bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2023–11–05
fifty-five papers selected by
Viktor Korolchuk, Newcastle University



  1. bioRxiv. 2023 Oct 20. pii: 2023.10.19.563195. [Epub ahead of print]
      Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.
    DOI:  https://doi.org/10.1101/2023.10.19.563195
  2. J Cell Sci. 2023 Nov 03. pii: jcs.261402. [Epub ahead of print]
      The rapid activation of the critical kinase, mechanistic target of rapamycin complex-1 (mTORC1) by insulin is key to cell growth in mammals, but the regulatory factors remain unclear. Here, we demonstrate that cholesterol plays a crucial role in the regulation of insulin-stimulated mTORC1 signaling. The rapid progression of insulin-induced mTORC1 signaling declines in sterol-depleted cells and restores in cholesterol-repleted cells. In insulin-stimulated cells, cholesterol promotes recruitment of mTORC1 onto lysosomes without affecting insulin-induced dissociation of the TSC complex from lysosomes, thereby enabling complete activation of mTORC1. We also show that under prolonged starvation conditions, cholesterol coordinates with autophagy to support mTORC1 reactivation on lysosomes thereby restoring insulin-responsive mTORC1 signaling. Further, we identify that Smith-Lemli-Opitz Syndrome (SLOS) patient fibroblasts and HeLa-SLOS model which are deficient in cholesterol biosynthesis exhibit defects in insulin-mTORC1 growth axis. These defects are rescued by supplementation of exogenous cholesterol or by expression of constitutively active Rag GTPase, a downstream activator of mTORC1. Overall, our findings propose novel signal integration mechanisms to achieve spatial and temporal control of mTORC1-dependent growth signaling and their aberrations in disease.
    Keywords:  Cholesterol; Insulin; Lysosome; Signaling; mTORC1
    DOI:  https://doi.org/10.1242/jcs.261402
  3. Autophagy. 2023 Nov 01. 1-17
      Macroautophagy/autophagy is a homeostatic process in response to multiple signaling, such as the lysosome-dependent recycling process of cellular components. Starvation-induced MTOR inactivation and PPP3/calcineurin activation were shown to promote the nuclear translocation of TFEB. However, the mechanisms via which signals from endomembrane damage are transmitted to activate PPP3/calcineurin and orchestrate autophagic responses remain unknown. This study aimed to show that autophagy regulator SMURF1 controlled TFEB nuclear import for transcriptional activation of the lysosomal biogenesis. We showed that blocking SMURF1 affected lysosomal biogenesis in response to lysosomal damage by preventing TFEB nuclear translocation. It revealed galectins recognized endolysosomal damage, and led to recruitment of SMURF1 and the PPP3/calcineurin apparatus on lysosomes. SMURF1 interacts with both LGALS3 and PPP3CB to form the LGALS3-SMURF1-PPP3/calcineurin complex. Importantly, this complex further stabilizes TFEB, thereby activating TFEB for lysosomal biogenesis. We determined that LLOMe-mediated TFEB nuclear import is dependent on SMURF1 under the condition of MTORC1 inhibition. In addition, SMURF1 is required for PPP3/calcineurin activity as a positive regulator of TFEB. SMURF1 controlled the phosphatase activity of the PPP3CB by promoting the dissociation of its autoinhibitory domain (AID) from its catalytic domain (CD). Overexpression of SMURF1 showed similar effects as the constitutive activation of PPP3CB. Thus, SMURF1, which bridges environmental stress with the core autophagosomal and autolysosomal machinery, interacted with endomembrane sensor LGALS3 and phosphatase PPP3CB to control TFEB activation.Abbreviations: ATG: autophagy-related; LLOMe: L-Leucyl-L-Leucine methyl ester; ML-SA1: mucolipin synthetic agonist 1; MTOR: mechanistic target of rapamycin kinase; PPP3CB: protein phosphatase 3 catalytic subunit beta; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; TFEB: transcription factor EB.
    Keywords:  Autophagy; PPP3/Calcineurin; SMURF1; TFEB; lysosomal biogenesis
    DOI:  https://doi.org/10.1080/15548627.2023.2267413
  4. mSphere. 2023 Oct 31. e0048223
      Laura Cheney works at the crossroads of HIV and autophagy, a critical biological process for cellular homeostasis, to understand more completely the pathogenesis of HIV-associated neurocognitive impairment. In this mSphere of Influence article, she reflects on how "A pulse-chasable reporter processing assay for mammalian autophagic flux with HaloTag" by Willa Wen-You Yim, Hayashi Yamamoto, and Noboru Mizushima (eLife 11:e78923, 2022, https://doi.org/10.7554/eLife.78923) expands the tools for studying autophagy and inspired her to use this technology to develop a reporter to study autophagy of mitochondria, termed mitophagy, to further her own research goals.
    Keywords:  Atg8/LC3 processing assay; HIV associated neurocognitive impairment; HaloTag; antiretroviral therapy; autophagy; mitophagy
    DOI:  https://doi.org/10.1128/msphere.00482-23
  5. Autophagy. 2023 Nov 01.
      Emerging research has unequivocally demonstrated the significance of post-translational modifications (PTMs) of proteins in orchestrating macroautophagy/autophagy regulation. Ubiquitination is a common PTM of proteins that regulates their stability, activity, and localization, thus playing a crucial role in various cellular processes, including autophagy. In recent work, a ubiquitination-related study revealed that MARCHF7/MARCH7 promotes the mixed polyubiquitination of ATG14 at multiple sites, mainly through the linkages of K6, K11, and K63 ubiquitin chains. Consequently, mixed ubiquitination leads to substantial insoluble aggregation of ATG14/ATG14L/Barkor, reducing its interaction with STX17, and ultimately causing a decrease in autophagy flux. It is noteworthy that we have observed that this regulation may hold significant potential value for the autophagic degradation of protein aggregates, as the number of aggresome-like induced structures (ALISs) is markedly reduced in MARCHF7 knockout cells. This may have important potential implications for neurodegenerative diseases characterized by protein aggregation and impaired degradation.
    Keywords:  ATG14; Aggregation; MARCHF7; autophagy; ubiquitination
    DOI:  https://doi.org/10.1080/15548627.2023.2278414
  6. FEBS J. 2023 Nov 03.
      Lysosomal degradation of the endoplasmic reticulum (ER) and its components through the autophagy pathway has emerged as a major regulator of ER proteostasis. Commonly referred to as ER-phagy and ER-to-lysosome-associated degradation (ERLAD), how the ER is targeted to the lysosome has been recently clarified by a growing number of studies. Here, we summarize the discoveries of the molecular components required for lysosomal degradation of the ER and their proposed mechanisms of action. Additionally, we discuss how cells employ these machineries to create the different routes of ER-lysosome-associated degradation. Further, we review the role of ER-phagy in viral infection pathways, as well as the implication of ER-phagy in human disease. In sum, we provide a comprehensive overview of the current field of ER-phagy.
    Keywords:  ER-phagy; autophagy; endoplasmic reticulum; protein quality control; virus-host interactions
    DOI:  https://doi.org/10.1111/febs.16986
  7. Endokrynol Pol. 2023 ;74(5): 511-519
      Mitophagy is a specific type of autophagy and a selective form of autophagy on a larger scale. It selectively eliminates damaged, misfolded, and surplus mitochondria, particularly those that are cytotoxic, by using autophagic lysosomes. This process is crucial for maintaining a balance of both the quality and quantity of mitochondria, which is necessary for normal cell function and tissue development. However, in certain abnormal situations, such as nutritional deficiencies and hypoxia, the function of mitophagy becomes impaired. This leads to a failure to clear damaged mitochondria in a timely manner, resulting in the production of a large number of reactive oxygen species. These reactive oxygen species further contribute to an inflammatory response and the release of factors that induce apoptosis. Moreover, abnormal mitophagy can also cause mitochondrial dysfunction, disrupt metabolic reprogramming during stress responses, alter cell fate decisions and differentiation, and consequently impact the development and progression of diseases, including cancer. Therefore, mitophagy plays a crucial role in controlling the quality of cancer cells, making it imperative to study its function and impact. Numerous proteins and molecules are involved in the regulation of mitophagy, with Parkin and PTEN-induced kinase 1 (PINK1) serving as key mediators, and the hypoxia-related proteins hypoxia-inducible factor la (HIF1a) and FUN14 domain-containing 1 (FUNDC1) also playing a role. Additionally, proteins such as chromatin licensing and DNA replication factor 1 (CDT-1), insulin-like growth factor 1 (IGF-1), caveolin 1 (Cav-1), and others contribute to the regulation of mitophagy in various ways. This article aims to explore the dual role of mitophagy in tumourigenesis by examining the factors and proteins associated with mitophagy and their regulatory effects. The objective of this review is to provide a new theoretical foundation and direction for cancer treatment.
    Keywords:  mitophagy; treatment; tumour
    DOI:  https://doi.org/10.5603/ep.95652
  8. EMBO J. 2023 Oct 30. e113625
      ER-phagy is a selective autophagy process that targets specific regions of the endoplasmic reticulum (ER) for removal via lysosomal degradation. During cellular stress induced by starvation, cargo receptors concentrate at distinct ER-phagy sites (ERPHS) to recruit core autophagy proteins and initiate ER-phagy. However, the molecular mechanism responsible for ERPHS formation remains unclear. In our study, we discovered that the autophagy regulator UV radiation Resistance-Associated Gene (UVRAG) plays a crucial role in orchestrating the assembly of ERPHS. Upon starvation, UVRAG localizes to ERPHS and interacts with specific ER-phagy cargo receptors, such as FAM134B, ATL3, and RTN3L. UVRAG regulates the oligomerization of cargo receptors and facilitates the recruitment of Atg8 family proteins. Consequently, UVRAG promotes efficient ERPHS assembly and turnover of both ER sheets and tubules. Importantly, UVRAG-mediated ER-phagy contributes to the clearance of pathogenic proinsulin aggregates. Remarkably, the involvement of UVRAG in ER-phagy initiation is independent of its canonical function as a subunit of class III phosphatidylinositol 3-kinase complex II.
    Keywords:  Atg8 family protein; Beclin-1; ER-phagy; UVRAG; cargo receptor
    DOI:  https://doi.org/10.15252/embj.2023113625
  9. Biochim Biophys Acta Mol Cell Res. 2023 Oct 30. pii: S0167-4889(23)00195-7. [Epub ahead of print] 119622
      DNA damage-induced autophagy is a new type of autophagy that differs from traditional macroautophagy; however, this type of autophagy has not been identified in the pathogenic fungus Candida albicans. Inositol polyphosphates are involved in the regulation of DNA damage repair and macroautophagy; however, whether inositol polyphosphates are involved in the regulation of DNA damage-induced autophagy remains unclear. In this study, we identified DNA damage-induced autophagy in C. albicans and systematically investigated the mechanisms of inositol polyphosphate pathway regulation. We found that the core machinery of macro autophagy is also essential for DNA damage-induced autophagy, and that inositol polyphosphate synthetases Kcs1, Ipk1, and Vip1 play a critical role in autophagy. In this study, we focused on Kcs1 and Vip1, which are responsible for the synthesis of inositol pyrophosphate. The kcs1Δ/Δ and vip1Δ/Δ strains exhibited reduced number of phagophore assembly sites (PAS) and autophagic bodies. The recruitment of autophagy-related gene 1 (Atg1) to PAS was significantly affected in the kcs1Δ/Δ and vip1Δ/Δ strains. Target of rapamycin complex 1 kinase activity was elevated in kcs1Δ/Δ and vip1Δ/Δ strains, which significantly inhibited the initiation of autophagy. Atg18 Localization was altered in these mutants. The absence of Kcs1 or Vip1 caused the downregulation of RAD53, a key gene in the DNA damage response. These data provide further understanding of the mechanism of autophagy regulation in C. albicans.
    Keywords:  Autophagosome biogenesis; Candida albicans; DNA damage-induced autophagy; Inositol polyphosphate synthetases; Phagophore assembly sites
    DOI:  https://doi.org/10.1016/j.bbamcr.2023.119622
  10. Mol Biol Cell. 2023 Nov 01. mbcE22110520
      The pathways that induce macroautophagy (referred to as autophagy hereafter) in response to the stress of starvation are well conserved and essential under nutrient limiting conditions. However, less is understood about the mechanisms that modulate the autophagy response. Here we present evidence that after induction of autophagy in budding yeast septin filaments rapidly assemble into discrete patches distributed along the cell cortex. These patches gradually mature over 12h of nutrient deprivation to form extended structures around Atg9-membranes tethered at the cortical endoplasmic reticulum, a class of membranes that are limiting for autophagosome biogenesis. Loss of cortical septin structures alters the kinetics of autophagy activation and most dramatically extends the duration of the autophagy response. In wild type cells, diffusion of Atg9-membranes at the cell cortex undergoes transient pauses that are dependent on septins, and septins at the bud neck block the diffusion of Atg9-membranes between mother and daughter cells. We conclude that septins reorganize at the cell cortex during autophagy to locally limit access of Atg9-membranes to autophagosome assembly sites, and thus modulate the autophagy response during nutrient-deprivation. [Media: see text] [Media: see text] [Media: see text] [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E22-11-0520
  11. Neural Regen Res. 2024 Jun 01. 19(6): 1291-1298
       ABSTRACT: Chaperone-mediated autophagy is one of three types of autophagy and is characterized by the selective degradation of proteins. Chaperone-mediated autophagy contributes to energy balance and helps maintain cellular homeostasis, while providing nutrients and support for cell survival. Chaperone-mediated autophagy activity can be detected in almost all cells, including neurons. Owing to the extreme sensitivity of neurons to their environmental changes, maintaining neuronal homeostasis is critical for neuronal growth and survival. Chaperone-mediated autophagy dysfunction is closely related to central nervous system diseases. It has been shown that neuronal damage and cell death are accompanied by chaperone-mediated autophagy dysfunction. Under certain conditions, regulation of chaperone-mediated autophagy activity attenuates neurotoxicity. In this paper, we review the changes in chaperone-mediated autophagy in neurodegenerative diseases, brain injury, glioma, and autoimmune diseases. We also summarize the most recent research progress on chaperone-mediated autophagy regulation and discuss the potential of chaperone-mediated autophagy as a therapeutic target for central nervous system diseases.
    DOI:  https://doi.org/10.4103/1673-5374.385848
  12. Autophagy. 2023 Oct 31.
      Although microglial activation is induced by an increase in chemokines, the role of mitophagy in this process remains unclear. This study aimed to elucidate the role of microglial mitophagy in CKLF/CKLF1 (chemokine-like factor 1)-induced microglial activation and neuroinflammation, as well as the underlying molecular mechanisms following CKLF treatment. This study determined that CKLF, an inducible chemokine in the brain, leads to an increase in mitophagy markers, such as DNM1L, PINK1 (PTEN induced putative kinase 1), PRKN, and OPTN, along with a simultaneous increase in autophagosome formation, as evidenced by elevated levels of BECN1 and MAP1LC3B (microtubule-associated protein 1 light chain 3 beta)-II. However, SQSTM1, a substrate of autophagy, was also accumulated by CKLF treatment, suggesting that mitophagy flux was reduced and mitophagosomes accumulated. These findings were confirmed by transmission electron microscopy and confocal microscopy. The defective mitophagy observed in our study was caused by impaired lysosomal function, including mitophagosome-lysosome fusion, lysosome generation, and acidification, resulting in the accumulation of damaged mitochondria in microglial cells. Further analysis revealed that pharmacological blocking or gene-silencing of mitophagy inhibited CKLF-mediated microglial activation, as evidenced by the expression of the microglial marker AIF1 (allograft inflammatory factor 1) and the mRNA of proinflammatory cytokines (Tnf and Il6). Ultimately, defective mitophagy induced by CKLF results in microglial activation, as observed in the brains of adult mice. In summary, CKLF induces defective mitophagy, microglial activation, and inflammation, providing a potential approach for treating neuroinflammatory diseases.
    Keywords:  Chemokine-like factor 1; inflammation; lysosomal function; microglia; mitophagosome formation; neuroinflammatory diseases
    DOI:  https://doi.org/10.1080/15548627.2023.2276639
  13. Autophagy. 2023 Nov 01.
      Macroautophagy/autophagy is the intracellular degradation process of cytoplasmic content and damaged organelles. Autophagy is strongly associated with the progression of Alzheimer disease (AD). Microglia are brain-resident macrophages, and recent studies indicate that autophagy in microglia protects neurons from neurodegeneration. Postnatal neurogenesis, the generation of new neurons from adult neural stem cells (NSCs), is impaired in AD patients as well as in AD animal models. However, the extent to which microglial autophagy influences adult NSCs and neurogenesis in AD animal models has not been studied. Here, we showed that conditional knock out (cKO) of Atg5 (autophagy related 5) in microglia inhibited postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus, but not in the subventricular zone (SVZ) of a 5×FAD mouse model. Interestingly, the protection of neurogenesis by Atg5 in microglia was only observed in female AD mice. To confirm the roles of autophagy in microglia for postnatal hippocampal neurogenesis, we generated additional cKO mice to delete autophagy essential genes Rb1cc1 or Atg14 in microglia. However, these rb1cc1 cKO and atg14 cKO mice did not exhibit neurogenesis defects in the context of a female AD mouse model. Last, we used the CSF1R antagonist to deplete ATG5-deficient microglia and this intervention restored neurogenesis in the hippocampus of 5×FAD mice. These results indicate that microglial ATG5 is essential to maintain postnatal hippocampal neurogenesis in a mouse model of AD. Our findings further support the notion that ATG5 in microglia supports NSC health and may prevent neurodegeneration.
    Keywords:  Alzheimer disease; animal model; autophagy; microglia; neural stem cell; neurogenesis
    DOI:  https://doi.org/10.1080/15548627.2023.2277634
  14. J Clin Invest. 2023 Nov 02. pii: e168544. [Epub ahead of print]
      Virophagy, the selective autophagosomal engulfment and lysosomal degradation of viral components, is crucial for neuronal cell survival and antiviral immunity. However, the mechanisms leading to viral antigen recognition and capture by autophagic machinery remain poorly understood. Here, we identified cyclin-dependent kinase-like 5 (CDKL5), known to function in neurodevelopment, as an essential regulator of virophagy. Loss of function mutations in CDKL5 are associated with a severe neurodevelopmental encephalopathy. We found deletion of CDKL5 or expression of a clinically-relevant pathogenic mutant of CDKL5 reduced virophagy of Sindbis virus (SINV), a neurotropic RNA virus, and increased intracellular accumulation of SINV capsid protein aggregates and cellular cytotoxicity. CDKL5 knockout mice displayed increased viral antigen accumulation and neuronal cell death after SINV infection and enhanced lethality after infection with several neurotropic viruses. Mechanistic studies demonstrated that CDKL5 directly binds the canonical selective autophagy receptor p62 and phosphorylates p62 at T269/S272 to promote its interaction with viral capsid aggregates. We found that CDKL5-mediated phosphorylation of p62 facilitated the formation of large p62 inclusion bodies that captured viral capsids to initiate capsid targeting to autophagic machinery. Overall, these findings identify a cell-autonomous innate immune mechanism for autophagy activation to clear intracellular toxic viral protein aggregates during infection.
    Keywords:  Autophagy; Cellular immune response; Infectious disease; Innate immunity; Virology
    DOI:  https://doi.org/10.1172/JCI168544
  15. J Cell Biol. 2023 Dec 04. pii: e202306120. [Epub ahead of print]222(12):
      Autophagy is a lysosomal/vacuolar delivery system that degrades cytoplasmic material. During autophagy, autophagosomes deliver cellular components to the vacuole, resulting in the release of a cargo-containing autophagic body (AB) into the vacuole. AB membranes must be disrupted for degradation of cargo to occur. The lipase Atg15 and vacuolar proteases Pep4 and Prb1 are known to be necessary for this disruption and cargo degradation, but the mechanistic underpinnings remain unclear. In this study, we establish a system to detect lipase activity in the vacuole and show that Atg15 is the sole vacuolar phospholipase. Pep4 and Prb1 are required for the activation of Atg15 lipase function, which occurs following delivery of Atg15 to the vacuole by the MVB pathway. In vitro experiments reveal that Atg15 is a phospholipase B of broad substrate specificity that is likely implicated in the disruption of a range of membranes. Further, we use isolated ABs to demonstrate that Atg15 alone is able to disrupt AB membranes.
    DOI:  https://doi.org/10.1083/jcb.202306120
  16. Acta Naturae. 2023 Jul-Sep;15(3):15(3): 37-49
      Autophagy is the process of lysosomal elimination of the cell organelles, cytoplasmic sites, and pathogenic microorganisms that enter the cell. This process is associated with both cell death regulation and an increase in cell survival chances. Autophagy is involved in the development of various diseases (Crohn disease, cancer, atherosclerosis, etc.). For these reasons, it is of significant interest to establish the molecular targets involved in autophagy regulation and the factors that mediate its participation in pathogenesis. The review describes the potential molecular mechanisms involved in the regulation of autophagy, its contribution to the vital cell activity in a healthy organism, and pathologies.
    Keywords:  apoptosis; autophagy; cell death; lysosomes
    DOI:  https://doi.org/10.32607/actanaturae.23838
  17. medRxiv. 2023 Oct 16. pii: 2023.10.16.23297100. [Epub ahead of print]
      The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; β : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; β : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.
    DOI:  https://doi.org/10.1101/2023.10.16.23297100
  18. Biochim Biophys Acta Rev Cancer. 2023 Oct 31. pii: S0304-419X(23)00161-0. [Epub ahead of print] 189012
      Metabolic plasticity, which determines tumour growth and metastasis, is now understood to be a flexible and context-specific process in cancer metabolism. One of the major pathways contributing to metabolic adaptations in eucaryotic cells is autophagy, a cellular degradation and recycling process that is activated during periods of starvation or stress to maintain metabolite and biosynthetic intermediate levels. Consequently, there is a close association between the metabolic adaptive capacity of tumour cells and autophagy-related pathways in cancer. Additionally, nitric oxide regulates protein function and signalling through S-nitrosylation, a post-translational modification that can also impact metabolism and autophagy. The primary objective of this review is to provide an up-to-date overview of the role of S-nitrosylation at the intersection of metabolism and autophagy in cancer. First, we will outline the involvement of S-nitrosylation in the metabolic adaptations that occur in tumours. Then, we will discuss the multifaceted role of autophagy in cancer, the interplay between metabolism and autophagy during tumour progression, and the contribution of S-nitrosylation to autophagic dysregulation in cancer. Finally, we will present insights into relevant therapeutic aspects and discuss prospects for the future.
    Keywords:  Autophagy; Cancer metabolism; Nitric oxide; S-nitrosylation; Tumour microenvironment
    DOI:  https://doi.org/10.1016/j.bbcan.2023.189012
  19. Radiat Res. 2023 Oct 30.
      Autophagy and senescence are closely related cellular responses to genotoxic stress, and play significant roles in the execution of cellular responses to radiation exposure. However, little is known about their interplay in the fate-decision of cells receiving lethal doses of radiation. Here, we report that autophagy precedes the establishment of premature senescence in normal human fibroblasts exposed to lethal doses of radiation. Activation of the p53-dependent DNA damage response caused sustained dephosphorylation of RB proteins and consequent cell cycle arrest, concurrently with Ulk1 dephosphorylation at Ser638 by PPM1D, which promoted autophagy induction 1-2 days after irradiation. In addition, mitochondrial fragmentation became obvious 1-2 days after irradiation, and autophagy was further enhanced. However, Ulk1 levels decreased significantly after 2 days, resulting in lower LC3-II levels. An autophagic flux assay using chloroquine (CQ) also revealed that the flux in irradiated cells gradually decreased over 30 days. In contrast, lysosomal augmentation started at 1 day, became significantly upregulated after 5 days, and continued for over 30 days. After a rapid decrease in autophagy, p16 expression increased and senescence was established, but autophagic activity remained reduced. These results demonstrated that X-ray irradiation triggered two processes, autophagy and senescence, with the former being temporary and regulated by DNA damage response and mitophagy, and the latter being sustained and regulated by persistent cell cycle arrest. The interplay between autophagy and senescence seems to be essential for the proper implementation of the cellular response to radiation exposure.
    DOI:  https://doi.org/10.1667/RADE-23-00173.1
  20. Autophagy. 2023 Nov 01. 1-3
      Parkinson disease (PD) characterized by dopaminergic neuronal loss is caused by aggregation of misfolded SNCA/α-synuclein. We recently developed autophagy-targeting chimera (AUTOTAC), a targeted protein degradation (TPD) technology based on the macroautophagy/autophagy-lysosome pathway (ALP). In this study, we employed AUTOTAC to synthesize ATC161, a chimeric compound that adopts Anle138b as target-binding ligand (TBL) for SNCA aggregates. The autophagy-targeting ligand (ATL) of ATC161 was designed to allosterically activate the autophagy receptor SQSTSM1/p62 (sequestosome 1), a key step for targeting SNCA aggregates to the phagophore. The lysosomal degradation of SNCA aggregates by ATC161 acutely occurs at DC50 of 100-500 nM with no significant off-target degradation of monomeric SNCA. ATC161 protects cells from DNA and mitochondrial damage by SNCA aggregates. In PD model mice, oral administration of ATC161 decreases the level of SNCA aggregates and their propagation across brain regions, which mitigates glial inflammatory responses and improves muscle strength and locomotive activity. An Investigational New Drug (IND) was approved by the Korean Food and Drug Administration for a phase 1 clinical trial to treat PD, Alzheimer disease (AD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS). We suggest that AUTOTAC provides a platform for drug discovery in proteinopathies and other diseases.
    Keywords:  Autophagy-lysosome system; N-degron pathway; Parkinson’s disease; drug discovery; proteinopathies; targeted protein degradation
    DOI:  https://doi.org/10.1080/15548627.2023.2274711
  21. Autophagy. 2023 Oct 30.
      Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.
    Keywords:  Alzheimer’s disease; Autophagy receptor; BAG3; MAPT; NBR1; SQSTM1
    DOI:  https://doi.org/10.1080/15548627.2023.2276622
  22. J Toxicol Sci. 2023 ;48(11): 585-595
       OBJECTIVE: Lidocaine has been reported to induce neurotoxicity, which is further enhanced by high glucose levels. This study is aimed to explore the underlying mechanisms of lidocaine neurotoxicity in spinal cord neurons of diabetes.
    METHODS: Take thirty specific pathogen-free (SPF) healthy Sprague-Dawley (SD) rats and thirty Goto-Kakizaki (GK) rats, aged 12 weeks, weighing 180-200 g. The spinal cord neurons of rats were isolated and cultured in vitro. Cell Counting Kit-8 was used to detect cell proliferation to determine the appropriate concentration and duration of lidocaine. Mitochondrial function was assessed using ATP content, cellular oxygen consumption rate, mitochondrial membrane potential, ROS production, and mitochondrial ultrastructure. Western blot was applied to detect the expression of autophagy- and mitophagy-related molecules PINK1, p-AMPK, LC-3II/LC3-I ratio and mTORC1. Immunofluorescent staining was used to detect the expression of PINK1 and LC3.
    RESULTS: Lidocaine decreased cell viability of spinal cord neurons in concentration- and time-dependent manners. And lidocaine treatment aggravated mitochondrial dysfunction in GK rats. Furthermore, mitophagy was activated in diabetes, and lidocaine exposure up-regulated mitophagy. AMPK activator MK8722 aggravated mitochondrial damage, increased the expression of PINK1, p-AMPK, LC-3II/LC3-I ratio, and decreased the expression of mTORC1, while AMPK inhibitor Compound C and autophagy inhibitor Bafilomycin A1 reduced mitochondrial damage and decreased the expression of PINK1, p-AMPK, LC-3II/LC3-I ratio, and increased the expression of mTORC1.
    CONCLUSIONS: Lidocaine induced neurotoxicity of spinal cord neurons in GK rats via AMPK-mediated mitophagy.
    Keywords:  AMPK; Lidocaine; Mitophagy; Neurotoxicity
    DOI:  https://doi.org/10.2131/jts.48.585
  23. Sci Adv. 2023 Nov 03. 9(44): eadh9603
      Activation of the mechanistic target of rapamycin complex 1 (mTORC1) contributes to the development of chronic pain. However, the specific mechanisms by which mTORC1 causes hypersensitivity remain elusive. The eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) is a key mTORC1 downstream effector that represses translation initiation. Here, we show that nociceptor-specific deletion of 4E-BP1, mimicking activation of mTORC1-dependent translation, is sufficient to cause mechanical hypersensitivity. Using translating ribosome affinity purification in nociceptors lacking 4E-BP1, we identified a pronounced translational up-regulation of tripartite motif-containing protein 32 (TRIM32), an E3 ubiquitin ligase that promotes interferon signaling. Down-regulation of TRIM32 in nociceptors or blocking type I interferon signaling reversed the mechanical hypersensitivity in mice lacking 4E-BP1. Furthermore, nociceptor-specific ablation of TRIM32 alleviated mechanical hypersensitivity caused by tissue inflammation. These results show that mTORC1 in nociceptors promotes hypersensitivity via 4E-BP1-dependent up-regulation of TRIM32/interferon signaling and identify TRIM32 as a therapeutic target in inflammatory pain.
    DOI:  https://doi.org/10.1126/sciadv.adh9603
  24. J Clin Invest. 2023 Nov 01. pii: e167861. [Epub ahead of print]133(21):
      The PI3K/AKT/mTOR pathway is commonly dysregulated in cancer. Rapalogs exhibit modest clinical benefit, likely owing to their lack of effects on 4EBP1. We hypothesized that bi-steric mTORC1-selective inhibitors would have greater potential for clinical benefit than rapalogs in tumors with mTORC1 dysfunction. We assessed this hypothesis in tumor models with high mTORC1 activity both in vitro and in vivo. Bi-steric inhibitors had strong growth inhibition, eliminated phosphorylated 4EBP1, and induced more apoptosis than rapamycin or MLN0128. Multiomics analysis showed extensive effects of the bi-steric inhibitors in comparison with rapamycin. De novo purine synthesis was selectively inhibited by bi-sterics through reduction in JUN and its downstream target PRPS1 and appeared to be the cause of apoptosis. Hence, bi-steric mTORC1-selective inhibitors are a therapeutic strategy to treat tumors driven by mTORC1 hyperactivation.
    Keywords:  Cancer; Oncology; Therapeutics
    DOI:  https://doi.org/10.1172/JCI167861
  25. Am J Physiol Cell Physiol. 2023 Oct 30.
      Induction of alternative, non-apoptotic cell death programs such as cell-lethal autophagy and mitophagy represent possible strategies to combat glioblastoma (GBM). Here we report that VLX600, a novel iron chelator and oxidative phosphorylation (OXPHOS) inhibitor, induces a caspase-independent type of cell death that is partially rescued in adherent U251 ATG5/7 (autophagy related 5/7) knockout (KO) GBM cells and NCH644 ATG5/7 knockdown (KD) glioma stem-like cells (GSCs), suggesting that VLX600 induces an autophagy-dependent cell death (ADCD) in GBM. This ADCD is accompanied by decreased oxygen consumption, increased expression/mitochondrial localization of BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like), the induction of mitophagy as demonstrated by diminished levels of mitochondrial marker proteins (e.g. COX4I1 (cytochrome c oxidase subunit 4I1)) and the mitoKeima assay as well as increased histone H3 and H4 lysine tri-methylation. Further, the extracellular addition of iron is able to significantly rescue VLX600-induced cell death and mitophagy, pointing out an important role of iron metabolism for GBM cell homeostasis. Interestingly, VLX600 is also able to completely eliminate NCH644 GSC tumors in an organotypic brain slice transplantation model. Our data support the therapeutic concept of ADCD induction in GBM and suggest that VLX600 may be an interesting novel drug candidate for the treatment of this tumor.
    Keywords:  autophagy; brain tumor; iron metabolism; mitochondrial respiration; non-apoptotic cell death
    DOI:  https://doi.org/10.1152/ajpcell.00293.2023
  26. Mol Cell Neurosci. 2023 Oct 31. pii: S1044-7431(23)00096-9. [Epub ahead of print] 103902
      Autophagy is a self-degradative process important for balancing the sources of energy and involved in the development of Alzheimer's disease (AD). To date, a number of papers have shown that elastin-derived peptides (EDPs) affect the expression and activation of peroxisome proliferator-activated receptor gamma (PPARγ), which is crucial for the development of AD and autophagy initiation. Therefore, the aim of the present study was to determine whether EDPs with a Val-Gly-Val-Ala-Pro-Gly (VGVAPG) amino acid sequence activate the autophagic process in undifferentiated SH-SY5Y human neuroblastoma cells. Our study is the first to show that EDPs with the VGVAPG sequence initiate the autophagy process in the undifferentiated SH-SY5Y cell line exhibiting a number of features of normal neuroblasts. In particular, we observed in our study that VGAVPG peptide increased ULK1, AKT, PPARγ, and LC3B protein expression. Moreover, our experiments with the agonist (rosiglitazone) and antagonist (GW9662) of PPARγ confirm that the studied EDP acts through the PPARγ pathway affecting mTOR and finally autophagy. Some studies have shown that autophagy disturbances are involved in the development of AD. Therefore, we believe that our study will provide new evidence of the possible involvement of EDPs (especially VGVAPG) in the development of AD.
    Keywords:  Autophagy; Elastin-derived peptides; PPARγ; SH-SY5Y; VGVAPG
    DOI:  https://doi.org/10.1016/j.mcn.2023.103902
  27. J Cereb Blood Flow Metab. 2023 Oct 28. 271678X231210694
      Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.
    Keywords:  SARM1; autophagy; cerebral infarction; secondary neurodegeneration; thalamus
    DOI:  https://doi.org/10.1177/0271678X231210694
  28. Cell Discov. 2023 Oct 31. 9(1): 107
      Transcription-coupled nucleotide excision repair (TC-NER) is an important genome maintenance system that preferentially removes DNA lesions on the transcribed strand of actively transcribed genes, including non-coding genes. TC-NER involves lesion recognition by the initiation complex consisting of RNA polymerase II (Pol II) and Cockayne syndrome group B (CSB), followed by NER-catalyzed lesion removal. However, the efficient lesion removal requires the initiation complex to yield the right of way to the excision machinery, and how this occurs in a timely manner is unknown. Here we show that heat shock protein DNAJA2 facilitates the HSC70 chaperone-mediated autophagy (CMA) to degrade CSB during TC-NER. DNAJA2 interacts with and enables HSC70 to recognize sumoylated CSB. This triggers the removal of both CSB and Pol II from the lesion site in a manner dependent on lysosome receptor LAMP2A. Defects in DNAJA2, HSC70 or LAMP2A abolish CSB degradation and block TC-NER. Our findings discover DNAJA2-mediated CMA as a critical regulator of TC-NER, implicating the DNAJA2-HSC70-CMA axis factors in genome maintenance.
    DOI:  https://doi.org/10.1038/s41421-023-00601-8
  29. mBio. 2023 Nov 01. e0148023
      Mitochondria are good targets for viruses to manipulate their hosts. However, it remains obscure whether respiratory syncytial virus (RSV) target mitochondria to suppress the type I interferon (IFN) responses. Here, we show that nonstructural protein 1 (NS1) protein of RSV interacts with Tu translation elongation factor mitochondrial (TUFM), which can lead to its localization in mitochondria and finally induce TUFM-dependent mitophagy and inhibition of IFNβ. Mechanically, NS1-mediated TUFM-dependent mitophagy does not depend on the PINK1-PARKIN pathway and classic mitophagy receptors. Importantly, NS1 may act as a new receptor protein to bridge mitochondria and autophagosomes by interacting with TUFM and LC3B. The LIR motif of NS1 protein is essential for its interaction with LC3B and is of great importance for its mitophagy induction and IFNβ suppression. Finally, NS1-induced TUFM-dependent mitophagy was essential for its attenuated IFNβ response using autophagy-deficient cells and mice. Our study provides a novel mitophagy receptor molecular and a new antiviral option by suppressing antiviral innate immune via targeting TUFM-dependent mitophagy. IMPORTANCE It is a worthy concern for us to understand virus-host interactions which affect progression and prognosis of disease. We demonstrated that the non-structural protein 1 of respiratory syncytial virus (RSV NS1) may act as a novel mitophagy receptor to induce mitophagy by binding LC3B and mitochondrial protein TUFM, and finally dampen interferon (IFN) responses induced by RIG1 and RSV infection. TUFM is beneficial for RSV replication in vivo and vitro. It is new and interesting that RSV NS1 may function as a mitophagy receptor to interact with LC3B. The LIR motif of NS1 protein is essential for its interaction with LC3B. We further confirm that RSV NS1 inhibited IFNβ response and promoted RSV replication in autophagy-dependent mechanisms in vivo and vitro. Our study contributes to understanding virus-host interaction, enriching our insights into RSV pathogenic mechanism and exploiting new antiviral treatments targeting TUFM.
    Keywords:  IFNβ; RSV NS1 protein; TUFM; mitophagy; viral replication
    DOI:  https://doi.org/10.1128/mbio.01480-23
  30. bioRxiv. 2023 Oct 19. pii: 2023.10.18.562997. [Epub ahead of print]
      BRASSINAZONE RESISTANT 1 (BZR1) is a key transcription factor of the brassinosteroid signaling pathway but also a signaling hub that integrates diverse signals that modulate plant growth. Previous studies have shown that starvation causes BZR1 degradation, but the underlying mechanisms are not understood. Here we performed quantitative proteomic analysis of BZR1 interactome under starvation conditions and identified two BZR1-interacting ubiquitin ligases, BAF1 and UPL3. Compared to the wild type, the upl3 mutants show long hypocotyl and increased BZR1 levels when grown under sugar starvation conditions but not when grown on sugar-containing media, indicating a role of UPL3 in BZR1 degradation specifically under starvation conditions. The upl3 mutants showed a reduced survival rate after starvation treatment, supporting the importance of UPL3-mediated BZR1 degradation and growth arrest for starvation survival. Treatments with inhibitors of TARGET of RAPAMYCIN (TOR) and autophagy altered BZR1 level in the wild type but were less effective in upl3 , suggesting that UPL3 mediates the TOR-regulated and autophagy-dependent degradation of BZR1. Further, the UPL3 protein level is increased posttranscriptionally by starvation but decreased by sugar treatment. Our study identifies UPL3 as a key component that mediates sugar regulation of hormone signaling pathways, important for optimal growth and survival in plants.
    IN A NUTSHELL: Background: The coordination between signaling pathways that monitor the levels of photosynthate and growth hormones is crucial for optimizing growth and survival, but the underlying mechanisms are not fully understood. When the sugar level is low, the BZR1 transcription factor of the brassinosteroid (BR) signaling pathway is degraded, and hence growth is attenuated to prevent starvation and enhance survival. When sugar is sufficient, sugar signaling inhibits BZR1 degradation and enables BR promotion of plant growth. The key component that mediates starvation-induced BZR1 degradation remains unknown.Question: What proteins interact with BZR1 and mediate its degradation under sugar starvation?Finding: We performed immunoprecipitation mass spectrometry analysis of BZR1 in starvation-treated Arabidopsis and identified many BZR1-interacting proteins, including two E3 ligases UPL3 and BAF1. Genetic analysis showed that UPL3 plays a specific and prominent role in promoting autophagy-dependent BZR1 degradation and plant survival under sugar-starvation conditions.Next step: How sugar-TOR signaling regulates UPL3 level remains to be studied in the future.
    DOI:  https://doi.org/10.1101/2023.10.18.562997
  31. mBio. 2023 Oct 31. e0233223
      Genes required for the lysosomal degradation pathway of autophagy play key roles in topologically distinct and physiologically important cellular processes. Some functions of ATG genes are independent of their role in degradative autophagy. One of the first described of these ATG gene-dependent, but degradative autophagy independent, processes is the requirement for a subset of ATG genes in interferon-γ (IFNγ)-induced inhibition of norovirus and Toxoplasma gondii replication. Herein, we identified additional genes that are required for, or that negatively regulate, this innate immune effector pathway. Enzymes in the UFMylation pathway negatively regulated IFNγ-induced inhibition of norovirus replication via effects of Ern1. IFNγ-induced inhibition of norovirus replication required Gate-16 (also termed GabarapL2), Wipi2b, Atg9a, Cul3, and Klhl9 but not Becn1 (encoding Beclin 1), Atg14, Uvrag, or Sqstm1. The phosphatidylinositol-3-phosphate and ATG16L1-binding domains of WIPI2B, as well as the ATG5-binding domain of ATG16L1, were required for IFNγ-induced inhibition of norovirus replication. Other members of the Cul3, Atg8, and Wipi2 gene families were not required, demonstrating exquisite specificity within these gene families for participation in IFNγ action. The generality of some aspects of this mechanism was demonstrated by a role for GATE-16 and WIPI2 in IFNγ-induced control of Toxoplasma gondii infection in human cells. These studies further delineate the genes and mechanisms of an ATG gene-dependent programmable form of cytokine-induced innate intracellular immunity. IMPORTANCE Interferon-γ (IFNγ) is a critical mediator of cell-intrinsic immunity to intracellular pathogens. Understanding the complex cellular mechanisms supporting robust interferon-γ-induced host defenses could aid in developing new therapeutics to treat infections. Here, we examined the impact of autophagy genes in the interferon-γ-induced host response. We demonstrate that genes within the autophagy pathway including Wipi2, Atg9, and Gate-16, as well as ubiquitin ligase complex genes Cul3 and Klhl9 are required for IFNγ-induced inhibition of murine norovirus (norovirus hereinafter) replication in mouse cells. WIPI2 and GATE-16 were also required for IFNγ-mediated restriction of parasite growth within the Toxoplasma gondii parasitophorous vacuole in human cells. Furthermore, we found that perturbation of UFMylation pathway components led to more robust IFNγ-induced inhibition of norovirus via regulation of endoplasmic reticulum (ER) stress. Enhancing or inhibiting these dynamic cellular components could serve as a strategy to control intracellular pathogens and maintain an effective immune response.
    Keywords:  Toxoplasmsa gondii; UFMylation; autophagy; interferons; norovirus
    DOI:  https://doi.org/10.1128/mbio.02332-23
  32. J Med Virol. 2023 Nov;95(11): e29200
      The coronavirus disease 2019 (COVID-19) continues to pose a major threat to public health worldwide. Although many studies have clarified the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection process, the underlying mechanisms of viral invasion and immune evasion were still unclear. This study focused on SARS-CoV-2 ORF7a (open reading frame-7a), one of the essential open reading frames (ORFs) in infection and pathogenesis. First, by analyzing its physical and chemical characteristics, SARS-CoV-2 ORF7a is an unstable hydrophobic transmembrane protein. Then, the ORF7a transmembrane domain three-dimensional crystal structure model was predicted and verified. SARS-CoV-2 ORF7a localized in the endoplasmic reticulum and participated in the autophagy-lysosome pathway via interacting with p62. In addition, we elucidated the underlying molecular mechanisms by which ORF7a intercepted autophagic flux, promoted double membrane vesicle formation, and evaded host autophagy-lysosome degradation and antiviral innate immunity. This study demonstrated that ORF7a could be a therapeutic target, and Glecaprevir may be a potential drug against SARS-CoV-2 by targeting ORF7a. A comprehensive understanding of ORF7a's functions may contribute to developing novel therapies and clinical drugs against COVID-19.
    Keywords:  COVID-19; ORF7a; SARS-CoV-2; autophagy; lysosome
    DOI:  https://doi.org/10.1002/jmv.29200
  33. Front Tuberc. 2023 ;pii: 1275882. [Epub ahead of print]1
      Nearly two decades have passed since the first report on autophagy acting as a cell-autonomous defense against Mycobacterium tuberculosis. This helped usher a new area of research within the field of host-pathogen interactions and led to the recognition of autophagy as an immunological mechanism. Interest grew in the fundamental mechanisms of antimicrobial autophagy and in the prophylactic and therapeutic potential for tuberculosis. However, puzzling in vivo data have begun to emerge in murine models of M. tuberculosis infection. The control of infection in mice affirmed the effects of certain autophagy genes, specifically ATG5, but not of other ATGs. Recent studies with a more complete inactivation of ATG genes now show that multiple ATG genes are indeed necessary for protection against M. tuberculosis. These particular ATG genes are involved in the process of membrane atg8ylation. Atg8ylation in mammalian cells is a broad response to membrane stress, damage and remodeling of which canonical autophagy is one of the multiple downstream outputs. The current developments clarify the controversies and open new avenues for both fundamental and translational studies.
    DOI:  https://doi.org/10.3389/ftubr.2023.1275882
  34. Kidney Dis (Basel). 2023 Oct;9(5): 342-357
       Background: Renal diseases remain an increasing public health issue affecting millions of people. The kidney is a highly energetic organ that is rich in mitochondria. Numerous studies have demonstrated the important role of mitochondria in maintaining normal kidney function and in the pathogenesis of various renal diseases, including acute kidney injuries (AKIs) and chronic kidney diseases (CKDs).
    Summary: Under physiological conditions, fine-tuning mitochondrial energy balance, mitochondrial dynamics (fission and fusion processes), mitophagy, and biogenesis maintain mitochondrial fitness. While under AKI and CKD conditions, disruption of mitochondrial energy metabolism leads to increased oxidative stress. In addition, mitochondrial dynamics shift to excessive mitochondrial fission, mitochondrial autophagy is impaired, and mitochondrial biogenesis is also compromised. These mitochondrial injuries regulate renal cellular functions either directly or indirectly. Mitochondria-targeted approaches, containing genetic (microRNAs) and pharmaceutical methods (mitochondria-targeting antioxidants, mitochondrial permeability pore inhibitors, mitochondrial fission inhibitors, and biogenesis activators), are emerging as important therapeutic strategies for AKIs and CKDs.
    Key Messages: Mitochondria play a critical role in the pathogenesis of AKIs and CKDs. This review provides an updated overview of mitochondrial homeostasis under physiological conditions and the involvement of mitochondrial dysfunction in renal diseases. Finally, we summarize the current status of mitochondria-targeted strategies in attenuating renal diseases.
    Keywords:  Acute kidney injury; Chronic kidney disease; Mitochondria
    DOI:  https://doi.org/10.1159/000530485
  35. Vet Pathol. 2023 Oct 31. 3009858231207021
      Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
    Keywords:  AKT; cancer; dog; mechanistic target of rapamycin; neoplasia; phosphatidylinositol 3-kinase; tumor
    DOI:  https://doi.org/10.1177/03009858231207021
  36. Anal Chem. 2023 Nov 02.
      Mitochondrion-lysosome interactions have garnered significant attention in recent research. Numerous studies have shown that mitochondrion-lysosome interactions, including mitochondrion-lysosome contact (MLC) and mitophagy, are involved in various biological processes and pathological conditions. Single fluorescent probes are termed a pivotal chemical tool in unraveling the intricate spatiotemporal interorganelle interplay in live cells. However, current chemical tools are insufficient to deeply understand mitochondrion-lysosome dynamic interactions and related diseases, Moreover, the rational design of mitochondrion-lysosome dual-targeting fluorescent probes is intractable. Herein, we designed and synthesized a pH-sensitive fluorescent probe called INSA, which could simultaneously light up mitochondria (red emission) and lysosomes (green emission) for their internal pH differences. Employing INSA, we successfully recorded long-term dynamic interactions between lysosomes and mitochondria. More importantly, the increasing mitochondrion-lysosome interactions in ferroptotic cells were also revealed by INSA. Further, we observed pH variations in mitochondria and lysosomes during ferroptosis for the first time. In brief, this work not only introduced a pH-sensitive fluorescent probe INSA for the disclosure of the mitochondrion-lysosome dynamic interplays but also pioneered the visualization of the organellar pH alternation in a specific disease model.
    DOI:  https://doi.org/10.1021/acs.analchem.3c02878
  37. Life Sci. 2023 Oct 29. pii: S0024-3205(23)00850-0. [Epub ahead of print]334 122215
      Sonodynamic therapy (SDT) is a new non-invasive treatment method proposed based on photodynamic therapy (PDT). It has advantages such as high precision, strong tissue penetration, minimal side effects, and good patient compliance. With the maturation of nanomedicine, the application of nanosonosensitizers has further propelled the development of SDT. In recent years, people have developed many new types of sonosensitizers and explored the mechanisms of SDT. Among them, the studies about the relationship between autophagy and SDT have attracted increasing attention. After the SDT, cells usually undergo autophagy as a self-protective mechanism to resist external stimuli and reduce cell damage, which is beneficial for the treatment of atherosclerosis (AS), diabetes, and myocardial infarction but counterproductive in cancer treatment. However, under certain treatment conditions, excessive upregulation of autophagy can also promote cell death, which is beneficial for cancer treatment. This article reviews the latest research progress on the relationship between SDT and autophagy in cancers, AS, diabetes, and myocardial infarction. We also discuss and propose the challenges and prospects in enhancing SDT efficacy by regulating autophagy, with the hope of promoting the development of this promising therapeutic approach.
    Keywords:  Atherosclerosis; Autophagy; Autophagy regulation; Cancer; Sonodynamic therapy
    DOI:  https://doi.org/10.1016/j.lfs.2023.122215
  38. Cell Mol Life Sci. 2023 Nov 01. 80(11): 344
      During macroautophagy, the Atg8 protein is conjugated to phosphatidylethanolamine (PE) in autophagic membranes. In Apicomplexan parasites, two cysteine proteases, Atg4 and ovarian tumor unit (Otu), have been identified to delipidate Atg8 to release this protein from membranes. Here, we investigated the role of cysteine proteases in Atg8 conjugation and deconjugation and found that the Plasmodium parasite consists of both activities. We successfully disrupted the genes individually; however, simultaneously, they were refractory to deletion and essential for parasite survival. Mutants lacking Atg4 and Otu showed normal blood and mosquito stage development. All mice infected with Otu KO sporozoites became patent; however, Atg4 KO sporozoites either failed to establish blood infection or showed delayed patency. Through in vitro and in vivo analysis, we found that Atg4 KO sporozoites invade and normally develop into early liver stages. However, nuclear and organelle differentiation was severely hampered during late stages and failed to mature into hepatic merozoites. We found a higher level of Atg8 in Atg4 KO parasites, and the deconjugation of Atg8 was hampered. We confirmed Otu localization on the apicoplast; however, parasites lacking Otu showed no visible developmental defects. Our data suggest that Atg4 is the primary deconjugating enzyme and that Otu cannot replace its function completely because it cleaves the peptide bond at the N-terminal side of glycine, thereby irreversibly inactivating Atg8 during its recycling. These findings highlight a role for the Atg8 deconjugation pathway in organelle biogenesis and maintenance of the homeostatic cellular balance.
    Keywords:  ATG4; Apicoplast; Autophagy; Cysteine protease; Deconjugation; EEF; Malaria; Otu; Plasmodium; Sporozoites
    DOI:  https://doi.org/10.1007/s00018-023-05004-2
  39. Mol Neurobiol. 2023 Nov 01.
      The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.
    Keywords:  Microcephaly; Mitochondrial fission; Notch; ROS; ZIKA
    DOI:  https://doi.org/10.1007/s12035-023-03704-1
  40. Protein Sci. 2023 Oct 31. e4823
      Genetic code expansion enables site-specific photo-crosslinking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the crosslinked region still remains challenging. Here, we developed a new method to identify the crosslinked region by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε -allyloxycarbonyl-α-hydroxyl-l-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. By applying this method, we identified the crosslinked regions in lysosomal-associated membrane protein type 2A (LAMP2A), a receptor of chaperone-mediated autophagy, in mammalian cells. The results suggested that at least two interfaces are involved in the homophilic interaction, which requires a trimeric or higher oligomeric assembly of adjacent LAMP2A molecules. Thus, the combination of site-specific crosslinking and site-specific cleavage promises to be useful for revealing binding interfaces and protein complex geometries. This article is protected by copyright. All rights reserved.
    Keywords:  LAMP2A; chaperone-mediated autophagy; genetic code expansion; protein-protein interface; site-specific cleavage; site-specific crosslinking
    DOI:  https://doi.org/10.1002/pro.4823
  41. J Cell Biol. 2023 Dec 04. pii: e202305032. [Epub ahead of print]222(12):
      Live super-resolution microscopy has allowed for new insights into recently identified mitochondria-lysosome contact sites, which mediate crosstalk between mitochondria and lysosomes, including co-regulation of Rab7 GTP hydrolysis and Drp1 GTP hydrolysis. Here, we highlight recent findings and future perspectives on this dynamic pathway and its roles in health and disease.
    DOI:  https://doi.org/10.1083/jcb.202305032
  42. Elife. 2023 Nov 01. pii: e84235. [Epub ahead of print]12
      Cardiac muscle has the highest mitochondrial density of any human tissue, but mitochondrial dysfunction is not a recognized cause of isolated cardiomyopathy. Here, we determined that the rare mitofusin (MFN) 2 R400Q mutation is 15-20× over-represented in clinical cardiomyopathy, whereas this specific mutation is not reported as a cause of MFN2 mutant-induced peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Accordingly, we interrogated the enzymatic, biophysical, and functional characteristics of MFN2 Q400 versus wild-type and CMT2A-causing MFN2 mutants. All MFN2 mutants had impaired mitochondrial fusion, the canonical MFN2 function. Compared to MFN2 T105M that lacked catalytic GTPase activity and exhibited normal activation-induced changes in conformation, MFN2 R400Q and M376A had normal GTPase activity with impaired conformational shifting. MFN2 R400Q did not suppress mitochondrial motility, provoke mitochondrial depolarization, or dominantly suppress mitochondrial respiration like MFN2 T105M. By contrast to MFN2 T105M and M376A, MFN2 R400Q was uniquely defective in recruiting Parkin to mitochondria. CRISPR editing of the R400Q mutation into the mouse Mfn2 gene induced perinatal cardiomyopathy with no other organ involvement; knock-in of Mfn2 T105M or M376V did not affect the heart. RNA sequencing and metabolomics of cardiomyopathic Mfn2 Q/Q400 hearts revealed signature abnormalities recapitulating experimental mitophagic cardiomyopathy. Indeed, cultured cardiomyoblasts and in vivo cardiomyocytes expressing MFN2 Q400 had mitophagy defects with increased sensitivity to doxorubicin. MFN2 R400Q is the first known natural mitophagy-defective MFN2 mutant. Its unique profile of dysfunction evokes mitophagic cardiomyopathy, suggesting a mechanism for enrichment in clinical cardiomyopathy.
    Keywords:  cardiomyopathy; developmental biology; heart; mitochondria; mitofusins; mouse
    DOI:  https://doi.org/10.7554/eLife.84235
  43. Mol Neurobiol. 2023 Nov 02.
      Autophagy has been involved in protection of ischemia/reperfusion (I/R)-induced injury in many tissues including the brain. The upstream stimulatory factor 2 (Usf2) was proposed as a regulator in aging and degenerative brain diseases; however, the its role in autophagy during cerebral I/R injury remains unclear. Here, the middle cerebral artery occlusion (MCAO) operation was applied to establish an I/R mouse model. We showed that Usf2 was significantly upregulated in I/R-injured brain, accompanied by decreased levels of autophagy. Then, oxygen-glucose deprivation/recovery (OGD/R) treatment was used to establish a cellular I/R model in HT22 neurons, and lentiviral interference vector against Usf2 (LV-sh-Usf2) was used to infect the neurons. Our results showed that Usf2 was significantly upregulated in OGD/R-treated HT22 neurons that displayed an increased level in cell apoptosis and decreased levels in cell viability and autophagy, and interference of Usf2 largely rescued the effects of OGD/R on cell viability, apoptosis, and autophagy, suggesting an important role of Usf2 in neuron autophagy. In the mechanism exploration, we found that, as a transcription factor, Usf2 bound to the promoter of YTHDF1, a famous reader of N6-Methyladenosine (m6A), also induced by OGD/R, and promoted its transcription. Overexpression of YTHDF1 was able to reverse the improvement of Usf2 interference on viability and autophagy of HT22 neurons. Moreover, YTHDF1 suppressed autophagy to induce HT22 cell apoptosis through increasing m6A-mediated stability of Cdc25A, a newly identified autophagy inhibitor. Finally, we demonstrated that interference of Usf2 markedly improved autophagy and alleviated I/R-induced injury in MCAO mice.
    Keywords:  Autophagy; Cdc25A; Cerebral ischemia-reperfusion injury; The m6A reader YTHDF1; Usf2
    DOI:  https://doi.org/10.1007/s12035-023-03735-8
  44. Free Radic Biol Med. 2023 Oct 30. pii: S0891-5849(23)01086-9. [Epub ahead of print]
      Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in aged populations. Aberrant amyloid-beta accumulation is a common pathological feature in AD patients. Dysfunction of autophagy and impairment of α7nAChR functioning are associated with enhanced amyloid-beta (Aβ) accumulation in AD patients. Hesperidin, a flavone glycoside found primarily in citrus species, is known to have anti-inflammatory, antioxidant, and neuroprotective effects. However, the underlying molecular mechanisms of hesperidin as an antiaging and anti-Aβ phytochemical were unclear. In this study, we found that hesperidin upregulates the acr-16 expression level in C. elegans as evidenced by increased GFP-tagged ACR-16 and GFP-tagged pmyo-3:ACR-16 expression in muscle and ventral cord. Further, hesperidin upregulates the autophagy genes in wild-type N2, evident by increased GFP-tagged LGG-1 foci. However, hesperidin failed to upregulate the autophagy genes level in acr-16 mutant worms that suggests autophagy activation is mediated through acr-16. In addition, hesperidin showed antiaging and anti-oxidative effects, as evidenced by positive changes in different markers necessary for health span and lifespan. Additionally, hesperidin could upregulate acr-16 and autophagy genes (lgg-1 & bec-1) and ameliorates Aβ-induced toxicity as observed with reduce ROS accumulation, paralysis rate, and enhanced lifespan even in worms AD model CL4176 and CL2006 strain. Our finding suggests that hesperidin significantly enhances oxidative stress resistance, prolongs the lifespan, and protects against Aβ-induced toxicity in C. elegans. acr-16 mediated autophagy and antioxidation is associated with anti-aging and anti-Aβ effect of hesperidin.
    Keywords:  Alzheimer's disease; Autophagy; C. elegans; Hesperidin; Oxidative stress; acr-16
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.10.408
  45. Eur J Pharmacol. 2023 Oct 28. pii: S0014-2999(23)00673-8. [Epub ahead of print]960 176159
      Non-alcoholic fatty liver disease (NAFLD) is a major liver disease subtype worldwide, is commonly associated with insulin resistance and obesity. NAFLD is characterized by an excessive hepatic lipid accumulation, as well as hepatic steatosis. Fenofibrate is a peroxisome proliferator-activated receptor α agonist widely used in clinical therapy to effectively ameliorate the development of NAFLD, but its mechanism of action is incompletely understood. Here, we found that fenofibrate dramatically modulate the gut microbiota composition of high-fat diet (HFD)-induced NAFLD mouse model, and the change of gut microbiota composition is dependent on TFEB-autophagy axis. Furthermore, we also found that fenofibrate improved hepatic steatosis, and increased the activation of TFEB, which severed as a regulator of autophagy, thus, the protective effects of fenofibrate against NAFLD are depended on TFEB-autophagy axis. Our study demonstrates the host gene may influence the gut microbiota and highlights the role of TFEB and autophagy in the protective effect of NAFLD. This work expands our understanding of the regulatory interactions between the host and gut microbiota and provides novel strategies for alleviating obesity.
    Keywords:  Autophagy; Fenofibrate; Non-alcoholic fatty liver disease (NAFLD); TFEB; gut microbiota
    DOI:  https://doi.org/10.1016/j.ejphar.2023.176159
  46. Mol Cell Neurosci. 2023 Oct 31. pii: S1044-7431(23)00098-2. [Epub ahead of print] 103904
      Optineurin (OPTN) gene is a marker of amyotrophic lateral sclerosis (ALS). However, the role of optineurin protein (OPTN) in ALS pathology is unclear, even though it is known to regulate autophagy, apoptosis, and other survival-death cellular processes. Genetic analysis of Indian ALS patients by our group ascertained a novel mutation K489E in the OPTN gene. To identify the molecular mechanism associated with OPTN and its mutation, we developed an in-vitro cell model using SH-SY5Y cells harbouring OPTN and OPTN-K489E mutation along with its control vector. Since we observed a significant decrease in cell viability in the mutant, we measured the expressions of genes and proteins mediating apoptosis, necroptosis, and autophagy, to establish the role of OPTN in cell death regulation. Our results show that OPTN-K489E mutation changes the relative gene expressions of miRNA-9, REST, CoREST and BDNF, and causes apoptosis. We also observed an up-regulation in the expressions of necroptosis mediated genes RIPK1, RIPK3, and MLKL and autophagy mediated genes TBK1, P62, and LC3II. The results of FACS analyses revealed that this mutation promotes apoptotic and necroptotic processes confirming the pathogenicity of OPTN-K489E.
    Keywords:  ALS; Apoptosis; Autophagy; K489E mutation; Necroptosis; OPTN
    DOI:  https://doi.org/10.1016/j.mcn.2023.103904
  47. Trends Cell Biol. 2023 Oct 31. pii: S0962-8924(23)00207-6. [Epub ahead of print]
      Stem cells persist throughout the lifespan to repair and regenerate tissues due to their unique ability to self-renew and differentiate. Here we reflect on the recent discoveries in stem cells that highlight a mitochondrial metabolic checkpoint at the restriction point of the stem cell cycle. Mitochondrial activation supports stem cell proliferation and differentiation by providing energy supply and metabolites as signaling molecules. Concomitant mitochondrial stress can lead to loss of stem cell self-renewal and requires the surveillance of various mitochondrial quality control mechanisms. During aging, a mitochondrial protective program mediated by several sirtuins becomes dysregulated and can be targeted to reverse stem cell aging and tissue degeneration, giving hope for targeting the mitochondrial metabolic checkpoint for treating tissue degenerative diseases.
    Keywords:  NAD; NLRP3; SIRT2; SIRT3; SIRT7; aging
    DOI:  https://doi.org/10.1016/j.tcb.2023.10.003
  48. Autophagy. 2023 Nov 03. 1-17
      Despite the well-described discrepancy between ATG (macroautophagy/autophagy-related) genes in the regulation of hematopoiesis, varying essentiality of core ATG proteins in vertebrate definitive hematopoiesis remains largely unclear. Here, we employed zebrafish (Danio rerio) to compare the functions of six core atg genes, including atg13, becn1 (beclin1), atg9a, atg2a, atg5, and atg3, in vertebrate definitive hematopoiesis via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 ribonucleoprotein and morpholino targeting. Zebrafish with various atg mutations showed autophagic deficiency and presented partially consistent hematopoietic abnormalities during early development. All six atg mutations led to a declined number of spi1b+ (Spi-1 proto-oncogene b) myeloid progenitor cells. However, only becn1 mutation resulted in the expansion of myb+ (v-myb avian myeloblastosis viral oncogene homolog) hematopoietic stem and progenitor cells (HSPCs) and transiently increased coro1a+ (coronin, actin binding protein, 1A) leukocytes, whereas atg3 mutation decreased the number of HSPCs and leukocytes. Proteomic analysis of caudal hematopoietic tissue identified sin3aa (SIN3 transcription regulator family member Aa) as a potential modulator of atg13- and becn1-regulated definitive hematopoiesis. Disruption of sin3aa rescued the expansion of HSPCs and leukocytes in becn1 mutants and exacerbated the decrease of HSPCs in atg13 mutants. Double mutations were also performed to examine alternative functions of various atg genes in definitive hematopoiesis. Notably, becn1 mutation failed to induce HSPCs expansion with one of the other five atg mutations. These findings demonstrated the distinct roles of atg genes and their interplays in zebrafish definitive hematopoiesis, thereby suggesting that the vertebrate definitive hematopoiesis is regulated in an atg gene-dependent manner.Abbreviations: AGM: aorta-gonad-mesonephros; AO: acridine orange; atg: autophagy related; becn1: beclin 1, autophagy related; CHT: caudal hematopoietic tissue; CKO: conditional knockout; coro1a: coronin, actin binding protein, 1A; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; dpf: days post fertilization; FACS: fluorescence-activated cell sorting; hbae1.1: hemoglobin, alpha embryonic 1.1; HSCs: hematopoietic stem cells; HSPCs: hematopoietic stem and progenitor cells; KD: knockdown; KO: knockout; map1lc3/lc3: microtubule-associated protein 1 light chain 3; MO: morpholino; mpeg1.1: macrophage expressed 1, tandem duplicate 1; mpx: myeloid-specific peroxidase; myb: v-myb avian myeloblastosis viral oncogene homolog; PE: phosphatidylethanolamine; p-H3: phospho-H3 histone; PtdIns3K: class 3 phosphatidylinositol 3-kinase; rag1: recombination activating 1; rb1cc1/fip200: RB1-inducible coiled-coil 1; RFLP: restriction fragment length polymorphism; RNP: ribonucleoprotein; sin3aa: SIN3 transcription regulator family member Aa; spi1b: Spi-1 proto-oncogene b; ulk: unc-51 like autophagy activating kinase; vtg1: vitellogenin 1; WISH: whole-mount in situ hybridization.
    Keywords:  Autophagy-related genes; CRISPR-Cas9 ribonucleoprotein; definitive hematopoiesis; hematopoietic stem and progenitor cells; zebrafish
    DOI:  https://doi.org/10.1080/15548627.2023.2274251
  49. J Cell Biol. 2023 Dec 04. pii: e202303108. [Epub ahead of print]222(12):
      Enterovirus 71 (EV71) and Coxsackie A16 (CVA16) are two major causative agents of hand, foot, and mouth disease (HFMD) in young children. However, the mechanisms regulating the replication and pathogenesis of EV71/CVA16 remain incompletely understood. We performed a genome-wide CRISPR-Cas9 knockout screen and identified Ragulator as a mediator of EV71-induced apoptosis and pyroptosis. The Ragulator-Rag complex is required for EV71 and CVA16 replication. Upon infection, the Ragulator-Rag complex recruits viral 3D protein to the lysosomal surface through the interaction between 3D and RagB. Disruption of the lysosome-tethered Ragulator-Rag-3D complex significantly impairs the replication of EV71/CVA16. We discovered a novel EV71 inhibitor, ZHSI-1, which interacts with 3D and significantly reduces the lysosomal tethering of 3D. ZHSI-1 treatment significantly represses replication of EV71/CVA16 as well as virus-induced pyroptosis associated with viral pathogenesis. Importantly, ZHSI-1 treatment effectively protects against EV71 infection in neonatal and young mice. Thus, our study indicates that targeting lysosome-tethered Ragulator-Rag-3D may be an effective therapeutic strategy for HFMD.
    DOI:  https://doi.org/10.1083/jcb.202303108
  50. Autophagy. 2023 Oct 31. 1-21
      During starvation in the yeast Saccharomyces cerevisiae vacuolar vesicles fuse and lipid droplets (LDs) can become internalized into the vacuole in an autophagic process named lipophagy. There is a lack of tools to quantitatively assess starvation-induced vacuole fusion and lipophagy in intact cells with high resolution and throughput. Here, we combine soft X-ray tomography (SXT) with fluorescence microscopy and use a deep-learning computational approach to visualize and quantify these processes in yeast. We focus on yeast homologs of mammalian NPC1 (NPC intracellular cholesterol transporter 1; Ncr1 in yeast) and NPC2 proteins, whose dysfunction leads to Niemann Pick type C (NPC) disease in humans. We developed a convolutional neural network (CNN) model which classifies fully fused versus partially fused vacuoles based on fluorescence images of stained cells. This CNN, named Deep Yeast Fusion Network (DYFNet), revealed that cells lacking Ncr1 (ncr1∆ cells) or Npc2 (npc2∆ cells) have a reduced capacity for vacuole fusion. Using a second CNN model, we implemented a pipeline named LipoSeg to perform automated instance segmentation of LDs and vacuoles from high-resolution reconstructions of X-ray tomograms. From that, we obtained 3D renderings of LDs inside and outside of the vacuole in a fully automated manner and additionally measured droplet volume, number, and distribution. We find that ncr1∆ and npc2∆ cells could ingest LDs into vacuoles normally but showed compromised degradation of LDs and accumulation of lipid vesicles inside vacuoles. Our new method is versatile and allows for analysis of vacuole fusion, droplet size and lipophagy in intact cells.Abbreviations: BODIPY493/503: 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-Indacene; BPS: bathophenanthrolinedisulfonic acid disodium salt hydrate; CNN: convolutional neural network; DHE; dehydroergosterol; npc2∆, yeast deficient in Npc2; DSC, Dice similarity coefficient; EM, electron microscopy; EVs, extracellular vesicles; FIB-SEM, focused ion beam milling-scanning electron microscopy; FM 4-64, N-(3-triethylammoniumpropyl)-4-(6-[4-{diethylamino} phenyl] hexatrienyl)-pyridinium dibromide; LDs, lipid droplets; Ncr1, yeast homolog of human NPC1 protein; ncr1∆, yeast deficient in Ncr1; NPC, Niemann Pick type C; NPC2, Niemann Pick type C homolog; OD600, optical density at 600 nm; ReLU, rectifier linear unit; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient; SXT, soft X-ray tomography; UV, ultraviolet; YPD, yeast extract peptone dextrose.
    Keywords:  Deep learning; Niemann-Pick disease; X-ray; lipophagy; segmentation; tomography
    DOI:  https://doi.org/10.1080/15548627.2023.2270378
  51. J Cell Biol. 2023 Dec 04. pii: e202301084. [Epub ahead of print]222(12):
      Neuronal autophagosomes form and engulf cargos at presynaptic sites in the axon and are then transported to the soma to recycle their cargo. Autophagic vacuoles (AVs) mature en route via fusion with lysosomes to become degradatively competent organelles; transport is driven by the microtubule motor protein cytoplasmic dynein, with motor activity regulated by a sequential series of adaptors. Using lysate-based single-molecule motility assays and live-cell imaging in primary neurons, we show that JNK-interacting proteins 3 (JIP3) and 4 (JIP4) are activating adaptors for dynein that are regulated on autophagosomes and lysosomes by the small GTPases ARF6 and RAB10. GTP-bound ARF6 promotes formation of the JIP3/4-dynein-dynactin complex. Either knockdown or overexpression of RAB10 stalls transport, suggesting that this GTPase is also required to coordinate the opposing activities of bound dynein and kinesin motors. These findings highlight the complex coordination of motor regulation during organelle transport in neurons.
    DOI:  https://doi.org/10.1083/jcb.202301084
  52. Proc Natl Acad Sci U S A. 2023 Nov 07. 120(45): e2301534120
      L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.
    Keywords:  Alzheimer’s disease; RNA-binding protein; mammalian target of rapamycin; tuberous sclerosis complex; voltage-gated calcium channels
    DOI:  https://doi.org/10.1073/pnas.2301534120
  53. J Cell Biochem. 2023 Nov 01.
      Curcumin, a kind of natural compound, has been previously proven to inhibit the autophagy in hepatic stellate cells (HSCs) and induce their apoptosis. However, it is not clear whether the enhanced apoptosis of activated HSCs (aHSCs) caused by curcumin depends on autophagy inhibition. We aim to verify this hypothesis and explore the potential mechanisms in this study. Immortalized human HSC line LX-2 was used as an experimental specimen and pretreated with transforming growth factor β1(TGF-β1) for 24 h to activate it before drug application. The levels of autophagy, apoptosis, cell activity, lipid metabolism, and the activity of the PI3K/Akt/mTOR signal pathway were evaluated by multiple methods, such as Western blotting, mcherry-EGFP-LC3B adenoviruses transfection, immunofluorescence, Nile Red staining, flow cytometry among others. Our results showed that rapamycin, an autophagy activator, could partly offset the effects of curcumin on autophagy and apoptosis of LX-2 cells, while 3-Methyladenine (3-MA), an autophagy inhibitor, could enhance these effects. Furthermore, curcumin could promote the activity of the PI3K/Akt/mTOR signal pathway in LX-2 cells, while PI3K inhibitor could partly offset this effect and increase the autophagy level. Overall, we demonstrated that curcumin could inhibit the activity and promote LX-2 cells apoptosis by suppressing autophagy by activating the PI3K/Akt/mTOR signal pathway. In addition, lipid recovery and energy deprivation due to autophagy inhibition may be the exact mechanism by which curcumin attenuates the pro-fibrotic activity of LX-2.
    Keywords:  apoptosis; autophagy; curcumin; hepatic stellate cell; lipid metabolism; liver fibrosis
    DOI:  https://doi.org/10.1002/jcb.30487
  54. Biotechnol J. 2023 Oct 28. e2300397
      Rosmarinic acid (RA) has gained attraction in bioprocessing as a media supplement to improve cellular proliferation and protein production. Here, we observe up to a two-fold increase in antibody production with RA-supplementation, and a concentration-dependent effect of RA on cell proliferation for fed-batch CHO cell cultures. Contrary to previously reported antioxidant activity, RA increased the reactive oxygen species (ROS) levels, stimulated endoplasmic reticulum (ER) stress, activated the unfolded protein response (UPR), and elicited DNA damage. Despite such stressful events, RA appeared to maintained cell health via mTOR pathway activation; both mTORC1 and mTORC2 were stimulated in RA-supplemented cultures. By reversing such mTOR pathway activity through either chemical inhibitor addition or siRNA knockdown of genes regulating the mTORC1 and mTORC2 complexes, antibody production, UPR signaling, and stress-induced DNA damage were reduced. Further, the proliferative effect of RA appeared to be regulated selectively by mTORC2 activation and have reproduced this observation by using the mTORC2 stimulator SC-79. Analogously, knockdown of mTORC2 strongly reduced XBP1 splicing, which would be expected to reduce antibody folding and secretion, sugging that reduced mTORC2 would correlate with reduced antibody levels. The crosstalk between mTOR activation and UPR upregulation may thus be related directly to the enhanced productivity. Our results show the importance of the mTOR and UPR pathways in increasing antibody productivity, and suggest that RA supplementation may obviate the need for labor-intensive genetic engineering by directly activating pathways favorable to cell culture performance. This article is protected by copyright. All rights reserved.
    Keywords:  antibody; bioprocess; cellular engineering; metabolism
    DOI:  https://doi.org/10.1002/biot.202300397
  55. Cell Rep. 2023 Oct 25. pii: S2211-1247(23)01332-3. [Epub ahead of print] 113320
      In response to environmental cues, such as nutrient starvation, living organisms modulate gene expression through mechanisms involving histone modifications. Specifically, nutrient depletion inactivates the TOR (target of rapamycin) pathway, leading to reduced expression of ribosomal genes. While these regulatory mechanisms are well elucidated in budding yeast Saccharomyces cerevisiae, their conservation across diverse organisms remains unclear. In this study, we demonstrate that fission yeast Schizosaccharomyces pombe cells repress ribosomal gene transcription through a different mechanism. TORC1, which accumulates in the rDNA region, dissociates upon starvation, resulting in enhanced methylation of H3K9 and heterochromatin formation, facilitated by dissociation of the stress-responsive transcription factor Atf1 and accumulation of the histone chaperone FACT. We propose that this mechanism might be adapted in mammals that possess Suv39H1 and HP1, which are absent in budding yeast.
    Keywords:  ATF/CREB; CP: Molecular biology; TOR pathway; fission yeast; heterochromatin; ribosome; stress response
    DOI:  https://doi.org/10.1016/j.celrep.2023.113320