bims-bac4me Biomed News
on Microbiome and trained immunity
Issue of 2024‒06‒30
39 papers selected by
Chun-Chi Chang, University Hospital Zurich



  1. mBio. 2024 Jun 27. e0113024
      Type III interferon signaling contributes to the pathogenesis of the important human pathogen Staphylococcus aureus in the airway. Little is known of the cellular factors important in this response. Using Ifnl2-green fluorescent protein reporter mice combined with flow cytometry and cellular depletion strategies, we demonstrate that the alveolar macrophage is the primary producer of interferon lambda (IFN-λ) in response to S. aureus in the airway. Bone marrow chimeras showed reduced bacterial burden in IFN-λ receptor (IFNLR1)-deficient recipient mice, indicative that non-hematopoietic cells were important for pathogenesis, in addition to significant reductions in pulmonary inflammation. These observations were confirmed through the use of an airway epithelial-specific IFNLR knockout mouse. Our data suggest that upon entry to the airway, S. aureus activates alveolar macrophages to produce type III IFN that is subsequently sensed by the airway epithelium. Future steps will determine how signaling from the epithelium then exerts its influence on bacterial clearance. These results highlight the important, yet sometimes detrimental, role of type III IFN signaling during infection and the impact the airway epithelium plays during host-pathogen interactions.IMPORTANCEThe contribution of type III interferon signaling to the control of bacterial infections is largely unknown. We have previously demonstrated that it contributes to the pathogenesis of acute Staphylococcus aureus respiratory infection. In this report, we document the importance of two cell types that underpin this pathogenesis. We demonstrate that the alveolar macrophage is the cell that is responsible for the production of type III interferon and that this molecule is sensed by airway epithelial cells, which impacts both bacterial clearance and induction of inflammation. This work sheds light on the first two aspects of this important pathogenic cascade.
    Keywords:  Staphylococcus aureus; airway; interferons; lung; type III interferon
    DOI:  https://doi.org/10.1128/mbio.01130-24
  2. Int J Mol Sci. 2024 Jun 18. pii: 6684. [Epub ahead of print]25(12):
      Antimicrobial peptides (AMPs) are crucial components of the innate immune system in various organisms, including humans. Beyond their direct antimicrobial effects, AMPs play essential roles in various physiological processes. They induce angiogenesis, promote wound healing, modulate immune responses, and serve as chemoattractants for immune cells. AMPs regulate the microbiome and combat microbial infections on the skin, lungs, and gastrointestinal tract. Produced in response to microbial signals, AMPs help maintain a balanced microbial community and provide a first line of defense against infection. In preterm infants, alterations in microbiome composition have been linked to various health outcomes, including sepsis, necrotizing enterocolitis, atopic dermatitis, and respiratory infections. Dysbiosis, or an imbalance in the microbiome, can alter AMP profiles and potentially lead to inflammation-mediated diseases such as chronic lung disease and obesity. In the following review, we summarize what is known about the vital role of AMPs as multifunctional peptides in protecting newborn infants against infections and modulating the microbiome and immune response. Understanding their roles in preterm infants and high-risk populations offers the potential for innovative approaches to disease prevention and treatment.
    Keywords:  antimicrobial peptides; dysbiosis; epidermis; innate immune system; microbiome; microbiota-regulation peptides/proteins; premature infants; sustained inflammation
    DOI:  https://doi.org/10.3390/ijms25126684
  3. Curr Opin Microbiol. 2024 Jun 26. pii: S1369-5274(24)00081-X. [Epub ahead of print]80 102505
      Commensal bacteria are residents of the human airway where they interact with both colonizing pathogens and host respiratory epithelial cells of this mucosal surface. It is here that commensals exert their influence through host signaling cascades, host transcriptional responses and host immunity, all of which are rooted in chromatin remodeling and histone modifications. Recent studies show that airway commensals impact host chromatin, but compared the what is known for gut commensals, the field remains in its infancy. The mechanisms by which airway commensals regulate respiratory health and homeostasis through chromatin modifications is of increasing interest, specifically since their displacement precedes the increased potential for respiratory disease. Herein we will discuss recent advances and intriguing avenues of future work aimed at deciphering how airway commensals protect and influence respiratory health.
    DOI:  https://doi.org/10.1016/j.mib.2024.102505
  4. mBio. 2024 Jun 26. e0138924
      The host protein calprotectin inhibits the growth of a variety of bacterial pathogens through metal sequestration in a process known as "nutritional immunity." Staphylococcus aureus growth is inhibited by calprotectin in vitro, and calprotectin is localized in vivo to staphylococcal abscesses during infection. However, the staphylococcal adaptations that provide defense against nutritional immunity and the role of metal-responsive regulators are not fully characterized. In this work, we define the transcriptional response of S. aureus and the role of the metal-responsive regulators, Zur, Fur, and MntR, in response to metal limitation by calprotectin exposure. Additionally, we identified genes affecting the fitness of S. aureus during metal limitation through a Transposon sequencing (Tn-seq) approach. Loss of function mutations in clpP, which encodes a proteolytic subunit of the ATP-dependent Clp protease, demonstrate reduced fitness of S. aureus to the presence of calprotectin. ClpP contributes to pathogenesis in vivo in a calprotectin-dependent manner. These studies establish a critical role for ClpP to combat metal limitation by calprotectin and reveal the genes required for S. aureus to outcompete the host for metals.IMPORTANCE: Staphylococcus aureus is a leading cause of skin and soft tissue infections, bloodstream infections, and endocarditis. Antibiotic treatment failures during S. aureus infections are increasingly prevalent, highlighting the need for novel antimicrobial agents. Metal chelator-based therapeutics have tremendous potential as antimicrobials due to the strict requirement for nutrient metals exhibited by bacterial pathogens. The high-affinity transition metal-binding properties of calprotectin represents a potential therapeutic strategy that functions through metal chelation. Our studies provide a foundation to define mechanisms by which S. aureus combats nutritional immunity and may be useful for the development of novel therapeutics to counter the ability of S. aureus to survive in a metal-limited environment.
    Keywords:  Staphylococcus aureus; calprotectin; clpP; nutritional immunity
    DOI:  https://doi.org/10.1128/mbio.01389-24
  5. Int J Mol Sci. 2024 Jun 12. pii: 6486. [Epub ahead of print]25(12):
      Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.
    Keywords:  bloodstream; recurrence; relapse; resistance; small colony variant
    DOI:  https://doi.org/10.3390/ijms25126486
  6. Annu Rev Immunol. 2024 Jun;42(1): 347-373
      Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
    Keywords:  coronavirus; dendritic cells; plasmacytoid dendritic cells; systemic lupus erythematosus; type I interferon
    DOI:  https://doi.org/10.1146/annurev-immunol-090122-041105
  7. Immunol Invest. 2024 Jun 24. 1-62
      INTRODUCTION: An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation.METHODS: This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses.
    RESULTS AND DISCUSSION: It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
    Keywords:  Bacteria; fungi; macrophage; parasites; polarization; receptor; virus
    DOI:  https://doi.org/10.1080/08820139.2024.2367682
  8. Mol Med. 2024 Jun 25. 30(1): 96
      Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
    Keywords:  Energy metabolism; Lupus nephritis; Macrophages; Polarization
    DOI:  https://doi.org/10.1186/s10020-024-00866-z
  9. Microbiol Spectr. 2024 Jun 28. e0002824
      Traditionally, successful vaccines rely on specific adaptive immunity by activating lymphocytes with an attenuated pathogen, or pathogen subunit, to elicit heightened responses upon subsequent exposures. However, recent work with Mycobacterium tuberculosis and other pathogens has identified a role for "trained" monocytes in protection through memory-like but non-specific immunity. Here, we used an in vitro co-culture approach to study the potential role of trained macrophages, including lung alveolar macrophages, in immune responses to the Live Vaccine Strain (LVS) of Francisella tularensis. F. tularensis is an intracellular bacterium that replicates within mammalian macrophages and causes respiratory as well as systemic disease. We vaccinated mice with F. tularensis LVS and then obtained lung alveolar macrophages, or derived macrophages from bone marrow. LVS infected and replicated comparably in both types of macrophages, whether naïve or from LVS-vaccinated mice. LVS-infected macrophages were then co-cultured with either naïve splenocytes, splenocytes from mice vaccinated intradermally, or splenocytes from mice vaccinated intravenously. For the first time, we show that immune (but not naïve) splenocytes controlled bacterial replication within alveolar macrophages, similar to previous results using bone marrow-derived macrophage. However, no differences in control of intramacrophage bacterial replication were found between co-cultures with naïve macrophages or macrophages from LVS-vaccinated mice; furthermore, nitric oxide levels and interferon-gamma production in supernatants were largely comparable across all conditions. Thus, in the context of in vitro co-cultures, the data do not support development of trained macrophages in bone marrow or lungs of mice vaccinated with LVS intradermally or intravenously.IMPORTANCE: The discovery of non-specific "trained immunity" in monocytes has generated substantial excitement. However, to date, training has been studied with relatively few microbes (e.g., Mycobacterium bovis Bacille Calmette-Guérin, a live attenuated intracellular bacterium used as a vaccine) and microbial substances (e.g., LPS), and it remains unclear whether training during infection is common. We previously demonstrated that vaccination of mice with Francisella tularensis Live Vaccine Strain (LVS), another live attenuated intracellular bacterium, protected against challenge with the unrelated bacterium Listeria monocytogenes. The present study therefore tested whether LVS vaccination engenders trained macrophages that contributed to this protection. To do so, we used a previous in vitro co-culture approach with murine bone marrow-derived macrophages to expand and study lung alveolar macrophages. We demonstrated that alveolar macrophages can be productively infected and employed to characterize interactions with LVS-immune lymphocytes. However, we find no evidence that either bone marrow-derived or alveolar macrophages are trained by LVS vaccination.
    Keywords:  Francisella LVS; alveolar; macrophages; trained immunity
    DOI:  https://doi.org/10.1128/spectrum.00028-24
  10. Microorganisms. 2024 Jun 16. pii: 1209. [Epub ahead of print]12(6):
      Lacticaseibacillus rhamnosus CRL1505 possesses immunomodulatory activities in the gastrointestinal and respiratory tracts when administered orally. Its adhesion to the intestinal mucosa does not condition its beneficial effects. The intranasal administration of L. rhamnosus CRL1505 is more effective than the oral route at modulating immunity in the respiratory tract. Nonetheless, it has not yet been established whether the adherence of the CRL1505 strain to the respiratory mucosa is needed to provide the immune benefits to the host. In this study, we evaluated the role of adhesion to the respiratory mucosa of the mucus-binding factor (mbf) knock-out L. rhamnosus CRL1505 mutant (Δmbf CRL1505) in the context of a Toll-like receptor 3 (TLR3)-triggered innate immunity response. In vitro adhesion studies in porcine bronchial epitheliocytes (PBE cells) indicated that L. rhamnosus Δmbf CRL1505 adhered weakly compared to the wild-type strain. However, in vivo studies in mice demonstrated that the Δmbf CRL1505 also reduced lung damage and modulated cytokine production in the respiratory tract after the activation of TLR3 to a similar extent as the wild-type strain. In addition, the mutant and the wild-type strains modulated the production of cytokines and antiviral factors by alveolar macrophages in the same way. These results suggest that the Mbf protein is partially involved in the ability of L. rhamnosus CRL1505 to adhere to the respiratory epithelium, but the protein is not necessary for the CRL1505 strain to exert its immunomodulatory beneficial effects. These findings are a step forward in the understanding of molecular interactions that mediate the beneficial effects of nasally administered probiotics.
    Keywords:  Lacticaseibacillus rhamnosus CRL1505; alveolar macrophages; antiviral immunity; mucus-binding factor mutant; nasal probiotics; porcine bronchial epithelial cell; respiratory immunity
    DOI:  https://doi.org/10.3390/microorganisms12061209
  11. Front Oral Health. 2024 ;5 1413842
      Inflammatory dysbiotic diseases present an intriguing biological paradox. Like most other infectious disease processes, the alarm bells of the host are potently activated by tissue-destructive pathobionts, triggering a cascade of physiological responses that ultimately mobilize immune cells like neutrophils to sites of active infection. Typically, these inflammatory host responses are critical to inhibit and/or eradicate infecting microbes. However, for many inflammatory dysbiotic diseases, inflammophilic pathobiont-enriched communities not only survive the inflammatory response, but they actually obtain a growth advantage when challenged with an inflammatory environment. This is especially true for those organisms that have evolved various strategies to resist and/or manipulate components of innate immunity. In contrast, members of the commensal microbiome typically experience a competitive growth disadvantage under inflammatory selective pressure, hindering their critical ability to restrict pathobiont proliferation. Here, we examine examples of bacteria-neutrophil interactions from both conventional pathogens and inflammophiles. We discuss some of the strategies utilized by them to illustrate how inflammophilic microbes can play a central role in the positive feedback cycle that exemplifies dysbiotic chronic inflammatory diseases.
    Keywords:  inflammation; innate immunity; microbiome & dysbiosis; neutrophils (PMNs); pathobionts; pathogenesis
    DOI:  https://doi.org/10.3389/froh.2024.1413842
  12. FASEB J. 2024 Jul 15. 38(13): e23767
      Macrophages possess a diverse range of well-defined capabilities and roles as phagocytes, encompassing the regulation of inflammation, facilitation of wound healing, maintenance of tissue homeostasis, and serving as a crucial element in the innate immune response against microbial pathogens. The emergence of extracellular traps is a novel strategy of defense that has been observed in several types of innate immune cells. In response to infection, macrophages are stimulated and produce macrophage extracellular traps (METs), which take the form of net-like structures, filled with strands of DNA and adorned with histones and other cellular proteins. METs not only capture and eliminate microorganisms but also play a role in the development of certain diseases such as inflammation and autoimmune disorders. The primary objective of this study is to examine the latest advancements in METs for tackling bacterial infections. We also delve into the current knowledge and tactics utilized by bacteria to elude or endure the effects of METs. Through this investigation, we hope to shed light on the intricate interactions between bacteria and the host's immune system, particularly in the context of microbicidal effector mechanisms of METs. The continued exploration of METs and their impact on host defense against various pathogens opens up new avenues for understanding and potentially manipulating the immune system's response to infections.
    Keywords:  bacterial infection; evasion; macrophage extracellular traps; macrophages
    DOI:  https://doi.org/10.1096/fj.202400739R
  13. J Orthop Res. 2024 Jun 24.
      Staphyloccocus aureus (S. aureus) is a major bacterial pathogen in orthopedic periprosthetic joint infection (PJI). S. aureus forms biofilms that promote persistent infection by shielding bacteria from immune cells and inducing an antibiotic-tolerant metabolic state. We developed an in vitro system to study S. aureus biofilm interactions with primary human monocytes in the absence of planktonic bacteria. In line with previous in vivo data, S. aureus biofilm induced expression of inflammatory genes such as TNF and IL1B, and their anti-inflammatory counter-regulator IL10. S. aureus biofilm also activated expression of PD-1 ligands, and IL-1RA, molecules that have the potential to suppress T cell function or differentiation of protective Th17 cells. Gene induction did not require monocyte:biofilm contact and was mediated by a soluble factor(s) produced by biofilm-encased bacteria that was heat resistant and >3 kD in size. Activation of suppressive genes by biofilm was sensitive to suppression by Jak kinase inhibition. These results support an evolving paradigm that biofilm plays an active role in modulating immune responses, and suggest this occurs via production of a soluble vita-pathogen-associated molecular pattern, a molecule that signals microbial viability. Induction of T cell suppressive genes by S. aureus biofilm provides insights into mechanisms that can suppress T cell immunity in PJI.
    Keywords:  biology; infection; inflammation
    DOI:  https://doi.org/10.1002/jor.25919
  14. Crit Rev Microbiol. 2024 Jun 25. 1-21
      Mycobacterium tuberculosis (Mtb) is the causative pathogen of tuberculosis, the most lethal infectious disease resulting in 1.3 million deaths annually. Treatments against Mtb are increasingly impaired by the growing prevalence of antimicrobial drug resistance, which necessitates the development of new antibiotics or alternative therapeutic approaches. Upon infecting host cells, predominantly macrophages, Mtb becomes critically dependent on lipids as a source of nutrients. Additionally, Mtb produces numerous lipid-based virulence factors that contribute to the pathogen's ability to interfere with the host's immune responses and to create a lipid rich environment for itself. As lipids, lipid metabolism and manipulating host lipid metabolism play an important role for the virulence of Mtb, this review provides a state-of-the-art overview of mycobacterial lipid metabolism and concomitant role of host metabolism and host-pathogen interaction therein. While doing so, we will emphasize unexploited bacteria-directed and host-directed drug targets, and highlight potential synergistic drug combinations that hold promise for the development of new therapeutic interventions.
    Keywords:  Mycobacterial tuberculosis; antimicrobial resistance; host-directed therapies; host-pathogen interaction; lipid metabolism
    DOI:  https://doi.org/10.1080/1040841X.2024.2370979
  15. Nature. 2024 Jun 26.
      Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1β (IL-1β). The dominant effect of IL-1β in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1β or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.
    DOI:  https://doi.org/10.1038/s41586-024-07585-9
  16. Inflamm Res. 2024 Jun 27.
      Alternatively activated macrophage (M2) polarization can result in one of four subtypes based on cytokines and signaling pathways associated with macrophage activation: M2a, M2b, M2c, and M2d macrophages. The majority of M2 subtypes are anti-inflammatory and pro-angiogenic, secreting growth factors (VEGF, PDGF) and matrix metalloproteinases (MMP2, MMP9) which boost tumor growth, metastasis, and invasion. M2-polarized macrophages are associated with immune suppressor cells harboring Myeloid derived suppressor cells, Regulatory T cells (Tregs), Regulatory B cells as well as alternatively activated (N2) neutrophils. Treg cells selectively support the metabolic stability, mitochondrial integrity, and survival rate of M2-like TAMs in an indirect environment. Also, the contribution of Breg cells influences macrophage polarization towards the M2 direction. TAM is activated when TAN levels in the tumor microenvironment are insufficient or vice versa, suggesting that macrophage and its polarization are fine-tuned. Understanding the functions of immune suppressive cells, mediators, and signaling pathways involved with M2 polarization will allow us to identify potential strategies for targeting the TAM repolarization phenotype for innovative immunotherapy approaches. In this review, we have highlighted the critical factors for M2 macrophage polarization, differential cytokine/chemokine profiles of M1 and M2 macrophage subtypes, and other immune cells' impact on the polarization within the immunosuppressive niche.
    Keywords:  Immunosuppressive niche; Immunotherapy; M2 macrophage; Macrophage polarization; Tumor-associated macrophage
    DOI:  https://doi.org/10.1007/s00011-024-01907-3
  17. J Transl Med. 2024 Jun 27. 22(1): 598
      BACKGROUND: Monocyte-derived alveolar macrophages (Mo_AMs) are increasingly recognised as potential pathogenic factors for idiopathic pulmonary fibrosis (IPF). While scRNAseq analysis has proven valuable in the transcriptome profiling of Mo_AMs, the integration analysis of multi-omics may provide additional dimensions of understanding of these cellular populations.METHODS: We performed multi-omics analysis on 116 scRNAseq, 119 bulkseq and five scATACseq lung tissue samples from IPF. We built a large-scale IPF scRNAseq atlas and conducted the Monocle 2/3 as well as the Cellchat to explore the developmental path and intercellular communication on Mo_AMs. We also reported the difference in metabolisms, tissue repair and phagocytosis between Mo_AMs and tissue-resident alveolar macrophages (TRMs). To determine whether Mo_AMs affected pulmonary function, we projected clinical phenotypes (FVC%pred) from the bulkseq dataset onto the scRNAseq atlas. Finally, we used scATATCseq to uncover the upstream regulatory mechanisms and determine key drivers in Mo_AMs.
    RESULTS: We identified three Mo_AMs clusters and the trajectory analysis further validated the origin of these clusters. Moreover, via the Cellchat analysis, the CXCL12/CXCR4 axis was found to be involved in the molecular basis of reciprocal interactions between Mo_AMs and fibroblasts through the activation of the ERK pathway in Mo_AMs. SPP1_RecMacs (RecMacs, recruited macrophages) were higher in the low-FVC group than in the high-FVC group. Specifically, compared with TRMs, the functions of lipid and energetic metabolism as well as tissue repair were higher in Mo_AMs than TRMs. But, TRMs may have higher level of phagocytosis than TRMs. SPIB (PU.1), JUNB, JUND, BACH2, FOSL2, and SMARCC1 showed stronger association with open chromatin of Mo_AMs than TRMs. Significant upregulated expression and deep chromatin accessibility of APOE were observed in both SPP1_RecMacs and TRMs.
    CONCLUSION: Through trajectory analysis, it was confirmed that SPP1_RecMacs derived from Monocytes. Besides, Mo_AMs may influence FVC% pred and aggravate pulmonary fibrosis through the communication with fibroblasts. Furthermore, distinctive transcriptional regulators between Mo_AMs and TRMs implied that they may depend on different upstream regulatory mechanisms. Overall, this work provides a global overview of how Mo_AMs govern IPF and also helps determine better approaches and intervention therapies.
    Keywords:  Idiopathic pulmonary fibrosis; Monocyte-derived alveolar macrophages; Multiomic; Transcription factors
    DOI:  https://doi.org/10.1186/s12967-024-05398-y
  18. Viruses. 2024 Jun 11. pii: 939. [Epub ahead of print]16(6):
      Porcine hemagglutinating encephalomyelitis virus (PHEV) replicates in the upper respiratory tract and tonsils of pigs. Using an air-liquid interface porcine respiratory epithelial cells (ALI-PRECs) culture system, we demonstrated that PHEV disrupts respiratory epithelia homeostasis by impairing ciliary function and inducing antiviral, pro-inflammatory cytokine, and chemokine responses. This study explores the mechanisms driving early innate immune responses during PHEV infection through host transcriptome analysis. Total RNA was collected from ALI-PRECs at 24, 36, and 48 h post inoculation (hpi). RNA-seq analysis was performed using an Illumina Hiseq 600 to generate 100 bp paired-end reads. Differential gene expression was analyzed using DeSeq2. PHEV replicated actively in ALI-PRECs, causing cytopathic changes and progressive mucociliary disruption. Transcriptome analysis revealed downregulation of cilia-associated genes such as CILK1, DNAH11, LRRC-23, -49, and -51, and acidic sialomucin CD164L2. PHEV also activated antiviral signaling pathways, significantly increasing the expression of interferon-stimulated genes (RSAD2, MX1, IFIT, and ISG15) and chemokine genes (CCL5 and CXCL10), highlighting inflammatory regulation. This study contributes to elucidating the molecular mechanisms of the innate immune response to PHEV infection of the airway epithelium, emphasizing the critical roles of the mucociliary, interferon, and chemokine responses.
    Keywords:  ALI-PREC; PHEV; betacoronavirus; chemokines; mucociliary; organoid; transcriptomics
    DOI:  https://doi.org/10.3390/v16060939
  19. Adv Genet. 2024 ;pii: S0065-2660(24)00009-9. [Epub ahead of print]111 237-310
      Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
    Keywords:  Butyrate; Complex carbohydrates; Microbiota; New generation probiotics; Polyphenols; Postbiotics; Prebiotics; Probiotics; Propionate; Psychobiotics; Tryptophan
    DOI:  https://doi.org/10.1016/bs.adgen.2024.04.001
  20. Front Cell Infect Microbiol. 2024 ;14 1403289
      Staphylococcus aureus is a major causative pathogen of osteomyelitis. Intracellular infections of resident bone cells including osteocytes can persist despite gold-standard clinical intervention. The mechanisms by which intracellular S. aureus evades antibiotic therapy are unknown. In this study, we utilised an in vitro S. aureus infection model of human osteocytes to investigate whether antibiotic-mediated dysregulation of autophagy contributes to this phenomenon. Infected or non-infected osteocyte-like cells were exposed to combinations of rifampicin, vancomycin, and modulators of autophagy. Intracellular bacterial growth characteristics were assessed using colony-forming unit (CFU) analysis, viable bacterial DNA abundance, and the rate of escape into antibiotic-free medium, together with measures of autophagic flux. Rifampicin, alone or in combination with vancomycin, caused a rapid decrease in the culturability of intracellular bacteria, concomitant with stable or increased absolute bacterial DNA levels. Both antibiotics significantly inhibited autophagic flux. However, modulation of autophagic flux did not affect viable bacterial DNA levels. In summary, autophagy was shown to be a factor in the host-pathogen relationship in this model, as its modulation affected the growth state of intracellular S. aureus with respect to both their culturability and propensity to escape the intracellular niche. While rifampicin and vancomycin treatments moderately suppressed autophagic flux acutely, this did not explain the paradoxical response of antibiotic treatment in decreasing S. aureus culturability whilst failing to clear bacterial DNA and hence intracellular bacterial load. Thus, off-target effects of rifampicin and vancomycin on autophagic flux in osteocyte-like cells could not explain the persistent S. aureus infection in these cells.
    Keywords:  antibiotic; autophagy; host-pathogen; osteocyte; persister cell; rifampicin; vancomycin Staphylococcus aureus
    DOI:  https://doi.org/10.3389/fcimb.2024.1403289
  21. Front Immunol. 2024 ;15 1404441
      Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.
    Keywords:  hypoxia-inducible factor-1α; inflammation; succinate; succinate receptor 1; therapeutic intervention
    DOI:  https://doi.org/10.3389/fimmu.2024.1404441
  22. Theor Popul Biol. 2024 Jun 24. pii: S0040-5809(24)00066-2. [Epub ahead of print]
      The host microbiome can be considered an ecological community of microbes present inside a complex and dynamic host environment. The host is under selective pressure to ensure that its microbiome remains beneficial. The host can impose a range of ecological filters including the immune response that can influence the assembly and composition of the microbial community. How the host immune response interacts with the within-microbiome community dynamics to affect the assembly of the microbiome has been largely unexplored. We present here a mathematical framework to elucidate the role of host immune response and its interaction with the balance of ecological interactions types within the microbiome community. We find that highly mutualistic microbial communities characteristic of high community density are most susceptible to changes in immune control and become invasion prone as host immune control strength is increased. Whereas highly competitive communities remain relatively stable in resisting invasion to changing host immune control. Our model reveals that the host immune control can interact in unexpected ways with a microbial community depending on the prevalent ecological interactions types for that community. We stress the need to incorporate the role of host-control mechanisms to better understand microbiome community assembly and stability.
    Keywords:  Community ecology; Immune response; Microbiome modeling; Species interactions
    DOI:  https://doi.org/10.1016/j.tpb.2024.06.006
  23. Elife. 2024 Jun 26. pii: RP89319. [Epub ahead of print]12
      During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.
    Keywords:  cell migration; dendritic cells; glycolysis; human; immunology; immunometabolism; inflammation; monocytes; mouse; tuberculosis
    DOI:  https://doi.org/10.7554/eLife.89319
  24. Sci Rep. 2024 06 27. 14(1): 14850
      Nasally colonized staphylococci carry antibiotic resistance genes and may lead to serious opportunistic infections. We are investigating nasal carriage of Staphylococcus aureus and Staphylococci other than S. aureus (SOSA) among young volunteers in Egypt to determine their risk potential. Nasal swabs collected over 1 week in June 2019 from 196 volunteers were cultured for staphylococcus isolation. The participants were interviewed to assess sex, age, general health, hospitalization and personal hygiene habits. Identification was carried out using biochemical tests and VITEK 2 automated system. Disc diffusion and minimum inhibitory concentration tests were performed to determine antibiotic susceptibility. Screening for macrolide resistance genes (ermA, ermB, ermC, ermT and msrA) was performed using polymerase chain reaction. Thirty four S. aureus and 69 SOSA were obtained. Multi-drug resistance (MDR) was detected among most staphylococcal species, ranging from 30.77% among S. hominis to 50% among S. epidermidis. Phenotypic resistance to all tested antibiotics, except for linezolid, was observed. Susceptibility to rifampicin, vancomycin and teicoplanin was highest. ermB showed the highest prevalence among all species (79.41% and 94.2% among S. aureus and SOSA, respectively), and constitutive macrolide-lincosamide-streptogramin B (MLSB) resistance was equally observed in S. aureus and SOSA (11.11% and 16.22%, respectively), whereas inducible MLSB resistance was more often found in S. aureus (77.78% and 43.24%, respectively). The species or resistance level of the carried isolates were not significantly associated with previous hospitalization or underlying diseases. Although over all colonization and carriage of resistance genes are within normal ranges, the increased carriage of MDR S. aureus is alarming. Also, the fact that many macrolide resitance genes were detected should be a warning sign, particularly in case of MLSB inducible phenotype. More in depth analysis using whole genome sequencing would give a better insight into the MDR staphylococci in the community in Egypt.
    Keywords:   S. aureus ; Antibiotic resistance; Community acquired infections; Egypt; Nasal colonization; SOSA
    DOI:  https://doi.org/10.1038/s41598-024-60924-8
  25. Front Immunol. 2024 ;15 1403764
      Immune system recognizes invading microbes at both pathogen and antigen levels. Toll-like receptors (TLRs) play a key role in the first-line defense against pathogens. Major functions of TLRs include cytokine and chemokine production. TLRs share common downstream signaling pathways with other receptors. The crosstalk revolving around TLRs is rather significant and complex, underscoring the intricate nature of immune system. The profiles of produced cytokines and chemokines via TLRs can be affected by other receptors. Integrins are critical heterodimeric adhesion molecules expressed on many different cells. There are studies describing synergetic or inhibitory interplay between TLRs and integrins. Thus, we reviewed the crosstalk between TLRs and integrins. Understanding the nature of the crosstalk could allow us to modulate TLR functions via integrins.
    Keywords:  crosstalk; toll-like receptor; αV integrin; β1 integrin; β2 integrin
    DOI:  https://doi.org/10.3389/fimmu.2024.1403764
  26. PLoS One. 2024 ;19(6): e0306273
      A growing increase in the number of serious infections caused by multidrug resistant bacteria (MDR) is challenging our society. Despite efforts to discover novel therapeutic options, few antibiotics targeting MDR have been approved by the Food and Drug Administration (FDA). Lactic acid bacteria have emerged as a promising therapeutic alternative due to their demonstrated ability to combat MDR pathogens in vitro. Our previous co-culture studies showed Lacticaseibacillus rhamnosus CRL 2244 as having a potent killing effect against carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Here we report that cell-free conditioned media (CFCM) samples obtained from Lcb. rhamnosus CRL 2244 cultures incubated at different times display antimicrobial activity against 43 different pathogens, including CRAB, methicillin-resistant Staphylococcus aureus (MRSA) and carbapenemase Klebsiella pneumoniae (KPC)-positive strains. Furthermore, transwell and ultrafiltration analyses together with physical and chemical/biochemical tests showed that Lcb. rhamnosus CRL 2244 secretes a <3 kDa metabolite(s) whose antimicrobial activity is not significantly impaired by mild changes in pH, temperature and various enzymatic treatments. Furthermore, sensitivity and time-kill assays showed that the bactericidal activity of the Lcb. rhamnosus CRL 2244 metabolite(s) enhances the activity of some current FDA approved antibiotics. We hypothesize that this observation could be due to the effects of Lcb. rhamnosus CRL 2244 metabolite(s) on cell morphology and the enhanced transcriptional expression of genes coding for the phenylacetate (PAA) and histidine catabolic Hut pathways, metal acquisition and biofilm formation, all of which are associated with bacterial virulence. Interestingly, the extracellular presence of Lcb. rhamnosus CRL 2244 induced the transcription of the gene coding for the CidA/LgrA protein, which is involved in programmed cell death in some bacteria. Overall, the findings presented in this report underscore the promising potential of the compound(s) released by Lcb. rhamnosus CRL2244 as an alternative and/or complementary option to treat infections caused by A. baumannii as well as other MDR bacterial pathogens.
    DOI:  https://doi.org/10.1371/journal.pone.0306273
  27. Curr Opin Microbiol. 2024 Jun 21. pii: S1369-5274(24)00071-7. [Epub ahead of print]80 102495
      Legionella species are Gram-negative intracellular bacteria that evolved in soil and freshwater environments, where they infect and replicate within various unicellular protozoa. The primary virulence factor of Legionella is the expression of a type IV secretion system (T4SS), which contributes to the translocation of effector proteins that subvert biological processes of the host cells. Because of its evolution in unicellular organisms, T4SS effector proteins are not adapted to subvert specific mammalian signaling pathways and immunity. Consequently, Legionella pneumophila has emerged as an interesting infection model for investigating immune responses against pathogenic bacteria in multicellular organisms. This review highlights recent advances in our understanding of mammalian innate immunity derived from studies involving L. pneumophila. This includes recent insights into inflammasome-mediated mechanisms restricting bacterial replication in macrophages, mechanisms inducing cell death in response to infection, induction of effector-triggered immunity, activation of specific pulmonary cell types in mammalian lungs, and the protective role of recruiting monocyte-derived cells to infected lungs.
    DOI:  https://doi.org/10.1016/j.mib.2024.102495
  28. J Clin Med. 2024 Jun 07. pii: 3358. [Epub ahead of print]13(12):
      Tissue fibrosis represents a complex pathological condition characterized by the excessive accumulation of collagenous extracellular matrix (ECM) components, resulting in impaired organ function. Fibroblasts are central to the fibrotic process and crucially involved in producing and depositing collagen-rich ECM. Apart from their primary function in ECM synthesis, fibroblasts engage in diverse activities such as inflammation and shaping the tissue microenvironment, which significantly influence cellular and tissue functions. This review explores the role of Yes-associated protein (Yap) and Transcriptional co-activator with PDZ-binding motif (Taz) in fibroblast signaling and their impact on tissue fibrosis. Gaining a comprehensive understanding of the intricate molecular mechanisms of Yap/Taz signaling in fibroblasts may reveal novel therapeutic targets for fibrotic diseases.
    Keywords:  ECM; Yap/Taz; fibroblast; fibrosis; immune cell; mechanical force
    DOI:  https://doi.org/10.3390/jcm13123358
  29. Oncoimmunology. 2024 ;13(1): 2369373
      Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of β2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of β2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for β2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.
    Keywords:  2-deoxyglucose; CCR7; Ikaros; Integrin; cancer immunotherapy; cell adhesion; cell metabolism; dendritic cell; glycolysis; mTOR
    DOI:  https://doi.org/10.1080/2162402X.2024.2369373
  30. Cell Host Microbe. 2024 Jun 26. pii: S1931-3128(24)00196-3. [Epub ahead of print]
      Cutibacterium acnes is the most abundant bacterium of the human skin microbiome since adolescence, participating in both skin homeostasis and diseases. Here, we demonstrate individual and niche heterogeneity of C. acnes from 1,234 isolate genomes. Skin disease (atopic dermatitis and acne) and body site shape genomic differences of C. acnes, stemming from horizontal gene transfer and selection pressure. C. acnes harbors characteristic metabolic functions, fewer antibiotic resistance genes and virulence factors, and a more stable genome compared with Staphylococcus epidermidis. Integrated genome, transcriptome, and metabolome analysis at the strain level unveils the functional characteristics of C. acnes. Consistent with the transcriptome signature, C. acnes in a sebum-rich environment induces toxic and pro-inflammatory effects on keratinocytes. L-carnosine, an anti-oxidative stress metabolite, is up-regulated in the C. acnes metabolome from atopic dermatitis and attenuates skin inflammation. Collectively, our study reveals the joint impact of genes and the microenvironment on C. acnes function.
    Keywords:  Cutibacterium acnes; acne vulgaris; atopic dermatitis; metabolome; transcriptome; whole-genome sequencing
    DOI:  https://doi.org/10.1016/j.chom.2024.06.002
  31. PLoS One. 2024 ;19(6): e0303271
      Antibiotic persistence is a phenomenon, where a small fraction of a bacterial population expresses a phenotypic variation that allows them to survive antibiotic treatment, which is lethal to the rest of the population. These cells are called persisters cells, and their occurrence has been associated with recurrent disease. Streptococcus agalactiae is a human pathobiont, able to cause invasive infections, and recurrent infections have been reported to occur in both newborns and adults. In this study, we demonstrated that S. agalactiae NEM316 can form persister cells when exposed to antibiotics from different classes. The frequency of persister cell formation was dependent on bacterial growth phase and the class of antibiotics. The ability to form persister cells in response to penicillin was shown to be a general trait among different clinical S. agalactiae isolates, independent of sero- and sequence-type. Taken together, this study shows the existence of antibiotic tolerant S. agalactiae persister cells, which may explain why this bacterial species frequently persists after treatment of invasive infection and can be associated with recurrent disease.
    DOI:  https://doi.org/10.1371/journal.pone.0303271
  32. mSystems. 2024 Jun 27. e0092923
      Airway microbiota are known to contribute to lung diseases, such as cystic fibrosis (CF), but their contributions to pathogenesis are still unclear. To improve our understanding of host-microbe interactions, we have developed an integrated analytical and bioinformatic mass spectrometry (MS)-based metaproteomics workflow to analyze clinical bronchoalveolar lavage (BAL) samples from people with airway disease. Proteins from BAL cellular pellets were processed and pooled together in groups categorized by disease status (CF vs. non-CF) and bacterial diversity, based on previously performed small subunit rRNA sequencing data. Proteins from each pooled sample group were digested and subjected to liquid chromatography tandem mass spectrometry (MS/MS). MS/MS spectra were matched to human and bacterial peptide sequences leveraging a bioinformatic workflow using a metagenomics-guided protein sequence database and rigorous evaluation. Label-free quantification revealed differentially abundant human peptides from proteins with known roles in CF, like neutrophil elastase and collagenase, and proteins with lesser-known roles in CF, including apolipoproteins. Differentially abundant bacterial peptides were identified from known CF pathogens (e.g., Pseudomonas), as well as other taxa with potentially novel roles in CF. We used this host-microbe peptide panel for targeted parallel-reaction monitoring validation, demonstrating for the first time an MS-based assay effective for quantifying host-microbe protein dynamics within BAL cells from individual CF patients. Our integrated bioinformatic and analytical workflow combining discovery, verification, and validation should prove useful for diverse studies to characterize microbial contributors in airway diseases. Furthermore, we describe a promising preliminary panel of differentially abundant microbe and host peptide sequences for further study as potential markers of host-microbe relationships in CF disease pathogenesis.IMPORTANCEIdentifying microbial pathogenic contributors and dysregulated human responses in airway disease, such as CF, is critical to understanding disease progression and developing more effective treatments. To this end, characterizing the proteins expressed from bacterial microbes and human host cells during disease progression can provide valuable new insights. We describe here a new method to confidently detect and monitor abundance changes of both microbe and host proteins from challenging BAL samples commonly collected from CF patients. Our method uses both state-of-the art mass spectrometry-based instrumentation to detect proteins present in these samples and customized bioinformatic software tools to analyze the data and characterize detected proteins and their association with CF. We demonstrate the use of this method to characterize microbe and host proteins from individual BAL samples, paving the way for a new approach to understand molecular contributors to CF and other diseases of the airway.
    Keywords:  airway; bioinformatics; bronchoalveolar lavage; cystic fibrosis; host-pathogen interactions; lung infection; mass spectrometry; metagenomics; metaproteomics; microbiome
    DOI:  https://doi.org/10.1128/msystems.00929-23
  33. Nat Cell Biol. 2024 Jun 25.
      Ferroptosis is a distinct form of necrotic cell death caused by overwhelming lipid peroxidation, and emerging evidence indicates a major contribution to organ damage in multiple pathologies. However, ferroptosis has not yet been visualized in vivo due to a lack of specific probes, which has severely limited the study of how the immune system interacts with ferroptotic cells and how this process contributes to inflammation. Consequently, whether ferroptosis has a physiological role has remained a key outstanding question. Here we identify a distinct, ferroptotic-like, necrotic cell death occurring in vivo during wounding of the Drosophila embryo using live imaging. We further demonstrate that macrophages rapidly engage these necrotic cells within the embryo but struggle to engulf them, leading to prolonged, frustrated phagocytosis and frequent corpse disintegration. Conversely, suppression of the ferroptotic programme during wounding delays macrophage recruitment to the injury site, pointing to conflicting roles for ferroptosis during inflammation in vivo.
    DOI:  https://doi.org/10.1038/s41556-024-01450-7
  34. bioRxiv. 2024 Jun 12. pii: 2024.06.12.598703. [Epub ahead of print]
      Obesity is a worsening global epidemic that is regulated by the microbiota through unknown bacterial factors. We discovered a human-derived commensal bacterium, Clostridium immunis , that protects against metabolic disease by secreting a phosphocholine-modified exopolysaccharide. Genetic interruption of the phosphocholine biosynthesis locus ( licABC ) results in a functionally inactive exopolysaccharide, which demonstrates the critical requirement for this phosphocholine moiety. This C. immunis exopolysaccharide acts via group 3 innate lymphoid cells and modulating IL-22 levels, which results in a reduction in serum triglycerides, body weight, and visceral adiposity. Importantly, phosphocholine biosynthesis genes are less abundant in humans with obesity or hypertriglyceridemia, findings that suggest the role of bacterial phosphocholine is conserved across mice and humans. These results define a bacterial molecule-and its key structural motif-that regulates host metabolism. More broadly, they highlight how small molecules, such as phosphocholine, may help fine-tune microbiome- immune-metabolism interactions.
    DOI:  https://doi.org/10.1101/2024.06.12.598703
  35. Poult Sci. 2024 Jun 04. pii: S0032-5791(24)00521-2. [Epub ahead of print]103(8): 103942
      Mycoplasma gallisepticum (MG) can cause chronic respiratory disease (CRD) in chickens, which has a significant negative economic impact on the global poultry sector. Respiratory flora is the guardian of respiratory health, and its disorder is closely related to respiratory immunity and respiratory diseases. As a common probiotic in the chicken respiratory tract, Lactobacillus salivarius (L. salivarius) has potential antioxidant, growth performance enhancing, and anti-immunosuppressive properties. However, the specific mechanism through which L. salivarius protects against MG infection has not yet been thoroughly examined. This study intends to investigate whether L. salivarius could reduce MG-induced tracheal inflammation by modulating the respiratory microbiota and metabolites. The results indicated that L. salivarius reduced MG colonization significantly and alleviated the anomalous morphological changes by using the MG-infection model. L. salivarius also reduced the level of Th1 cell cytokines, increased the level of Th2 cell cytokines, and ameliorated immune imbalance during MG infection. In addition, L. salivarius improved the mucosal barrier, heightened immune function, and suppressed the Janus kinase/Signal transducer, and activator of transcription (JAK/STAT) signaling pathway. Notably, MG infection changed the composition of the respiratory microbiota and metabolites, and L. salivarius therapy partially reversed the aberrant respiratory microbiota and metabolite composition. Our results highlighted that these findings demonstrated that L. salivarius played a role in MG-mediated inflammatory damage and demonstrated that L. salivarius, by altering the respiratory microbiota and metabolites, could successfully prevent MG-induced inflammatory injury in chicken trachea.
    Keywords:  immune function; inflammation; lactobacillus salivarius; mycoplasma gallisepticum; respiratory microbiota
    DOI:  https://doi.org/10.1016/j.psj.2024.103942
  36. Bioessays. 2024 Jun 26. e2400050
      Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is "balance." A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this "think again" essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.
    Keywords:  balance; conceptual analysis; dysbiosis; homeostasis; microbiome research
    DOI:  https://doi.org/10.1002/bies.202400050
  37. J Extracell Biol. 2022 Oct;1(10): e61
      The processes by which bacteria proactively scavenge essential nutrients in crowded environments such as the gastrointestinal tract are not fully understood. In this context, we observed that bacterial extracellular vesicles (BEVs) produced by the human commensal gut microbe Bacteroides thetaiotaomicron contain multiple high-affinity vitamin B12 binding proteins suggesting that the vesicles play a role in micronutrient scavenging. Vitamin B12 belongs to the cobamide family of cofactors that regulate microbial communities through their limited bioavailability. We show that B. thetaiotaomicron derived BEVs bind a variety of cobamides and not only deliver them back to the parental bacterium but also sequester the micronutrient from competing bacteria. Additionally, Caco-2 cells, representing a model intestinal epithelial barrier, acquire cobamide-bound vesicles and traffic them to lysosomes, thereby mimicking the physiological cobalamin-specific intrinsic factor-mediated uptake process. Our findings identify a novel cobamide binding activity associated with BEVs with far-reaching implications for microbiota and host health.
    Keywords:  bacterial extracellular vesicles; bacteroides; cobamides; microbe–host interaction; nutrient uptake; vitamin B12
    DOI:  https://doi.org/10.1002/jex2.61
  38. Cell Death Discov. 2024 Jun 24. 10(1): 301
      Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.
    DOI:  https://doi.org/10.1038/s41420-024-02078-0