been identified for S. capitis in almost all the families of the currently available antibiotics and is related to the emergence of multidrug-resistant clones of high clinical significance. The present review summarizes the current knowledge concerning the taxonomic position of S. capitis among staphylococci, the involvement of this species in human colonization and diseases, the virulence factors supporting its pathogenicity, and the phenotypic and genomic antimicrobial resistance profiles of this species.
    Keywords:  Staphylococcus capitis; antibiotic resistance; pathogeny; virulence factors
  29. Int J Mol Sci. 2024 May 24. pii: 5723. [Epub ahead of print]25(11):
      Wound infections caused by opportunistic bacteria promote persistent infection and represent the main cause of delayed healing. Probiotics are acknowledged for their beneficial effects on the human body and could be utilized in the management of various diseases. They also possess the capacity to accelerate wound healing, due to their remarkable anti-pathogenic, antibiofilm, and immunomodulatory effects. Oral and topical probiotic formulations have shown promising openings in the field of dermatology, and there are various in vitro and in vivo models focusing on their healing mechanisms. Wound dressings embedded with prebiotics and probiotics are now prime candidates for designing wound healing therapeutic approaches to combat infections and to promote the healing process. The aim of this review is to conduct an extensive scientific literature review regarding the efficacy of oral and topical probiotics in wound management, as well as the potential of wound dressing embedding pre- and probiotics in stimulating the wound healing process.
    Keywords:  infection control; probiotic formulations; wound dressings; wound healing