bims-axbals Biomed News
on Axonal biology and ALS
Issue of 2024–01–14
one paper selected by
TJ Krzystek, ALS Therapy Development Institute



  1. Cell Rep. 2024 Jan 05. pii: S2211-1247(23)01647-9. [Epub ahead of print]43(1): 113636
      A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these data provide insights into proteome-level changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein dynamics in human neurologic diseases.
    Keywords:  ALS; CP: Molecular biology; CP: Neuroscience; STMN2; TDP-43 proteinopathy; laser capture; motor neuron; nanoPOTS; retromer; single-cell proteomics
    DOI:  https://doi.org/10.1016/j.celrep.2023.113636