bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2025–05–18
forty-two papers selected by
Viktor Korolchuk, Newcastle University



  1. Cell Rep. 2025 May 09. pii: S2211-1247(25)00418-8. [Epub ahead of print]44(5): 115647
      Precise regulation of insulin secretion by pancreatic β cells is essential to prevent excessive insulin release. Here, we show that the nutrient sensor mechanistic Target of Rapamycin Complex 1 (mTORC1) is rapidly activated by glucose in β cells via the insulin secretion machinery, positioning mTORC1 as a sensor of β cell activity. Acute pharmacological inhibition of mTORC1 during glucose stimulation enhances insulin release, suggesting that mTORC1 acts as an intrinsic feedback regulator that restrains insulin secretion. Phosphoproteomic profiling reveals that mTORC1 modulates the phosphorylation of proteins involved in actin remodeling and vesicle trafficking, with a prominent role in the RhoA-GTPase pathway. Mechanistically, mTORC1 promotes RhoA activation and F-actin polymerization, limiting vesicle movement and dampening the second phase of insulin secretion. These findings identify a glucose-mTORC1-RhoA signaling axis that forms an autonomous feedback loop to constrain insulin exocytosis, providing insight into how β cells prevent excessive insulin release and maintain metabolic balance.
    Keywords:  CP: Metabolism; CP: Molecular biology; RhoA-GTPase; Torin-1; actin remodeling; activity sensor; autonomous regulation; insulin secretion; mTORC1; negative feedback loop; pancreatic β cell; rapamycin
    DOI:  https://doi.org/10.1016/j.celrep.2025.115647
  2. Front Cell Neurosci. 2025 ;19 1584767
      Autophagy contributes to cellular homeostasis by regulating the degradation and recycling of damaged organelles and misfolded proteins. In the central nervous system (CNS), impaired autophagy contributes to inflammation, disrupts cellular metabolism, and leads to the accumulation of toxic protein aggregates that accelerate the progression of neurodegenerative diseases. In addition to its role in protein and organelle turnover, autophagy facilitates the elimination of pathogenic bacteria and viruses, whose infections can also lead to neurological diseases and neuroinflammatory processes. Astrocytes, the most abundant glial cells in the CNS, play a crucial role in maintaining neuronal homeostasis by regulating neurotransmitter balance, ion exchange, and metabolic support. During neurodegeneration, they become reactive, actively participating in neuroinflammatory responses by releasing proinflammatory cytokines, activating microglia, and removing toxic aggregates. Cytokine-mediated responses and metabolic changes in astrocytes influence neuronal viability and neurotransmission. Autophagy in astrocytes plays an important role in tuning the astrocyte-dependent activity of neurons under physiological conditions and in pathological activation of astrocytes by disease, injury or pathogenic stimuli. In this review, we highlight the contribution of astrocytes to neurodegeneration from the perspective of changes in their cytoskeleton, the autophagy process in which the cytoskeleton plays a crucial role, and the metabolic support of neurons. The modulation of autophagy at different stages has the potential to serve as an additional therapeutic target in CNS diseases.
    Keywords:  astrocyte; autophagy; cytoskeleton; mitophagy; neurodegeneration; neuroinflammation
    DOI:  https://doi.org/10.3389/fncel.2025.1584767
  3. Cell Rep. 2025 May 12. pii: S2211-1247(25)00454-1. [Epub ahead of print]44(5): 115683
      The eukaryotic target of rapamycin complex 1 (TORC1) kinase is a homeostatic regulator of growth, integrating nutritional cues at the endolysosomal compartment. Amino acids activate mammalian TORC1 (mTORC1) through the Rag GTPases that recruit it to lysosomes via a short domain within the mTORC1 subunit Raptor. Intriguingly, this "Raptor claw" domain is absent in Kog1, the Raptor ortholog in yeast. Instead, as we show here, yeast utilizes the fungal-specific Tco89 to tether TORC1 to active Rag GTPases. This interaction enables TORC1 to precisely calibrate the activity of the S6K1-related effector kinase Sch9 in response to amino acid availability. TORC1 stabilizes Tco89 by phosphorylation, and its inactivation causes swift Tco89 proteolysis, provoking a redistribution of TORC1 from the vacuole to signaling endosomes and its spatial separation from Sch9. Thus, TORC1 not only operates in spatially distinct subcellular pools but also controls its own quantitative distribution between these pools to economize energy resources under fluctuating nutrient conditions.
    Keywords:  CP: Cell biology; CP: Molecular biology; Rag GTPases; TORC1; Tco89; amino acid signaling; growth control; target of rapamycin complex 1
    DOI:  https://doi.org/10.1016/j.celrep.2025.115683
  4. FEBS Lett. 2025 May 09.
      Autophagy is a conserved catabolic process that is essential for maintaining cellular homeostasis by degrading and recycling damaged organelles and misfolded proteins. In cancer, autophagy exhibits a context-dependent dual role: In early stages, autophagy acts as a tumor suppressor by preserving genomic integrity and limiting oxidative stress. In advanced stages, autophagy supports tumor progression by facilitating metabolic adaptation, therapy resistance, immune evasion, and metastasis. This review highlights the molecular mechanisms underlying this dual function and focuses on the transcriptional and epigenetic regulation of autophagy in cancer cells. Key transcription factors, including the MiT/TFE family, FOXO family, and p53, as well as additional regulators, are discussed in the context of stress-responsive pathways mediated by mTORC1 and AMPK. A deeper understanding of the transcriptional and epigenetic regulation of autophagy in cancer is crucial for developing context-specific therapeutic strategies to either promote or inhibit autophagy depending on the cancer stage, thereby improving clinical outcomes in cancer treatment.
    Keywords:  autophagy; cancer; epigenetics; lysosome; transcription factor
    DOI:  https://doi.org/10.1002/1873-3468.70060
  5. Cells. 2025 May 03. pii: 672. [Epub ahead of print]14(9):
      In older adults with reduced physical performance, an increase in the labile iron pool within skeletal muscle is observed. This accumulation is associated with an altered expression of mitochondrial quality control (MQC) markers and increased mitochondrial DNA damage, supporting the hypothesis that impaired MQC contributes to muscle dysfunction during aging. The autophagy-lysosome system plays a critical role in MQC by tagging and engulfing proteins and organelles for degradation in lysosomes. The endolysosomal system is also instrumental in transferrin recycling, which, in turn, regulates cellular iron uptake. In the neuromuscular system, the autophagy-lysosome system supports the structural integrity of neuromuscular junctions, and its dysfunction contributes to muscle atrophy. While MQC was thought to protect against iron-induced cell death, the discovery of ferroptosis, a form of iron-dependent cell death, has highlighted a complex interplay between MQC and iron-inflicted damage. Ferritinophagy, the autophagic degradation of ferritin, if overactivated, can induce ferroptosis. Alternatively, aging may impair ferritinophagy, leading to ferritin accumulation and the release of toxic labile iron under stress, exacerbating oxidative damage and cellular senescence. Physical activity supports muscle health also by preserving mitochondrial quantity and quality and enhancing bioenergetics. However, therapeutic strategies for preventing or reversing physical function decline in aging are still lacking due to the insufficient understanding of the underlying mechanisms. Unveiling how disruptions in iron homeostasis impact muscle quality in older adults may allow for the development of therapeutic strategies targeting iron handling to alleviate age-associated muscle decline.
    Keywords:  autophagy; cytokine; endolysosomal system; hepcidin; inflammation; labile iron; mitophagy; physical performance; sarcopenia; transferrin
    DOI:  https://doi.org/10.3390/cells14090672
  6. Microscopy (Oxf). 2025 May 13. pii: dfaf023. [Epub ahead of print]
      In this review, we focus on the ultrastructural characteristics of the Golgi membrane-associated degradation (GOMED) pathway, which have been clarified by electron microscopy and highlight recent advances in the elucidation of its molecular mechanism and physiological roles. The discovery of GOMED, an Atg5/Atg7-independent degradation pathway that differs from canonical autophagy in membrane origin, stimuli, and substrate specificity, has substantially expanded our understanding of intracellular degradation systems. In 2009, we identified GOMED as a novel, evolutionarily conserved autophagic pathway and demonstrated its role in intracellular degradation across eukaryotes, from yeast to mammals. We identified the conserved protein Hsv2/Wipi3 as an essential GOMED protein, which translocates to the trans-Golgi upon induction and remodels Golgi membranes into cup-shaped structures that engulf cytoplasmic components for lysosomal degradation. These processes contribute to organelle and secretory granule turnover, as well as mitochondrial clearance during erythroid differentiation. Moreover, neuronal-specific ablation of Wipi3 in mice causes severe cerebellar degeneration, implicating GOMED in tissue development and homeostasis. As these mechanisms are associated with diseases, such as neurodegenerative disorders and cancer, GOMED mechanisms should also be considered when establishing therapeutic strategies for these diseases.
    Keywords:  Autophagy; GOMED; Golgi; Mitophagy; Neurodegeneration; Wipi3
    DOI:  https://doi.org/10.1093/jmicro/dfaf023
  7. J Cell Biol. 2025 Jul 07. pii: e202504129. [Epub ahead of print]224(7):
      The ATG9 transmembrane protein scrambles lipids to regulate phagophore formation during autophagy. Two recent studies from Peng et al. (https://doi.org/10.1083/jcb.202411092) and De Tito et al. (https://doi.org/10.1101/2024.07.23.604321) identify ATG9 as a conserved regulator of lysosome repair in Caenorhabditis elegans and human cells, but differences in repair mechanisms exist between these taxa.
    DOI:  https://doi.org/10.1083/jcb.202504129
  8. Autophagy. 2025 May 15.
      Epilepsy is a neurological disease characterized by repeated unprovoked seizure. Epilepsy is controlled by anti-epileptic drugs (AEDs); however, one third of epileptic patients have symptoms that are not controlled by AEDs in a condition called refractory epilepsy. Dysregulation of macroautophagy/autophagy is involved in the pathogenesis of epilepsy. Autophagy prevents the development and progression of epilepsy through regulating the balance between inhibitory and excitatory neurotransmitters. Induction of autophagy and autophagy-related proteins could be a novel therapeutic strategy in the management of epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus is perplexing and might reflect its nature as a double-edged sword. Autophagy inducers play a critical role in reducing seizure frequency and severity, and could be an adjuvant treatment in the management of epilepsy. However, autophagy inhibitors also have an anticonvulsant effect. Therefore, the aim of the present mini-review is to discuss the potential role of autophagy in the pathogenesis of epileptogenesis and epilepsy, and how autophagy modulators affect epileptogenesis and epilepsy.
    Keywords:  Autophagy; autophagy inducers; epilepsy; seizure
    DOI:  https://doi.org/10.1080/15548627.2025.2506292
  9. Cells. 2025 Apr 29. pii: 652. [Epub ahead of print]14(9):
      Huntington disease's (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently available promote the clearance of toxic proteins. However, due to their low selectivity and the possibility that prolonged autophagy hampers essential processes in unaffected cells, researchers have questioned their benefits in neurodegenerative diseases. Since MSNs express dopamine receptors D2 (DRD2) and D3 (DRD3) and DRD2/DRD3 agonists may activate autophagy, here, we explored how healthy and mHTT-challenged cells respond to prolonged DRD2/DRD3 agonist treatment. Autophagy activation and its effects on mHTT/polyQ clearance were studied in R6/1 mice (a genetic model of HD), their wild-type littermates, and DRD2- and DRD3-HEK cells expressing a pathogenic (Q74) and a non-pathogenic (Q23) polyQ fragment of mHTT treated with the DRD2/DRD3 agonist pramipexole. Two forms of DRD3-mediated autophagy were found: a transient mTORC1-dependent in WT mice and Q23-DRD3-HEK cells and a persistent AMPK-ULK1-activated in R6/1 mice and Q74-DRD3-HEK cells. This also promoted a robust clearance of soluble mHTT/polyQ and neuroprotection in striatal neurons and DRD3-HEK cells. The findings indicate that DRD3-induced autophagy may be a safe, disease-modifying intervention in HD patients.
    Keywords:  AMPK; Huntington’s disease; ULK1; dopamine receptors; mTORC1; neuroprotection
    DOI:  https://doi.org/10.3390/cells14090652
  10. Autophagy. 2025 May 14. 1-3
      Aggregates of polyglutamine (polyQ) repeat extensions are known markers of several, predominantly inherited, neurodegenerative diseases. Removal of polyQ is essential for cellular proteostasis and macroautophagy/autophagy has been proposed to be an important tool in the clearance of polyQ aggregates. The mechanism of recognition and encapsulation of these aggregates within autophagosomes is largely unknown. A study described in this article employed in situ correlative cryo-electron tomography to visualize polyQ aggregates interacting with autophagic compartments. The tomograms revealed that only amorphous polyQ, but not fibrils, are engulfed by double-membrane structures and that SQSTM1/p62 is the receptor involved in recognition of polyQ during autophagy. Solidified amorphous polyQ and subsequent fibrils arrest the normal formation of autophagosomes and impair autophagy. Findings of the study described here have implications for therapies that rely on autophagy in targeting polyQ neurodegeneration.Abbreviation: cryo-CLEM, cryo-correlative light and electron microscopy; cryo-ET, cryo-electron tomography; ER, endoplasmic reticulum; HD, Huntington disease; HTT, huntingtin; polyQ, polyglutamine repeats.
    Keywords:  Amorphous phase; SQSTM1/p62; cryo-electron tomography, fibrillar phase; huntingtin; neurodegeneration
    DOI:  https://doi.org/10.1080/15548627.2025.2503578
  11. Mol Neurobiol. 2025 May 13.
      Morphine has been a widely used drug for pain management and anesthesia in clinical settings for centuries and is also a drug of abuse. Its illicit use by individuals with substance use disorders has resulted in numerous brain-related complications. The immunopharmacology of morphine is highly complex, necessitating a deeper understanding of its interactions with brain regions involved in learning and memory. Autophagy is a conserved physiological recycling process that degrades cytoplasmic organelles and proteins, repurposing their components for cellular function. However, recent studies indicate that morphine exposure disrupts autophagic processes, contributing to many morphine-associated complications. This article highlights recent advancements in understanding the interplay between morphine and autophagy. By exploring this intricate relationship, we aim to enhance our knowledge of morphine-associated complications and autophagy dysregulation, potentially improving the management of morphine use disorder and related conditions, thereby promoting healthier outcomes.
    Keywords:  Autophagy; Morphine; Morphine tolerance; Morphine use disorder
    DOI:  https://doi.org/10.1007/s12035-025-05039-5
  12. Spectrochim Acta A Mol Biomol Spectrosc. 2025 May 10. pii: S1386-1425(25)00674-2. [Epub ahead of print]340 126368
      Mitophagy is an indispensable cellular process that plays a crucial role in regulating mitochondrial quality control and cellular metabolism. Therefore, monitoring the changes in the mitochondrial and lysosomal microenvironment during the mitophagy process is extremely important. However, existing mitophagy probes only target changes in a single indicator (viscosity, pH value, or polarity) within the microenvironment, which may reduce the selectivity and accuracy of assessing mitophagy in complex biological settings. To address this, we have developed a dual-channel detection near-infrared (NIR) fluorescent probe (ADMI). In vitro analysis experiments have shown that ADMI not only responds to pH and activates the NIR fluorescence channel but also that the green fluorescence channel exhibits high sensitivity to changes in polarity. This dual-response mechanism probe enables dual fluorescent detection of pH and polarity, providing a highly promising tool for monitoring the microenvironment of mitophagy in living cells. Ultimately, we applied ADMI to real-time monitoring of mitophagy induced by starvation or rapamycin, during which the decrease in pH and polarity resulted in a red shift in wavelength and increased fluorescence. Additionally, ADMI was able to observe changes in mitochondria during ferroptosis. This probe may serve as a useful tool for imaging mitophagy in living cells.
    Keywords:  Dual-targeting; Fluorescence imaging; Mitophagy; Two-channel
    DOI:  https://doi.org/10.1016/j.saa.2025.126368
  13. Nat Commun. 2025 May 13. 16(1): 4418
      The cGAS-STING pathway, well-known to elicit interferon (IFN) responses, is also a key inducer of autophagy upon virus infection or other stimuli. Whereas the mediators for cGAS-induced IFN responses are well characterized, much less is known about how cGAS elicits autophagy. Here, we report that TRIM23, a unique TRIM protein harboring both ubiquitin E3 ligase and GTPase activity, is crucial for cGAS-STING-dependent antiviral autophagy. Genetic ablation of TRIM23 impairs autophagic control of HSV-1 infection. HSV-1 infection or cGAS-STING stimulation induces TBK1-mediated TRIM23 phosphorylation at S39, which triggers TRIM23 autoubiquitination and GTPase activity and ultimately elicits autophagy. Fibroblasts from a patient with herpes simplex encephalitis heterozygous for a dominant-negative, kinase-inactivating TBK1 mutation fail to activate autophagy by TRIM23 and cGAS-STING. Our results thus identify the cGAS-STING-TBK1-TRIM23 axis as a key autophagy defense pathway and may stimulate new therapeutic interventions for viral or inflammatory diseases.
    DOI:  https://doi.org/10.1038/s41467-025-59338-5
  14. Front Cell Dev Biol. 2025 ;13 1554958
      In Saccharomyces cerevisiae, Atg1 is a core autophagy-related (Atg) protein kinase (PK) in regulating macroautophagy/autophagy, by physically interacting with numerous other proteins, or by phosphorylating various substrates. It is unclear how many Atg1-interacting partners and substrates are also involved in regulating autophagy. Here, we conducted transcriptomic, proteomic and phosphoproteomic profiling of Atg1-dependent molecular landscapes during nitrogen starvation-triggered autophagy, and detected 244, 245 and 217 genes to be affected by ATG1 in the autophagic process at mRNA, protein, and phosphorylation levels, respectively. Based on the Atg1 interactome, we developed a novel artificial intelligence (AI) framework, inference of autophagy regulators from multi-omic data (iAMD), and predicted 12 Atg1-interacting partners and 17 substrates to be potentially functional in autophagy. Further experiments validated that Rgd1 and Whi5 are required for bulk autophagy, as well as physical interactions and co-localizations with Atg1 during autophagy. In particular, we demonstrated that 2 phosphorylation sites (p-sites), pS78 and pS149 of Whi5, are phosphorylated by Atg1 to regulate the formation of Atg1 puncta during autophagy initiation. A working model was illustrated to emphasize the importance of the Atg1-centered network in yeast autophagy. In addition, iAMD was extended to accurately predict Atg proteins and autophagy regulators from other PK interactomes, indicating a high transferability of the method. Taken together, we not only revealed new autophagy regulators from the Atg1 interactome, but also provided a useful resource for further analysis of yeast autophagy.
    Keywords:  Atg1; artificial intelligence; autophagy-related; deep learning; phosphorylation; protein kinase
    DOI:  https://doi.org/10.3389/fcell.2025.1554958
  15. Cell Signal. 2025 May 13. pii: S0898-6568(25)00283-9. [Epub ahead of print] 111868
      Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disorder marked by deteriorating dyspnea and declining pulmonary function. Despite its rising prevalence and incidence, therapeutic options remain limited. PTEN-induced kinase 1 (PINK1), known for its role in PINK1/Parkin-dependent mitophagy, contributes to the pathogenesis of various lung diseases. In this study, we elucidate a previously unrecognized mechanism of PINK1, beyond its canonical mitophagy function, during pulmonary fibrosis. We established a bleomycin (BLM)-induced pulmonary fibrosis model in Pink1 knockout (Pink1-/-) mice and treated BEAS-2B cells with transforming growth factor-beta 1 (TGF-β1) to simulate the microenvironment of pulmonary fibrosis. A significant elevation in PINK1 expression was observed in vivo and in vitro systems. While PINK1/Parkin-dependent mitophagy was activated, mitophagy mediated by BCL2-interacting protein 3 (BNIP3) and FUN14 domain-containing 1 (FUNDC1) was suppressed. Further experiments in carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-treated PINK1 knockout (KO) HEK293 cells and YFP-Parkin-expressing HeLa cells demonstrated that PINK1 deficiency enhanced BNIP3- and FUNDC1-mediated mitophagy, whereas PINK1 overexpression inhibited it. Moreover, dual BNIP3/FUNDC1 knockdown significantly reversed the anti-apoptotic effect of PINK1 KO. We conclude that PINK1 deficiency promotes the clearance of damaged mitochondria via BNIP3/FUNDC1 upregulation, preserving mitochondrial homeostasis, mitigating alveolar epithelial injury, and attenuating fibrosis. Thus, PINK1 may inhibit BNIP3- and FUNDC1-mediated mitophagy besides driving PINK1-dependent mitophagy during pulmonary fibrosis.
    Keywords:  Apoptosis; Lung epithelial cell; Mitophagy; PINK1; Pulmonary fibrosis
    DOI:  https://doi.org/10.1016/j.cellsig.2025.111868
  16. J Cell Biol. 2025 Jul 07. pii: e202408166. [Epub ahead of print]224(7):
      BNIP3 and NIX are the main receptors for mitophagy, but their mechanisms of action remain elusive. Here, we used correlative light EM (CLEM) and electron tomography to reveal the tight attachment of isolation membranes (IMs) to mitochondrial protrusions, often connected with ER via thin tubular and/or linear structures. In BNIP3/NIX-double knockout (DKO) HeLa cells, the ULK1 complex and nascent IM formed on mitochondria, but the IM did not expand. Artificial tethering of LC3B to mitochondria induced mitophagy that was equally efficient in DKO cells and WT cells. BNIP3 and NIX accumulated at the segregated mitochondrial protrusions via binding with LC3 through their LIR motifs but did not require dimer formation. Finally, the average distance between the IM and the mitochondrial surface in receptor-mediated mitophagy was significantly smaller than that in ubiquitin-mediated mitophagy. Collectively, these results indicate that BNIP3 and NIX are required for the tight attachment and expansion of the IM along the mitochondrial surface during mitophagy.
    DOI:  https://doi.org/10.1083/jcb.202408166
  17. Nat Commun. 2025 May 14. 16(1): 4455
      Thermogenic proteins are down-regulated under thermal stress, including PGC1α· However, the molecular mechanisms are not fully understood. Here, we addressed that chaperone-mediated autophagy could regulate the stability of PGC1α under thermal stress. In mice, knockdown of Lamp2a, one of the two components of CMA, in BAT showed increased PGC1α protein and improved metabolic phenotypes. Combining the proteomics of brown adipose tissue (BAT), structure prediction, co-immunoprecipitation- mass spectrum and biochemical assays, we found that PARK7, a Parkinson's disease causative protein, could sense the temperature changes and interact with LAMP2A and HSC70, respectively, subsequently manipulate the activity of CMA. Knockout of Park7 specific in BAT promoted BAT whitening, leading to impaired insulin sensitivity and energy expenditure at thermoneutrality. Moreover, inhibiting the activity of CMA by knockdown of LAMP2A reversed the effects induced by Park7 ablation. These findings suggest CMA is required for BAT to sustain thermoneutrality-induced whitening through degradation of PGC1α.
    DOI:  https://doi.org/10.1038/s41467-025-59618-0
  18. Nat Struct Mol Biol. 2025 May 15.
      Deciphering the processes through which cancer cells overcome stress, escape a repressive microenvironment and metastasize remains a challenge. Autophagy has been demonstrated to regulate cancer metastasis and C-terminal binding protein (CtBP) has been previously implicated in promoting metastasis in breast cancer. Here we identify the formation of a complex between CtBP and tripartite-motif-containing protein 28 (TRIM28) in the nucleus. Interestingly, this complex regulates the stability of both proteins, as the removal of either partner leads to degradation of the other. Furthermore, the stability of this complex in the nucleus inhibits autophagy through two independent mechanisms. Firstly, the formation of the complex sequesters TRIM28 in the nucleus, preventing its involvement in and its degradation through autophagy. Secondly, this complex participates in the suppression of PTEN expression and leads to inhibition of Unc-51-like kinase 1-mediated autophagy through activation of the protein kinase B-mammalian target of rapamycin pathway. Using mammary gland-specific CtBP-knockout mice, we demonstrate that repression of autophagy by the CtBP-TRIM28 complex modulates luminal duct formation. In breast cancer models, CtBP-TRIM28-dependent inhibition of cellular autophagy also promotes malignant metastasis. Therefore, our study reveals similarities between the mechanisms driving tumor progression and those involved in normal mammary gland development, potentially helping to pave the way toward targeted intervention in breast cancer metastasis.
    DOI:  https://doi.org/10.1038/s41594-025-01554-0
  19. J Cell Physiol. 2025 May;240(5): e70044
      Lysosomes are essential organelles degrading a wide range of substrates, maintaining cellular homeostasis, and regulating cell growth through nutrient and metabolic signaling. A key vulnerability of lysosomes is their membrane permeabilization (LMP), a process tightly linked to diseases including aging, neurodegeneration, lysosomal storage disorders, and cardiovascular disease. Research progress in the past few years has greatly improved our understanding of lysosomal repair mechanisms. Upon LMP, cells activate multiple membrane remodeling processes to restore lysosomal integrity, such as membrane invagination, tubulation, lipid patching, and membrane stabilization. These repair pathways are critical in preserving cellular stress tolerance and preventing deleterious inflammation and cell death triggered by lysosomal damage. This review focuses on the expanding mechanistic insights of lysosomal repair, highlighting its crucial role in maintaining cellular health and the implications for disease pathogenesis and therapeutic strategies.
    Keywords:  Atg8ylation; CASM; ESCRT; Lysosomal repair; PITT; annexins; lysosomal membrane permeabilization; microlysophagy; stress granules
    DOI:  https://doi.org/10.1002/jcp.70044
  20. J Immunol. 2025 May 16. pii: vkaf058. [Epub ahead of print]
      Toll-interacting protein (Tollip) is an intracellular adaptor protein with diverse functions including regulation of autophagy of mitochondria-mitophagy. Tollip deficiency promotes viral infection, but whether mitophagy is involved remains unclear. We sought to determine if mitophagy and associated signaling such as mitochondrial DNA (mtDNA) release and activation of stimulator of interferon genes (STING) contribute to worsened viral infection due to Tollip deficiency. Wild-type and Tollip knockout (KO) C57/BL6 mice were intranasally infected with influenza A virus (IAV), and then treated with or without a STING agonist 2'3'cGAMP for 4 d. PINK1 (an initiator of mitophagy) KO mouse tracheal epithelial cells (mTECs) or PINK1 KO mice were infected with IAV to reveal the role of mitophagy in viral infection. In IAV-infected mice, Tollip deficiency enhanced lung mitophagy (more PINK1 and BNIP3L, but less p62), and decreased release of mtDNA. Furthermore, Tollip deficiency suppressed STING activation and the antiviral response (eg IFN-β and MX1), and increased viral load. In IAV-infected Tollip KO mice, 2'3'cGAMP activated STING and increased antiviral response coupled with less virus. PINK1-deficient mice increased lung release of mtDNA and augmented STING activation and antiviral responses. PINK1 deficiency in mTECs increased STING activation and significantly decreased the viral load. Our findings suggest that enhanced mitophagy due to Tollip deficiency reduces mtDNA release and STING activation during viral infection, resulting in decreased antiviral responses. Reduction of mitophagy and/or STING activation may open novel avenues for therapeutic intervention in human subjects with Tollip deficiency and viral infection.
    Keywords:  PINK1; STING; influenza A virus; mitophagy
    DOI:  https://doi.org/10.1093/jimmun/vkaf058
  21. Aging Dis. 2025 Apr 22.
      Lysosomes are degradation centers and signaling hubs that in cells and play important roles in cellular homeostasis, development, and aging. Growing evidence has also implicated the role of lysosome-related mechanisms in the aging process. Meanwhile, the potential impact of lysosomal dysfunction on the production of inflammatory molecules, cellular metabolic status, and mitochondrial function is becoming increasingly significant. In this review, we provide a comprehensive overview of the physiological roles of lysosomes and their association with aging. At the cellular level, lysosomal dysfunction and cellular senescence show strong correlations. Herein, we elucidated the precise mechanisms by which lysosomal dysfunction contributes to various cellular physiological processes, as well as its potential implications in age-related hallmarks. More importantly, we discuss how lysosomal homeostasis is disrupted in several age-related diseases, including atherosclerosis, heart diseases, cancer, neurodegenerative diseases, metabolic disorders, and motor system diseases. Thus, a deeper understanding of lysosomal function may provide fundamental insights into human physiology and age-related diseases. Furthermore, these discoveries emphasize the role of the lysosome in the development of novel therapeutic strategies.
    DOI:  https://doi.org/10.14336/AD.2025.0275
  22. Mol Cancer Res. 2025 May 13.
      HER2 amplification or mutation accounts for 25% of breast cancer patients that can advance to metastatic disease. Therefore, it is important to identify novel genes which mediate metastasis in HER2+ breast cancer. Here, we describe a new metastatic suppressor gene, Class II phosphatidylinositol 3-kinases (Pik3c2b), by in vivo CRISPR-Cas9 library screening of a custom designed library targeting genes implicated in autophagy using murine HER2+ breast cancer (N418) cells. We further showed that PI3KC2β KO N418 cells increased their migration and invasion in vitro, and lung metastasis in both spontaneous and experimental metastasis assays in vivo. Analysis of breast cancer patient database and tissue samples correlated lower expression of PI3KC2β with decreased metastasis, overall and relapse-free survival. Further, PI3KC2β deletion induced activation of mTORC1 signalling, independent of affecting its kinase activity. Mechanistically, we found that PI3KC2β forms a complex with ITSN1 and raptor that could decreasing stability of raptor, and deletion of either PI3KC2β or ITSN1 led to increased raptor levels and mTORC1 signalling. Lastly, rapamycin treatment reduced migration and invasion of PI3KC2β KO tumor cells in vitro and their lung metastasis in vivo, supporting an important role of mTORC1 pathway. Together, our results identify PI3KC2β as a suppressor for HER2+ breast cancer metastasis by negatively regulating mTORC1 signalling by affecting its complex formation with ITSN1 and raptor. Implications: Our findings revealed PI3KC2β as a new metastasis suppressor for HER2+ breast cancer, which might serve as a potential diagnostic and therapeutic target for the disease.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-24-1045
  23. mBio. 2025 May 15. e0078325
      The majority of heterotrophic unicellular eukaryotes have evolved mechanisms to survive periods of starvation, allowing them to endure until conditions are favorable for regrowth. The ciliate Tetrahymena exhibits active swimming behavior in water, preying on microorganisms and growing exponentially at a rate of 0.5-0.75 h⁻¹ under optimal conditions. In this organism, numerous mitochondria localize to the cell cortex along the ciliary rows, likely ensuring an efficient ATP supply necessary for vigorous cell movement. Although mitochondrial reduction occurs immediately under starvation, the underlying mechanism remains unknown. Here, we demonstrated that autophagy is responsible for mitochondrial reduction in Tetrahymena thermophila. Among the five T. thermophila ATG8 homologs, TtATG8A and TtATG8B formed granule- and cup-shaped structures in response to starvation. Fluorescent microscopy further showed that TtATG8A and TtATG8B associate with mitochondria. Moreover, correlative light and electron microscopy analysis revealed that mitochondria colocalized with TtATG8A or TtATG8B were engulfed by autophagosomes and displayed abnormal appearances with disrupted cristae structures. Additionally, repression of TtATG8A or TtATG8B expression significantly attenuated starvation-induced mitochondrial reduction. These findings suggest that TtATG8A- and TtATG8B-mediated autophagy is a key mechanism underlying mitochondrial reduction in starved T. thermophila.
    IMPORTANCE: This study is the first comprehensive description of the mitochondrial degradation process under nutrient starvation in the ciliate Tetrahymena. It is well known that the cell surface structure of ciliates consists of an elaborate spatial arrangement of microtubule networks and associated structures and that this surface repetitive pattern is inherited by the next generation of cells like genetic information. Our findings provide a basis for understanding how ciliates maintain an adequate amount of mitochondria on the cell surface in response to nutritional conditions. Furthermore, we have successfully demonstrated the usefulness of Tetrahymena as an experimental system for studying mitochondrial quality control and turnover. Further studies of Tetrahymena will facilitate comparative studies among diverse biological systems on how eukaryotes other than opisthokonta (yeast, cultured cells, etc.) control their mitochondria.
    Keywords:  ATG8; Tetrahymena; autophagy; mitochondria
    DOI:  https://doi.org/10.1128/mbio.00783-25
  24. Nat Commun. 2025 May 10. 16(1): 4365
      Many important vascular diseases including neointimal hyperplasia and atherosclerosis are characterized by the endothelial cell (EC) injury-initiated pathological vascular remodeling. However, the endogenous regulatory mechanisms underlying it are not fully understood. The present study investigates regulatory role of major vault protein (MVP) in the pathogenesis of vascular remodeling via controlling EC injury. By generating male murine vascular disease models, we find that ablation of endothelial MVP increases neointima formation and promotes atherosclerosis. Mechanistically, MVP directly binds with Parkin and inhibits the ubiquitination and proteasomal degradation of Parkin by dissociating the E3 ligase NEDD4L from Parkin, leading to activation of Parkin-mediated mitophagy pathway in the EC. Genetic modulation of endothelial MVP and Parkin influences the mitophagy, apoptosis, and neointima formation. These results demonstrate that MVP acts as an intracellular regulator promoting Parkin-mediated mitophagy. Our findings suggest that MVP/NEDD4L/Parkin axis may serve as the therapeutic target for treating intimal hyperplasia and atherosclerosis.
    DOI:  https://doi.org/10.1038/s41467-025-59644-y
  25. Sci Rep. 2025 May 15. 15(1): 16929
      SQSTM1/p62 has an essential role in autophagy, a catabolic pathway that is vital for maintaining cell homeostasis. p62 alterations have been observed in multiple pathological conditions, including neurodegenerative diseases and bone metabolism alterations. The p.R321C p62 protein mutation has been described in patients with amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Paget's disease of bone. In vitro studies associated the p62-321C variant with a blockade of autophagy and with the activation of the NF-kB pathway. We aimed to provide a deeper understating of the pathophysiological consequences of the p.R321C p62 mutation using a humanized mouse model. Micro-computed tomography, immunohistochemistry, and western blot analysis studied the functional consequences of the p. R321C p62 mutation. Statistical analyses were performed using SPSS software. The results showed that the p62-321C mice developed seizures after tactile-vestibular stimulation, probably associated with a blockage of the autophagy and NF-kB activation. Changes in expression of cFos and p62 were found in the amygdala, hypothalamic nuclei, and hippocampi nuclei. In addition, numerous degenerating motor neurons were observed in the spinal cord of the p62-321C mice. We report that the blockage of the autophagy, caused by p.R321C p62 mutation, is associated with abnormalities in the central nervous system, mainly seizures after tactile-vestibular stimulation and degeneration of the motor neurons of the spinal cord but not with bone abnormalities in a humanized mouse model.
    Keywords:  Autophagy; Neurodegeneration; SQSTM1 gene; Seizures; p62 protein
    DOI:  https://doi.org/10.1038/s41598-025-00764-2
  26. Int J Mol Sci. 2025 May 07. pii: 4451. [Epub ahead of print]26(9):
      Mitochondrial dysfunction is a hallmark of Parkinson's disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations-accounting for ~10% of PD cases-that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence.
    Keywords:  Parkinson’s disease; genetic PD; mitochondrial dysfunction; neurotoxins; oxidative stress
    DOI:  https://doi.org/10.3390/ijms26094451
  27. Sci Rep. 2025 May 10. 15(1): 16341
      Epilepsy is a neurological disorder involving mitochondrial dysfunction and neuroinflammation. This study examines the relationship between NLRP3 inflammasome activation and mitophagy in the temporal lobe epilepsy, which has not been reported before. A pilocarpine-induced epileptic rat model was used to assess seizure activity and neuronal loss. Pyroptosis markers (NLRP3, cleaved Gasdermin D, IL-1β/IL-18), and autophagy/mitophagy activity (LC3B-II/I, BNIP3, TOMM20/LC3B colocalization) were analyzed via immunofluorescence, Western blot, and transmission electron microscopy. NLRP3 inhibitors and anti-IL-1β antibodies were administered to evaluate therapeutic effects. Epileptic rats exhibited progressive neuronal loss and seizure aggravation, correlating with NLRP3 inflammasome activation and pyroptosis. While general autophagy was upregulated, mitophagy was selectively impaired in the hippocampus. NLRP3 activation promoted IL-1β release, which suppressed mitophagy via PPTC7 upregulation. NLRP3 activation inhibitor (MCC950) and anti-IL-1β treatment restored mitophagy and reduced seizures. NLRP3 inflammasome-driven pyroptosis exacerbates epilepsy by impairing mitophagy activity via IL-1β/PPTC7. Targeted NLRP3 inhibition mitigates this cascade, offering a promising strategy for refractory epilepsy.
    Keywords:  Autophagy; Mitophagy; NLRP3 inflammasome; Pyroptosis; Temporal lobe epilepsy
    DOI:  https://doi.org/10.1038/s41598-025-01087-y
  28. Anal Chem. 2025 May 16.
      Autophagy-tethering compounds (ATTECs) as a new targeted protein degradation technology could directly bind targets to LC3 (a key autophagosome-associated protein) and subsequently result in the degradation of targets via the autophagolysosomal pathway. Herein, we developed a new LC3 ligand screening strategy using an NIR fluorescent probe with both pH-sensitive and LC3-targeted features. The presence of both the probe and a potential LC3 ligand leads to competitive binding to LC3 in cells and hinders the probe from entering and being activated in acidic lysosomes via the autophagy pathway. Notably, LD5, an in-house compound of our lab, was screened out as a potential LC3 ligand by the strategy, and its capacity of binding to LC3 was further verified by SPR technology. By using LD5 as the LC3 binding moiety, two ATTECs were synthesized, which exhibited significant activities in degrading PCSK9 and lipid droplets, respectively, and further validated the feasibility of our LC3 ligand screening strategy.
    DOI:  https://doi.org/10.1021/acs.analchem.5c00941
  29. FEBS J. 2025 May 13.
      Chronic intermittent hypoxia (IH), a major feature of obstructive sleep apnea syndrome (OSA), is associated with greater severity of myocardial infarction. In this study, we performed RNA sequencing of cardiac samples from mice exposed to IH, which reveals a specific transcriptomic signature of the disease, relative to mitochondrial remodeling and cell death. Corresponding to its activation under chronic IH, we stabilized the Hypoxia Inducible Factor-1α (HIF-1α) in cardiac cells in vitro and observed its association with an increased autophagic flux. In accordance, IH induced autophagy and mitophagy, which are decreased in HIF-1α+/- mice compared to wild-type animals, suggesting that HIF-1 plays a significant role in IH-induced mitochondrial remodeling. Next, we showed that the AMPK metabolic sensor, typically activated by mitochondrial stress, is inhibited after 3 weeks of IH in hearts. Therefore, we assessed the effect of metformin, an anti-diabetic drug and potent activator of AMPK, on myocardial response to ischemia-reperfusion (I/R) injury. Daily administration of metformin significantly decreases infarct size without any systemic beneficial effect on insulin resistance under IH conditions. The cardioprotective effect of metformin was lost in AMPKα2 knock-out mice, demonstrating that AMPKα2 isoform promotes metformin-induced cardioprotection in mice exposed to IH. Mechanistically, we found that metformin inhibits IH-induced mitophagy in myocardium and decreases HIF-1α nuclear expression in mice subjected to IH. In vitro experiments demonstrated that metformin induced HIF-1α phosphorylation, decreased its nuclear localization, and HIF-1 transcriptional activity. Collectively, these results identify the AMPKα2 metabolic sensor as a novel modulator of HIF-1 activity. Our data suggest that metformin could be considered as a cardioprotective drug in OSA patients independently of their metabolic status.
    Keywords:  AMPK; HIF‐1; intermittent hypoxia; ischemia–reperfusion; myocardium
    DOI:  https://doi.org/10.1111/febs.70110
  30. Dis Model Mech. 2025 May 16. pii: dmm.052173. [Epub ahead of print]
      Methylthioadenosine-DADMe immucillin-A (MTDIA) is a transition-state analog that potently inhibits 5'-methylthioadenosine phosphorylase (MTAP) at picomolar concentrations and elicits anti-tumour activity against lung, prostate, colon, cervical, head and neck, and triple-negative breast cancers in cell and animal models. The anticancer mechanisms of MTDIA involve elevated methylthioadenosine but are not fully understood. MEU1 is expressed in yeast and is functionally equivalent to the human MTAP. To gain further understanding we performed chemical genetic analyses via gene deletion and GFP-tagged protein libraries in yeast expressing the human equilibrative nucleoside transporter to permit MTDIA uptake. Genomic and proteomic analyses identified genes and proteins critical to MTDIA bioactivity. Network analysis of these genes and proteins revealed an important link to ribosomal function, which was confirmed with reduced abundance of ribosomal subunit proteins. Network analysis also implicated autophagy, which was confirmed with intracellular trafficking of GFP-Atg8 and phloxine B viability. A comparable effect occurred by deletion of yeast MEU1, indicating a single target for MTDIA in yeast. Overall, our yeast model reveals specific components of the ribosome and autophagy induction as integral mechanisms mediating the bioactivity of MTDIA.
    Keywords:  Autophagy; Betweenness centrality; Chemical biology; Chemical genetics; Drug-drug synergy; Network analysis; Nucleoside/nucleotide metabolism; Synthetic lethality; Transition-state analog; Yeast genetics
    DOI:  https://doi.org/10.1242/dmm.052173
  31. Cell Signal. 2025 May 13. pii: S0898-6568(25)00277-3. [Epub ahead of print]132 111862
      Androgenetic alopecia (AGA), the most common type of non-scarring hair loss in dermatology, result from a multifaceted interplay of genetic susceptibility, abnormal androgen metabolism, and dysregulation within the follicular microenvironment. Recent studies have highlighted the crucial roles of mitophagy and oxidative stress in the pathogenesis and progression of AGA. Mitophagy, a selective process by which damaged mitochondria are eliminated, is essential for maintaining cellular energy metabolism homeostasis and redox balance. In contrast, oxidative stress results from excessive accumulation of reactive oxygen species (ROS), which induces cellular damage and accelerates disease progression. The disruption of the dynamic balance between mitophagy and oxidative stress is increasingly recognized as a key factor in the development and exacerbation of AGA. Despite initial studies elucidating the interaction between these two processes, the precise molecular mechanisms and regulatory networks governing AGA remain insufficiently understood. This review aims to systematically synthesize the latest findings concerning the interplay between mitophagy and oxidative stress in AGA. By examining their roles in the disease's onset and progression, we identify potential therapeutic targets for intervention. Additionally, we discuss relevant signaling pathways and cellular mechanisms, evaluating the therapeutic potential of targeting mitophagy and oxidative stress for the treatment of AGA.
    Keywords:  Androgenetic alopecia; Mitophagy; Oxidative stress; Reactive oxygen species (ROS)
    DOI:  https://doi.org/10.1016/j.cellsig.2025.111862
  32. Sci Rep. 2025 May 15. 15(1): 16973
      To investigate whether time-restricted feeding (TRF) can alleviate cardiac remodeling in spontaneously hypertensive rats (SHRs) by regulating autophagy levels. A 16-week TRF intervention was conducted on Wistar Kyoto (WKY) rats and SHRs, with dietary intake confined to the interval from 9:00 am to 5:00 pm each day. The study examined the impact of TRF on blood pressure (BP), cardiac morphology and function, and the expression levels of key proteins involved in autophagy and its associated signaling cascades. Transmission Electron Microscopy (TEM) was utilized to further evaluate autophagic changes in left ventricular (LV) tissues. TRF significantly mitigated systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP) in SHRs. Additionally, TRF improved ejection fraction (EF) and diminished interventricular septal thickness at end-diastole (IVS-d). The study further revealed that TRF enhanced the expression of microtubule-associated protein-I light chain 3 (LC3-I), while reducing that of microtubule-associated protein-II light chain 3 (LC3-II). Moreover, TRF suppressed the expression levels of Beclin-1, phosphorylated phosphoinositide 3-kinase (p-PI3K), phosphorylated protein kinase B (p-AKT), and phosphorylated mechanistic target of rapamycin (p-mTOR) in the LV tissues. TEM analysis confirmed that TRF could inhibit autophagy levels in the LV tissues. TRF can attenuate cardiac remodeling in SHRs by regulating autophagy levels.
    Keywords:  Autophagy; Cardiac remodelling; Hypertension; Spontaneously hypertensive rats; Time-restricted feeding
    DOI:  https://doi.org/10.1038/s41598-025-01587-x
  33. Life Sci. 2025 May 08. pii: S0024-3205(25)00321-2. [Epub ahead of print]374 123686
       AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited therapeutic options. Previously, we have shown that a combination of multiple probiotic strains can regulate intestinal flora, increase serum short-chain fatty acids (SCFAs), reduce abnormal protein accumulation in the spinal cord, and protect neurons. It is necessary to explore the mechanism to provide therapeutic targets for ALS.
    MATERIALS AND METHODS: This study utilizes live cell imaging, mouse behavioral research, immunofluorescence, Electron microscopy, Western Blot, and polymerase chain reaction to explore the impact of various SCFAs on ALS animal and cell models, as well as their underlying mechanisms.
    KEY FINDINGS: We found SCFAs, including butyrate and propionate can increase the levels of acetylated histones, enhance the expression of autophagy-related genes and regulate autophagy, leading to a decrease in abnormal SOD1 aggregation, reduction of cell damage, and enhancement of cell proliferation in NSC34-SOD1G93A cells. Furthermore, systemic administration of butyrate and propionate can regulate autophagy, reduce SOD1 aggregation, and protect spinal cord neurons in SOD1G93A mice. However, these favorable effects of butyrate and propionate are greatly decreased at later stages of the disease process in SOD1G93A mice.
    SIGNIFICANCE: Our study revealed that the positive impact of SCFAs in autophagy could be a promising focus for ALS therapy. However, this effect might have different impacts in different stages of ALS.
    Keywords:  Amyotrophic lateral sclerosis; Autophagy; SOD1 aggregation; Short-chain fatty acids
    DOI:  https://doi.org/10.1016/j.lfs.2025.123686
  34. J Cell Sci. 2025 May 01. pii: jcs263639. [Epub ahead of print]138(9):
      Mitochondria undergo constant remodeling via fission, fusion, extension and degradation. Fission, in particular, depends on the accumulation of mitochondrial fission factor (MFF) and subsequent recruitment of the dynamin-related protein DRP1 (also known as DNM1L). We used cryo-scanning transmission electron tomography (cryo-STET) to investigate mitochondrial morphologies in MFF mutant (MFF-/-) mouse embryonic fibroblast (MEF) cells in ATP-depleting conditions that normally induce fission. The capability of cryo-STET to image through the cytoplasmic volume to a depth of 1 µm facilitated visualization of intact mitochondria and their surroundings. We imaged changes in mitochondrial morphology and cristae structure, as well as contacts with the endoplasmic reticulum (ER), degradative organelles and the cytoskeleton at stalled fission sites. We found disruption of the outer mitochondrial membrane at contact sites with the ER and degradative organelles at sites of mitophagy. We identified fission sites where the inner mitochondrial membrane is already separated while the outer membrane is still continuous. Although MFF is a general fission factor, these observations demonstrate that mitochondrial fission can proceed to the final stage in its absence. The use of cryo-STET allays concerns about the loss of structures due to sample thinning required for tomography using cryo-transmission electron microscopy.
    Keywords:  Cryo-ET; Cryo-FM; Cryo-STET; Mitochondrial dynamics; Mitochondrial fission; Mitochondrial fission factor
    DOI:  https://doi.org/10.1242/jcs.263639
  35. Nat Commun. 2025 May 14. 16(1): 4470
      Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (aSyn) accumulation. Environmental factors play a significant role in PD progression, highlighting the potential of non-pharmacological interventions. This study investigates the therapeutic effects of intermittent fasting (IF) in an rAAV-aSyn mouse model of PD. IF, initiated four weeks post-induction of aSyn pathology, improved motor function and reduced dopaminergic neuron and axon terminal degeneration. Additionally, IF preserved dopamine levels and synaptic integrity in the striatum. Mechanistically, IF enhanced autophagic activity, promoting phosphorylated-aSyn clearance and reducing its accumulation in insoluble brain fractions. Transcriptome analysis revealed IF-induced modulation of inflammation-related genes and microglial activation. Validation in primary cultures confirmed that autophagy activation and inflammatory modulators (CCL17, IL-36RN) mitigate aSyn pathology. These findings suggest that IF exerts neuroprotective effects, supporting further exploration of IF and IF-mimicking therapies as potential PD treatments.
    DOI:  https://doi.org/10.1038/s41467-025-59249-5
  36. Biochim Biophys Acta Mol Cell Res. 2025 May 12. pii: S0167-4889(25)00093-X. [Epub ahead of print]1872(6): 119988
      Heat stress (HS) is a significant health concern that adversely affects both human and animal health, particularly impacting liver function due to its central metabolic role. This study investigated the mechanisms underlying HS-induced liver injury, focusing on the role of ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation and cellular iron accumulation. Using mouse and cellular HS models, the results demonstrated that HS induced liver injury through ferroptosis, as evidenced by increased levels of malondialdehyde (MDA), oxidized glutathione (GSSG), and iron, alongside decreased glutathione (GSH) and glutathione peroxidase 4 (GPX4) expression. The ferroptosis inhibitor Ferrostatin-1 (Fer-1) effectively mitigated HS-induced liver damage, reducing oxidative stress and restoring GPX4 levels. Furthermore, HS promoted the lysosomal degradation of GPX4 via the chaperone-mediated autophagy (CMA) pathway, which was regulated by heat shock cognate protein 70 (HSC70) and lysosome-associated membrane protein 2A (LAMP2A). Knockdown of LAMP2A in hepatocytes significantly suppressed HS-induced GPX4 degradation, confirming the critical role of CMA in this process. Inhibition of CMA using Apoptozole, an HSC70 inhibitor, or Bafilomycin A1 (Baf-A1), a lysosomal inhibitor, further attenuated HS-induced ferroptosis and liver injury. These findings highlight the critical role of CMA-mediated GPX4 degradation in HS-induced ferroptosis and liver injury, providing potential therapeutic targets for mitigating HS-related liver damage.
    Keywords:  Chaperone-mediated autophagy; Ferroptosis; GPX4; Heat stress; Liver injury
    DOI:  https://doi.org/10.1016/j.bbamcr.2025.119988
  37. Front Immunol. 2025 ;16 1542369
      Mitochondria, as the primary energy factories of cells, play a pivotal role in maintaining nervous system function and regulating inflammatory responses. The balance of mitochondrial quality control is critical for neuronal health, and disruptions in this balance are often implicated in the pathogenesis of various neurological disorders. Mitochondrial dysfunction not only exacerbates energy deficits but also triggers neuroinflammation through the release of damage-associated molecular patterns (DAMPs), such as mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). This review examines the mechanisms and recent advancements in mitochondrial quality control in neurological diseases, focusing on processes such as mitochondrial fusion and fission, mitophagy, biogenesis, and protein expression regulation. It further explores the role of mitochondrial dysfunction and subsequent inflammatory cascades in conditions such as ischemic and hemorrhagic stroke, neurodegenerative diseases and brain tumors. Additionally, emerging research highlights the significance of mitochondrial transfer mechanisms, particularly intercellular transfer between neurons and glial cells, as a potential strategy for mitigating inflammation and promoting cellular repair. This review provides insights into the molecular underpinnings of neuroinflammatory pathologies while underscoring the translational potential of targeting mitochondrial quality control for therapeutic development.
    Keywords:  mitochondrial; mitochondrial quality control; mitochondrial transfer; neuroinflammation; neurological disorders
    DOI:  https://doi.org/10.3389/fimmu.2025.1542369
  38. Aging Cell. 2025 May 12. e70099
      Cell death mediated by the abnormal activation of autophagy has been observed in many neurodegenerative diseases. Dual leucine zipper kinase (DLK), a member of the mitogen-activated protein kinase cascade, plays a key role in regulating cellular autophagy and the progression of neurodegenerative diseases. However, its role in age-related hearing loss has not been reported. In this study, we found that DLK, phosphorylated c-Jun N-terminal kinase (p-JNK), and JNK3 expression increased in the cochleae of C57BL/6J mice during aging. The DLK/JNK pathway and autophagy are excessively activated in the House Ear Institute-Organ of Corti 1 (HEI-OC1) senescent hair cell line. After DLK was upregulated in HEI-OC1 cells, autophagy was activated, and cell aging was initiated. Inhibiting the DLK/JNK pathway in senescent HEI-OC1 cells can reduce autophagy activation and senescence, and inhibiting autophagy activation can also alleviate senescence. The inhibition of DLK or JNK3 in vivo significantly reduced age-related cochlear structural damage and hearing loss in C57BL/6J mice. The results of the present study showed that DLK/JNK3 may play a key role in cochlear hair cell senescence and age-related hearing loss through the abnormal activation of autophagy within cochlear hair cells, suggesting that DLK or JNK3 may be potential targets for alleviating age-related hearing loss.
    Keywords:  age‐related hearing loss; autophagy; hair cell senescence; mitogen‐activated protein kinase; ubiquitin‐proteasome system
    DOI:  https://doi.org/10.1111/acel.70099
  39. Autophagy. 2025 May 15. 1-21
      The tumor microenvironment (TME) in renal cell carcinoma (RCC) frequently exhibits significant immune cell infiltration. However, tumor cells often manage to evade immune surveillance. This study revealed the mechanism by which circular RNA circGRAMD4 regulates NBR1. CircGRAMD4 is markedly elevated in RCC, and its high levels are correlated with a poor prognosis. Notably, the absence of circGRAMD4 has been demonstrated to result in a significant inhibition of renal cancer cell growth. This inhibition has been attributed to an enhanced anti-tumor immunity mediated by CD8+ T cells. Mechanistically, circGRAMD4 interacts with the RBM4 protein, stabilizing the autophagic cargo receptor NBR1 mRNA. This interaction promotes NBR1 expression, which in turn leads to the degradation of MHC-I molecules through macroautophagy/autophagy pathways. Consequently, this process affects renal cancer cell antigen presentation, induces CD8+ T cell dysfunction, and contributes to tumor immune escape. Moreover, by inhibiting circGRAMD4 and using immune checkpoint blockers (ICB), the immunosuppressive TME is altered to prevent tumor immune evasion, ultimately increasing the effectiveness of ICB treatment. The discovery highlights the significant impact of circGRAMD4 on RCC immune escape and proposes that blocking circGRAMD4 could serve as a promising immunotherapy strategy when combined with ICB to enhance patient outcomes.
    Keywords:  Autophagy; CD8+ T cells; circRNA; immune evasion; renal cell carcinoma
    DOI:  https://doi.org/10.1080/15548627.2025.2503560
  40. Cell Death Dis. 2025 May 15. 16(1): 383
      Extracellular vesicles (EVs) have been associated with the transport of molecules related to the pathological processes in neurodegenerative diseases. Machado-Joseph disease (MJD) is a neurodegenerative disorder triggered by mutant ataxin-3 protein that causes protein misfolding and aggregation resulting in neuronal death. To evaluate EVs' role in the potential spread of disease-associated factors in MJD, in this study, EVs were isolated from human Control (CNT) and MJD induced-pluripotent stem cell-derived neuroepithelial stem cells (iPSC-derived NESC) and their differentiated neural cultures (cell cultures composed of neurons and glia). EVs were characterized and investigated for their ability to interfere with cell mechanisms known to be impaired in MJD. The presence of mRNA and proteins related to autophagy, cell survival, and oxidative stress pathways, and the mutant ataxin-3, was evaluated in the EVs. SOD1, p62, and Beclin-1 were found present both in CNT and MJD EVs. Lower levels of the p62 autophagy-related protein and higher levels of the oxidative stress-related SOD1 protein were found in MJD EVs. The oxidative stress-related CYCS mRNA and autophagy-related SQSTM1, BECN1, UBC, ATG12, and LC3B mRNAs were detected in EVs and no significant differences in their levels were observed between CNT and MJD EVs. The internalization of EVs by human CNT neurons was demonstrated, and no effect of the EVs administration was observed on cell viability. Moreover, the incubation of MJD EVs (isolated from NESC or differentiated neural cultures) with human CNT differentiated neural cells resulted in the reduction of SOD1 and autophagy-related proteins ATG3, ATG7, Beclin-1, LC3B, and p62 levels. Finally, a tendency for accumulation of ataxin-3-positive aggregates in CNT differentiated neural cells co-cultured with MJD differentiated neural cells was observed. Overall, our data indicate that EVs carry autophagy- and oxidative stress-related proteins and mRNAs and provide evidence of MJD EVs-mediated interference with autophagy and oxidative stress pathways.
    DOI:  https://doi.org/10.1038/s41419-025-07659-0
  41. Cells. 2025 Apr 30. pii: 662. [Epub ahead of print]14(9):
      mTORopathies represent a group of neurodevelopmental disorders linked to dysregulated mTOR signaling, resulting in conditions such as tuberous sclerosis complex, focal cortical dysplasia, hemimegalencephaly, and Smith-Kingsmore Syndrome. These disorders often manifest with epilepsy, cognitive impairments, and, in some cases, structural brain anomalies. The mTOR pathway, a central regulator of cell growth and metabolism, plays a crucial role in brain development, where its hyperactivation leads to abnormal neuroplasticity, tumor formation, and heightened neuronal excitability. Current treatments primarily rely on mTOR inhibitors, such as rapamycin, which reduce seizure frequency and tumor size but fail to address underlying genetic causes. Advances in gene editing, particularly via CRISPR/Cas9, offer promising avenues for precision therapies targeting the genetic mutations driving mTORopathies. New delivery systems, including viral and non-viral vectors, aim to enhance the specificity and efficacy of these therapies, potentially transforming the management of these disorders. While gene editing holds curative potential, challenges remain concerning delivery, long-term safety, and ethical considerations. Continued research into mTOR mechanisms and innovative gene therapies may pave the way for transformative, personalized treatments for patients affected by these complex neurodevelopmental conditions.
    Keywords:  CRISPR/Cas9; epilepsy; exosomes; extracellular vesicles; gene therapy; mTOR; mTORopathy
    DOI:  https://doi.org/10.3390/cells14090662