bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2023–10–22
sixty papers selected by
Viktor Korolchuk, Newcastle University



  1. Neural Regen Res. 2024 May;19(5): 998-1005
      Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.
    Keywords:  Alzheimer’s disease; PINK1; Parkin; Parkinson’s disease; amyotrophic lateral sclerosis; autophagy; mitochondria; mitophagy; mitophagy receptor
    DOI:  https://doi.org/10.4103/1673-5374.385281
  2. Neurosci Bull. 2023 Oct 19.
      Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
    Keywords:  AMPK; Autophagy; Beclin 1; Cerebral ischemia; Endoplasmic reticulum stress; Neurodegenerative diseases; TP53; mTOR
    DOI:  https://doi.org/10.1007/s12264-023-01120-y
  3. Cell Rep. 2023 Oct 19. pii: S2211-1247(23)01303-7. [Epub ahead of print]42(10): 113291
      Dysfunctional mitochondria are removed via multiple pathways, such as mitophagy, a selective autophagy process. Here, we identify an intracellular hybrid mitochondria-lysosome organelle (termed the mitochondria-lysosome-related organelle [MLRO]), which regulates mitochondrial homeostasis independent of canonical mitophagy during hepatocyte dedifferentiation. The MLRO is an electron-dense organelle that has either a single or double membrane with both mitochondria and lysosome markers. Mechanistically, the MLRO is likely formed from the fusion of mitochondria-derived vesicles (MDVs) with lysosomes through a PARKIN-, ATG5-, and DRP1-independent process, which is negatively regulated by transcription factor EB (TFEB) and associated with mitochondrial protein degradation and hepatocyte dedifferentiation. The MLRO, which is galectin-3 positive, is reminiscent of damaged lysosome and could be cleared by overexpression of TFEB, resulting in attenuation of hepatocyte dedifferentiation. Together, results from this study suggest that the MLRO may act as an alternative mechanism for mitochondrial quality control independent of canonical autophagy/mitophagy involved in cell dedifferentiation.
    Keywords:  ATG5; CP: Cell biology; DRP1; autophagy; hepatocytes; lysosome; mitophagy
    DOI:  https://doi.org/10.1016/j.celrep.2023.113291
  4. Neural Regen Res. 2024 May;19(5): 1150-1155
      Parkinson's disease is a progressive neurodegenerative disease characterized by motor deficits, dopaminergic neuron loss, and brain accumulation of α-synuclein aggregates called Lewy bodies. Dysfunction in protein degradation pathways, such as autophagy, has been demonstrated in neurons as a critical mechanism for eliminating protein aggregates in Parkinson's disease. However, it is less well understood how protein aggregates are eliminated in glia, the other cell type in the brain. In the present study, we show that autophagy-related gene 9 (Atg9), the only transmembrane protein in the autophagy machinery, is highly expressed in Drosophila glia from adult brain. Results from immunostaining and live cell imaging analysis reveal that a portion of Atg9 localizes to the trans-Golgi network, autophagosomes, and lysosomes in glia. Atg9 is persistently in contact with these organelles. Lacking glial atg9 reduces the number of omegasomes and autophagosomes, and impairs autophagic substrate degradation. This suggests that glial Atg9 participates in the early steps of autophagy, and hence the control of autophagic degradation. Importantly, loss of glial atg9 induces parkinsonian symptoms in Drosophila including progressive loss of dopaminergic neurons, locomotion deficits, and glial activation. Our findings identify a functional role of Atg9 in glial autophagy and establish a potential link between glial autophagy and Parkinson's disease. These results may provide new insights on the underlying mechanism of Parkinson's disease.
    Keywords:  Atg9; Parkinson’s disease; autophagy; glia
    DOI:  https://doi.org/10.4103/1673-5374.382259
  5. Biochem J. 2023 Oct 31. 480(20): 1639-1657
      Mitophagy, the autophagic breakdown of mitochondria, is observed in eukaryotic cells under various different physiological circumstances. These can be broadly categorized into two types: mitophagy related to quality control events and mitophagy induced during developmental transitions. Quality control mitophagy involves the lysosomal or vacuolar degradation of malfunctioning or superfluous mitochondria within lysosomes or vacuoles, and this is thought to serve as a vital maintenance function in respiring eukaryotic cells. It plays a crucial role in maintaining physiological balance, and its disruption has been associated with the progression of late-onset diseases. Developmentally induced mitophagy has been reported in the differentiation of metazoan tissues which undergo metabolic shifts upon developmental transitions, such as in the differentiation of red blood cells and muscle cells. Although the mechanistic studies of mitophagy in mammalian cells were initiated after the initial mechanistic findings in Saccharomyces cerevisiae, our current understanding of the physiological role of mitophagy in yeast remains more limited, despite the presence of better-defined assays and tools. In this review, I present my perspective on our present knowledge of mitophagy in yeast, focusing on physiological and mechanistic aspects. I aim to focus on areas where our understanding is still incomplete, such as the role of mitochondrial dynamics and the phenomenon of protein-level selectivity.
    Keywords:   Saccharomyces cerevisiae ; autophagy; mitophagy
    DOI:  https://doi.org/10.1042/BCJ20230279
  6. Trends Neurosci. 2023 Oct 16. pii: S0166-2236(23)00224-2. [Epub ahead of print]
      Lysosomes play crucial roles in various cellular processes - including endocytosis, phagocytosis, and autophagy - which are vital for maintaining retinal health. Moreover, these organelles serve as environmental sensors and act as central hubs for multiple signaling pathways. Through communication with other cellular components, such as mitochondria, lysosomes orchestrate the cytoprotective response essential for preserving cellular homeostasis. This coordination is particularly critical in the retina, given its high metabolic rate and susceptibility to photo-oxidative stress. Consequently, impaired lysosomal function and dysregulated communication between lysosomes and other organelles contribute significantly to the pathobiology of major retinal degenerative diseases. This review explores the pivotal role of lysosomes in retinal cells and their involvement in retinal degenerative diseases.
    Keywords:  age-related macular degeneration; glaucoma; lysosome membrane permeabilization; lysosome–mitochondria crosstalk; mTOR signaling; retinitis pigmentosa
    DOI:  https://doi.org/10.1016/j.tins.2023.09.006
  7. Chem Sci. 2023 Oct 18. 14(40): 11192-11202
      The ability to regulate mitophagy in a living system with small molecules remains a great challenge. We hypothesize that adding fragments specific to the key autophagosome protein LC3 to mitochondria will mimic receptor-mediated mitophagy, thus engaging the autophagy-lysosome pathway to induce mitochondrial degradation. Herein, we develop a general biochemical approach to modulate mitophagy, dubbed mito-ATTECs, which employ chimera molecules composed of LC3-binding moieties linked to mitochondria-targeting ligands. Mito-ATTECs trigger mitophagy via targeting mitochondria to autophagosomes through direct interaction between mito-ATTECs and LC3 on mitochondrial membranes. Subsequently, autophagosomes containing mitochondria rapidly fuse with lysosomes to facilitate the degradation of mitochondria. Therefore, mito-ATTECs circumvent the detrimental effects related to disruption of mitochondrial membrane integrity by inducers routinely used to manipulate mitophagy, and provide a versatile biochemical approach to investigate the physiological roles of mitophagy. Furthermore, we found that sustained mitophagy lead to mitochondrial depletion and autophagic cell death in several malignant cell lines (lethal mitophagy). Among them, apoptosis-resistant malignant melanoma cell lines are particularly sensitive to lethal mitophagy. The therapeutic efficacy of mito-ATTECs has been further evaluated by using subcutaneous and pulmonary metastatic melanoma models. Together, the mitochondrial depletion achieved by mito-ATTECs may demonstrate the general concept of inducing cancer cell lethality through excessive mitochondrial clearance, establishing a promising therapeutic paradigm for apoptosis-resistant tumors.
    DOI:  https://doi.org/10.1039/d3sc03600f
  8. EMBO Rep. 2023 Oct 17. e56815
      HACE1 is a HECT family E3 ubiquitin-protein ligase with broad but incompletely understood tumor suppressor activity. Here, we report a previously unrecognized link between HACE1 and signaling complexes containing mammalian target of rapamycin (mTOR). HACE1 blocks mTORC1 and mTORC2 activities by reducing mTOR stability in an E3 ligase-dependent manner. Mechanistically, HACE1 binds to and ubiquitylates Ras-related C3 botulinum toxin substrate 1 (RAC1) when RAC1 is associated with mTOR complexes, including at focal adhesions, leading to proteasomal degradation of RAC1. This in turn decreases the stability of mTOR to reduce mTORC1 and mTORC2 activity. HACE1 deficient cells show enhanced mTORC1/2 activity, which is reversed by chemical or genetic RAC1 inactivation but not in cells expressing the HACE1-insensitive mutant, RAC1K147R . In vivo, Rac1 deletion reverses enhanced mTOR expression in KRasG12D -driven lung tumors of Hace1-/- mice. HACE1 co-localizes with mTOR and RAC1, resulting in RAC1-dependent loss of mTOR protein stability. Together, our data demonstrate that HACE1 destabilizes mTOR by targeting RAC1 within mTOR-associated complexes, revealing a unique ubiquitin-dependent process to control the activity of mTOR signaling complexes.
    Keywords:  E3 ubiquitin ligase; HACE1; RAC1; mTORC1 and mTORC2; tumor suppressor gene
    DOI:  https://doi.org/10.15252/embr.202356815
  9. Curr Aging Sci. 2023 Oct 09.
      Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.
    Keywords:  Autophagy; Cell Fate; Cell Plasticity; Differentiation; Endothelial Dysfunction; Endothelial Cell; Regeneration; Reprogramming
    DOI:  https://doi.org/10.2174/0118746098260689231002044435
  10. Biochim Biophys Acta Mol Basis Dis. 2023 Oct 12. pii: S0925-4439(23)00280-6. [Epub ahead of print]1870(1): 166914
      Dysfunctional autophagy aggravates oxidative stress and inflammation in hepatocytes and accelerates the progression of nonalcoholic steatohepatitis (NASH). Here, we demonstrated that cAMP-responsive element-binding protein H (CREBH) is a transcriptional regulator of hepatic autophagy in response to diet-induced NASH. The results showed that the upregulation of CREBH in lipid-overloaded hepatocytes improves cell damage, dysfunction of autophagic flux and associated abnormal accumulation of the autophagosome marker LC3-II and autophagic substrate p62. CREBH deficiency aggravated the dysfunctional autophagy and liver injury and even caused NASH-associated liver fibrosis. In addition, the changing trend of autolysosomes and lysosome membrane-associated protein (LAMP1) was consistent with the expression level of CREBH. This result indicated that CREBH might promote autophagic degradation by restoring the formation of autolysosomes, thereby improving the blocked autophagic flux. Moreover, we observed that CREBH inhibited the expression of Coronin 1a (Coro1a), an autophagosome-lysosome fusion-related gene, through transcriptional regulation. The overexpression of Coro1a in LO2 liver cells inhibited autophagic flux and elevated inflammatory cytokine levels upon palmitic acid (PA) stimulation. Overall, our findings provide new insights into the regulatory role of CREBH in the progression of NASH and reveal that Coro1a is a novel target gene of CREBH based on the autophagy pathway.
    Keywords:  Autophagy; Coronin 1a; cAMP-responsive element-binding protein H; nonalcoholic steatohepatitis
    DOI:  https://doi.org/10.1016/j.bbadis.2023.166914
  11. Autophagy. 2023 Oct 16.
      Activated transmembrane receptors continue to signal following endocytosis and are only silenced upon ESCRT-mediated internalization of the receptors into intralumenal vesicles (ILVs) of the endosomes. Accordingly, endosomes with dysfunctional receptor internalization into ILVs can cause sustained receptor signaling which has been implicated in cancer progression. Here, we describe a surveillance mechanism that allows cells to detect and clear physically intact endosomes with aberrant receptor accumulation and elevated signaling. Proximity biotinylation and proteomics analyses of ESCRT-0 defective endosomes revealed a strong enrichment of the ubiquitin-binding macroautophagy/autophagy receptors SQSTM1 and NBR1, a phenotype that was confirmed in cell culture and fly tissue. Live cell microscopy demonstrated that loss of the ESCRT-0 subunit HGS/HRS or the ESCRT-I subunit VPS37 led to high levels of ubiquitinated and phosphorylated receptors on endosomes. This was accompanied by dynamic recruitment of NBR1 and SQSTM1 as well as proteins involved in autophagy initiation and autophagosome biogenesis. Light microscopy and electron tomography revealed that endosomes with intact limiting membrane, but aberrant receptor downregulation were engulfed by phagophores. Inhibition of autophagy caused increased intra- and intercellular signaling and directed cell migration. We conclude that dysfunctional endosomes are surveyed and cleared by an autophagic process, simaphagy, which serves as a failsafe mechanism in signal termination.
    Keywords:  ESCRT; autophagy; endosome; receptor degradation; signaling
    DOI:  https://doi.org/10.1080/15548627.2023.2267958
  12. Neural Regen Res. 2024 Apr;19(4): 729-736
      Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells. Autophagy arbitrates structural and functional remodeling during the cell differentiation process. Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases. Only recently, studies have begun to shed light on autophagy regulation in glia (microglia, astrocyte, and oligodendrocyte) in the brain. Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development, synaptic function, brain metabolism, cellular debris clearing, and restoration of damaged or injured tissues. Thus, this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions, neurodevelopmental disorders, and neurodegenerative diseases. This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases.
    Keywords:  astrocyte; autophagy; glia; microglia; neural stem cells; neurodegenerative diseases; neurodevelopmental disorders; oligodendrocyte
    DOI:  https://doi.org/10.4103/1673-5374.382227
  13. Cell Rep. 2023 Oct 17. pii: S2211-1247(23)01272-X. [Epub ahead of print]42(10): 113260
      Mechanisms that prevent accidental activation of the PINK1/Parkin mitophagy circuit on healthy mitochondria are poorly understood. On the surface of damaged mitochondria, PINK1 accumulates and acts as the input signal to a positive feedback loop of Parkin recruitment, which in turn promotes mitochondrial degradation via mitophagy. However, PINK1 is also present on healthy mitochondria, where it could errantly recruit Parkin and thereby activate this positive feedback loop. Here, we explore emergent properties of the PINK1/Parkin circuit by quantifying the relationship between mitochondrial PINK1 concentrations and Parkin recruitment dynamics. We find that Parkin is recruited to mitochondria only if PINK1 levels exceed a threshold and then only after a delay that is inversely proportional to PINK1 levels. Furthermore, these two regulatory properties arise from the input-coupled positive feedback topology of the PINK1/Parkin circuit. These results outline an intrinsic mechanism by which the PINK1/Parkin circuit can avoid errant activation on healthy mitochondria.
    Keywords:  CP: Molecular biology; PINK1; Parkin; circuit; delay; mathematical model; mitophagy decision; quantitative microscopy; synthetic biology; systems biology; threshold
    DOI:  https://doi.org/10.1016/j.celrep.2023.113260
  14. Biochem Soc Trans. 2023 Oct 16. pii: BST20220711. [Epub ahead of print]
      Lysosomal storage diseases are inborn errors of metabolism that arise due to loss of function mutations in genes encoding lysosomal enzymes, protein co-factors or lysosomal membrane proteins. As a consequence of the genetic defect, lysosomal function is impaired and substrates build up in the lysosome leading to 'storage'. A sub group of these disorders are the sphingolipidoses in which sphingolipids accumulate in the lysosome. In this review, I will discuss how the study of these rare lysosomal disorders reveals unanticipated links to other rare and common human diseases using Niemann-Pick disease type C as an example.
    Keywords:  Tangier disease; inborn errors of metabolism; lysosomal storage diseases; lysosomes; mycobacteria; sphingolipids
    DOI:  https://doi.org/10.1042/BST20220711
  15. Autophagy. 2023 Oct 18. 3031-3032
      I have been surprised at the number of papers I edit where the schematic of macroautophagy/autophagy is wrong, and it is wrong in the same way. How could this happen? Did people get together and agree to misrepresent the morphological intermediates of autophagy? Not exactly.
    Keywords:  Autolysosome; autophagosome; double membrane; fusion; pay attention; single membrane
    DOI:  https://doi.org/10.1080/15548627.2023.2266977
  16. Cell Death Discov. 2023 Oct 18. 9(1): 380
      S1P, also referred to as sphingosine-1-phosphate, is a lipid molecule with bioactive properties involved in numerous cellular processes such as cell growth, movement, programmed cell death, self-degradation, cell specialization, aging, and immune system reactions. Autophagy is a meticulously controlled mechanism in which cells repurpose their elements to maintain cellular balance. There are five stages in autophagy: initiation, nucleation, elongation and maturation, fusion, and degradation. New research has provided insight into the complex connection between S1P and autophagy, uncovering their interaction in both normal and abnormal circumstances. Gaining knowledge about the regulatory mechanism of S1P signaling on autophagy can offer a valuable understanding of its function in well-being and illness, potentially leading to innovative therapeutic concepts for diverse ailments. Hence, this review analyzes the essential stages in mammalian autophagy, with a specific emphasis on recent research exploring the control of each stage by S1P. Additionally, it sheds light on the roles of S1P-induced autophagy in various disorders.
    DOI:  https://doi.org/10.1038/s41420-023-01681-x
  17. Cell Signal. 2023 Oct 14. pii: S0898-6568(23)00342-X. [Epub ahead of print]112 110927
      During the process of atherosclerosis (AS), hypoxia induces plaque macrophage inflammation, promoting lipid accumulation. Autophagy is a cell homeostasis process that increases tolerance to stressors like oxidative stress and hypoxia. However, the specific mechanism by which hypoxia initiates autophagy and the inflammation of macrophages remains to be elucidated. Here, we found that hypoxia-induced macrophage inflammation was mediated by autophagy. Then, the effect of hypoxia on autophagy was investigated in terms of post-translational modifications of proteins. The results showed that desialylation of the autophagy protein ATG5 under hypoxic conditions enhanced protein stability by affecting its charge effect and promoted the formation of the ATG5-ATG12-ATG16L complex, further increasing autophagosome formation. And NEU1, a key enzyme in sialic acid metabolism, was significantly up-regulated under hypoxic conditions and was identified as an interacting protein of ATG5, affecting the sialylation of ATG5. In addition, the knockdown or inhibition of NEU1 reversed hypoxia-induced autophagy and inflammatory responses. In conclusion, our data reveal a key mechanism of autophagy regulation under hypoxia involving ATG5 sialylation and NEU1, suggesting that NEU1 may be a potential target for the prevention and treatment of atherosclerosis.
    Keywords:  ATG5; Autophagy; Hypoxia; Macrophages; NEU1; Sialylation
    DOI:  https://doi.org/10.1016/j.cellsig.2023.110927
  18. Biomed Pharmacother. 2023 Oct 13. pii: S0753-3322(23)01441-5. [Epub ahead of print]168 115643
      Vascular remodelling is an adaptive response to physiological and pathological stimuli that leads to structural and functional changes in the vascular intima, media, and adventitia. Pathological vascular remodelling is a hallmark feature of numerous vascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, pulmonary hypertension and preeclampsia. Autophagy is critical in maintaining cellular homeostasis, and its dysregulation has been implicated in the pathogenesis of various diseases, including vascular diseases. However, despite emerging evidence, the role of autophagy and its dual effects on vascular remodelling has garnered limited attention. Autophagy can exert protective and detrimental effects on the vascular intima, media and adventitia, thereby substantially influencing the course of vascular remodelling and its related vascular diseases. Currently, there has not been a review that thoroughly describes the regulation of autophagy in vascular remodelling and its impact on related diseases. Therefore, this review aimed to bridge this gap by focusing on the regulatory roles of autophagy in diseases related to vascular remodelling. This review also summarizes recent advancements in therapeutic agents targeting autophagy to regulate vascular remodelling. Additionally, this review offers an overview of recent breakthroughs in therapeutic agents targeting autophagy to regulate vascular remodelling. A deeper understanding of how autophagy orchestrates vascular remodelling can drive the development of targeted therapies for vascular diseases.
    Keywords:  Autophagy; Autophagy regulators; Vascular diseases; Vascular remodelling; Vascular remodelling agents
    DOI:  https://doi.org/10.1016/j.biopha.2023.115643
  19. Radiother Oncol. 2023 Oct 12. pii: S0167-8140(23)89845-0. [Epub ahead of print]189 109951
      Radiotherapy is a widely used treatment modality against cancer, and although survival rates are increasing, radioresistant properties of tumours remain a significant barrier for curative treatment. Tumour hypoxia is one of the main contributors to radioresistance and is common in most solid tumours. Hypoxia is responsible for many molecular changes within the cell which helps tumours to survive under such challenging conditions. These hypoxia-induced molecular changes are predominantly coordinated by the hypoxia inducible factor (HIF) and have been linked with the ability to confer resistance to radiation-induced cell death. To overcome this obstacle research has been directed towards autophagy, a cellular process involved in self degradation and recycling of macromolecules, as HIF plays a large role in its coordination under hypoxic conditions. The role that autophagy has following radiotherapy treatment is conflicted with evidence of both cytoprotective and cytotoxic effects. This literature review aims to explore the intricate relationship between radiotherapy, hypoxia, and autophagy in the context of cancer treatment. It provides valuable insights into the potential of targeting autophagy as a therapeutic strategy to improve the response of hypoxic tumours to radiotherapy.
    Keywords:  Autophagy; HIF; Hypoxia; Ionizing radiation; Radioresistance
    DOI:  https://doi.org/10.1016/j.radonc.2023.109951
  20. J Neurochem. 2023 Oct 19.
      Bilirubin encephalopathy is a severe complication of neonatal hyperbilirubinemia. With elevation of serum unconjugated bilirubin (UCB) levels, UCB crosses the blood-brain barrier and possibly leads to neurological dysfunction. Neuroinflammation is recognized as a prominent pathological feature in bilirubin encephalopathy. Recent studies have suggested that autophagy plays a crucial role in the inflammatory response. However, the potential effect of microglial autophagy in the pathogenesis of bilirubin encephalopathy remains uncertain. The in vitro findings verified that in primary cultured microglia, UCB significantly reduced the ratio of LC3B-II to LC3B-I and downregulated the expression of ATG5, Beclin-1, and ATG7, while increasing the expression of p62/SQSTM1. The results showed that UCB could decrease the number of mCherry-EGFP-LC3 positive puncta, even when chloroquine (CQ) was applied to block the microglial autophagy flux. Mechanistically, UCB was found to upregulate the expression of TLR4 and increase the phosphorylation levels of Akt and mammalian target of rapamycin (mTOR). Promoting microglial autophagy by treatment with Rapamycin (RAPA), an mTOR inhibitor, decreased the levels of NOD-like receptor protein 3 (NLRP3) inflammasome components and IL-1β, rescued microglial overactivation, and improved neurological functions. These data indicated that UCB could impact microglial autophagy via the Akt-mTOR signaling pathway and synergistically promote neuroinflammatory responses. Enhancing autophagy might disrupt the assembly of NLRP3 inflammasome, attenuate UCB-induced neuroinflammation, and improve the prognosis of model rats with bilirubin encephalopathy. In conclusion, this study implies that regulating microglial autophagy might be a promising therapeutic strategy for bilirubin encephalopathy.
    Keywords:  autophagy; bilirubin; microglia; neuroinflammation
    DOI:  https://doi.org/10.1111/jnc.15984
  21. Mol Aspects Med. 2023 Oct 13. pii: S0098-2997(23)00057-2. [Epub ahead of print]94 101217
      The optic nerve consists of the glia, vessels, and axons including myelin and axoplasm. Since axonal degeneration precedes retinal ganglion cell death in glaucoma, the preceding axonal degeneration model may be helpful for understanding the molecular mechanisms of optic nerve degeneration. Optic nerve samples from these models can provide information on several aspects of autophagy. Autophagosomes, the most typical organelles expressing autophagy, are found much more frequently inside axons than around the glia. Thus, immunoblot findings from the optic nerve can reflect the autophagy state in axons. Autophagic flux impairment may occur in degenerating optic nerve axons, as in other central nervous system neurodegenerative diseases. Several molecular candidates are involved in autophagy enhancement, leading to axonal protection. This concept is an attractive approach to the prevention of further retinal ganglion cell death. In this review, we describe the factors affecting autophagy, including nicotinamide riboside, p38, ULK, AMPK, ROCK, and SIRT1, in the optic nerve and propose potential methods of axonal protection via enhancement of autophagy.
    Keywords:  AMPK; Autophagy; Glaucoma; Nicotinamide; Optic nerve; ROCK; ULK
    DOI:  https://doi.org/10.1016/j.mam.2023.101217
  22. Trends Plant Sci. 2023 Oct 13. pii: S1360-1385(23)00330-8. [Epub ahead of print]
      Selective autophagy receptors play both proviral and antiviral roles during plant-virus interaction. However, little is known about the balance between such contradictory dual roles of these receptors. Tong et al. have deciphered the temporal regulation of antiviral and antiplant roles of a selective autophagy receptor, a virus-induced small peptide 1 (VISP1).
    Keywords:  RNA silencing; selective autophagy receptor; virus
    DOI:  https://doi.org/10.1016/j.tplants.2023.10.003
  23. J Neurosci. 2023 Oct 19. pii: JN-RM-0204-23. [Epub ahead of print]
      Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spines growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1.These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. Besides disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the cellular mechanisms that aid enhancing memories over time.Significance StatementThe neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, if its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.
    DOI:  https://doi.org/10.1523/JNEUROSCI.0204-23.2023
  24. Cureus. 2023 Sep;15(9): e45335
       BACKGROUND: The possible associations between occupational factors and autophagy - a catabolic process that is evolutionarily conserved and serves as a vital cornerstone in maintaining cellular balance - remain largely unexplored.
    OBJECTIVES: We assessed serum levels of beclin-1, a principal effector of autophagy, and the mammalian/mechanistic target of rapamycin (mTOR), a protein recognized for its part in suppressing autophagy, within a group of healthy individuals hailing from three different professional fields, each characterized by its unique working conditions.
    METHODS: A total of 60 men were recruited from three distinct occupational categories: airline pilots, construction laborers, and fitness trainers. Each group consisted of 20 subjects who were selected during routine occupational health appointments. Serum levels of beclin-1 and mTOR were measured using commercially available immunoassays and compared among the three categories.
    RESULTS: Fitness instructors had the highest concentration of beclin-1 (3.1 ± 0.9 ng/mL). Construction workers followed with a mean of 2.4 ± 0.4 ng/mL, while airline pilots had the lowest levels at 1.9 ± 0.5 ng/mL (one-way analysis of variance, P < 0.001). In terms of mTOR levels, construction workers had the highest concentration (5.9 ± 1.9 ng/mL), followed by airline pilots (4.4 ± 1.7 ng/mL). Fitness instructors, on the other hand, had the lowest mTOR levels (3.5 ± 1.2 ng/mL; one-way analysis of variance, P < 0.001).
    CONCLUSIONS: Serum levels of autophagy biomarkers can vary among healthy individuals based on their professional roles. Considering the crucial function autophagy serves in both health and disease, further investigations are crucial to deepen our comprehension of the potential implications of autophagy in the field of occupational medicine.
    Keywords:  autophagy; beclin-1; laboratory medicine; mammalian/mechanistic target of rapamycin; occupational medicine
    DOI:  https://doi.org/10.7759/cureus.45335
  25. Nat Commun. 2023 Oct 14. 14(1): 6493
      Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.
    DOI:  https://doi.org/10.1038/s41467-023-42154-0
  26. J Transl Med. 2023 Oct 19. 21(1): 738
       BACKGROUND: Autophagy is involved in nasopharyngeal carcinoma (NPC) radioresistance. Replication protein A 1 (RPA1) and RPA3, substrates of the RPA complex, are potential therapeutic targets for reversing NPC radioresistance. Nevertheless, the role of RPA in autophagy is not adequately understood. This investigation was performed to reveal the cytotoxic mechanism of a pharmacologic RPA inhibitor (RPAi) in NPC cells and the underlying mechanism by which RPAi-mediated autophagy regulates NPC radiosensitivity.
    METHODS AND RESULTS: We characterized a potent RPAi (HAMNO) that was substantially correlated with radiosensitivity enhancement and proliferative inhibition of in vivo and in NPC cell lines in vitro. We show that the RPAi induced autophagy at multiple levels by inducing autophagic flux, AMPK/mTOR pathway activation, and autophagy-related gene transcription by decreasing glycolytic function. We hypothesized that RPA inhibition impaired glycolysis and increased NPC dependence on autophagy. We further demonstrated that combining autophagy inhibition with chloroquine (CQ) treatment or genetic inhibition of the autophagy regulator ATG5 and RPAi treatment was more effective than either approach alone in enhancing the antitumor response of NPC to radiation.
    CONCLUSIONS: Our study suggests that HAMNO is a potent RPAi that enhances radiosensitivity and induces autophagy in NPC cell lines by decreasing glycolytic function and activating autophagy-related genes. We suggest a novel treatment strategy in which pharmacological inhibitors that simultaneously disrupt RPA and autophagic processes improve NPC responsiveness to radiation.
    Keywords:  Autophagy; Nasopharyngeal carcinoma; RPA; Radiotherapy
    DOI:  https://doi.org/10.1186/s12967-023-04574-w
  27. mSphere. 2023 Oct 17. e0046023
      Autophagy is a major pathway for unspooling cytoplasmic constituents and recycling them. Here, we investigate autophagy in Neurospora crassa, a close ascomycete relative to the model yeast Saccharomyces cerevisiae. High-pressure-freeze and freeze-substitution techniques proved keys to preservation of the surprising autophagic structures observed in Neurospora by transmission electron microscopy and electron tomography. Depriving Neurospora of carbon triggers two parallel processes at the plasma membrane: formation of vacuoles, initially along the plasma membrane but stuffing 70%-80% of cytoplasmic volume after several hours. The vacuoles contain material left over from digested proteins, disrupted ribosomes or glycogen clumps, plus other discrete organelle-like objects. Also, they accumulate the canonical autophagy marker Atg8, appear to be lytic from the start, and probably grow from lysosomes. Formation of diverse phagophores and autophagosomes, multi-membrane organelles manufactured de novo by the plasma membrane-a feature so far unique to Neurospora. These autophagic structures can be observed attached either to the cell membrane, to the cell wall, or free in the cytoplasm, viz. as mature organelles after detachment from the cell membrane. Although phagophores are clearly observed in carbon-replete cells, their production increases with carbon starvation-and these, too, often appear lytic. ATG1, the canonical initiator of phagophore formation in yeast, is not required for the formation of phagophores in Neurospora. This work provides clear structural and functional evidence that Neurospora's autophagic organelles differ from those observed by others in yeast.IMPORTANCENeurospora is a quintessential tip-growing organism, which is well known for packaging and longitudinal transport of tip-building blocks. Thus far, however, little attention has been paid to the co-essential process of reclamation, that is-taking apart of upstream, older structural elements, otherwise known as "autophagy". We are not yet prepared to set out the chemistry of that elaborate process, but its morphological start alone is worthy of attention. Carbon starvation triggers significant autophagic changes, beginning with prolific vacuolation along the plasma membrane, and eventual filling of 70% (or more) of cytoplasmic volume. Additionally, the Neurospora plasma membrane elaborates a variety of phagophores which themselves often look lytic. These have either dual enclosing membranes, like the familiar autophagosomes, can be doubled and have four wrapping membranes, or can be compounded with multiple membrane layers. These reclamation processes must be accommodated by the mechanism of tip growth.
    Keywords:  autophagosomes; doubled phagophores; electron tomography; lysosomes; microvesicles; mycelial fungi; phagophore branching; plasma membrane in-growth; vacuole proliferation
    DOI:  https://doi.org/10.1128/msphere.00460-23
  28. Mol Ther. 2023 Oct 13. pii: S1525-0016(23)00557-9. [Epub ahead of print]
      Osteoarthritis (OA) is the most common joint disease, but no disease-modifying drugs have been approved for OA treatment. Mitophagy participates in mitochondrial homeostasis regulation by selectively clearing dysfunctional mitochondria, which might contribute to cartilage degeneration in OA. Here, we provide evidence of impaired mitophagy in OA chondrocytes, which exacerbates chondrocyte degeneration. Among the several classic mitophagy-regulating pathways and receptors, we found that FUNDC1 plays a key role in preserving chondrocyte homeostasis by inducing mitophagy. FUNDC1 knockdown in vitro and knockout in vivo decreased mitophagy and exacerbated mitochondrial dysfunction, exacerbating chondrocyte degeneration and OA progression. FUNDC1 overexpression via intra-articular injection of adeno-associated virus alleviated cartilage degeneration in OA. Mechanistically, our study demonstrated that PFKP interacts with and dephosphorylates FUNDC1 to induce mitophagy in chondrocytes. Further analysis identified KD025 as a candidate drug for restoring chondrocyte mitophagy by increasing the FUNDC1- PFKP interaction and thus alleviating cartilage degeneration in mice with DMM-induced OA. Our study highlights the role of the FUNDC1-PFKP interaction in chondrocyte homeostasis via mitophagy induction and identifies KD025 as a promising agent for treating OA by increasing chondrocyte mitophagy.
    DOI:  https://doi.org/10.1016/j.ymthe.2023.10.016
  29. Nat Plants. 2023 Oct 16.
      Actin-related protein (ARP2/3) complex is a heteroheptameric protein complex, evolutionary conserved in all eukaryotic organisms. Its conserved role is based on the induction of actin polymerization at the interface between membranes and the cytoplasm. Plant ARP2/3 has been reported to participate in actin reorganization at the plasma membrane during polarized growth of trichomes and at the plasma membrane-endoplasmic reticulum contact sites. Here we demonstrate that individual plant subunits of ARP2/3 fused to fluorescent proteins form motile spot-like structures in the cytoplasm that are associated with peroxisomes in Arabidopsis and tobacco. ARP2/3 is found at the peroxisome periphery and contains the assembled ARP2/3 complex and the WAVE/SCAR complex subunit NAP1. This ARP2/3-positive peroxisomal domain colocalizes with the autophagosome and, under conditions that affect the autophagy, colocalization between ARP2/3 and the autophagosome increases. ARP2/3 subunits co-immunoprecipitate with ATG8f and peroxisome-associated ARP2/3 interact in vivo with the ATG8f marker. Since mutants lacking functional ARP2/3 complex have more peroxisomes than wild type, we suggest that ARP2/3 has a novel role in the process of peroxisome degradation by autophagy, called pexophagy.
    DOI:  https://doi.org/10.1038/s41477-023-01542-6
  30. Anticancer Agents Med Chem. 2023 Oct 06.
       BACKGROUND: TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment.
    OBJECTIVE: Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy.
    METHODS: The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition.
    RESULTS: Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone.
    CONCLUSION: Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.
    Keywords:  Apoptosis; Autophagy; Death receptor-5; Desipramine; TRAIL; TRAILDesipramine
    DOI:  https://doi.org/10.2174/0118715206262252231004110310
  31. Biochem Pharmacol. 2023 Oct 18. pii: S0006-2952(23)00456-2. [Epub ahead of print] 115865
      Intervertebral disc degeneration (IVDD) is a prevalent degenerative disease with significant adverse implications for patients' quality of life and socioeconomic status. Although the precise etiology of IVDD remains elusive, the senescence of nucleus pulposus cells is recognized as the primary pathogenic factor of IVDD; however, drugs that may targetedly inhibit senescence are still lacking. In the current study, we evaluated the small-molecule active drug 20-Deoxyingenol(20-DOI) for its effects on combating senescence and delaying the progression of IVDD. In vitro experiments revealed that the administration of 20-DOI displayed inhibitory effects on senescence and the senescence-related cGAS-STING pathway of nucleus pulposus cells. Additionally, it exhibited the ability to enhance lysosome activity and promote autophagy flux within nucleus pulposus cells. Subsequent investigations elucidated that the inhibitory impact of 20-DOI on nucleus pulposus cell senescence was mediated through the autophagy-lysosome pathway. This effect was diminished in the presence of transcription factor EB (TFEB) small hairpin RNA (shRNA), thereby confirming the regulatory role of 20-DOI on the autophagy-lysosome pathway and senescence through TFEB. In vivo experiments demonstrated that 20-DOI effectively impeded the progression ofIVDD in rats. These findings collectively illustrate that 20-DOI may facilitate the autophagy-lysosomal pathway by activating TFEB, thereby suppressing the senescence in nucleus pulposus cells, thus suggesting 20-DOI as a promising therapeutic approach for IVDD.
    Keywords:  20-DOI; Autophagy-lysosome pathway; Intervertebral disc degeneration; TFEB, senescence; cGAS-STING
    DOI:  https://doi.org/10.1016/j.bcp.2023.115865
  32. Exp Neurol. 2023 Oct 18. pii: S0014-4886(23)00262-5. [Epub ahead of print] 114577
       BACKGROUND: Early brain injury (EBI) refers to a severe brain injury that occurs within hours to days after subarachnoid hemorrhage (SAH). Neuronal damage in EBI is considered a key factor leading to poor prognosis. Currently, our understanding of the mechanisms of neuronal damage, such as neuronal autophagy, is still incomplete. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in metabolism and plays an important role in autophagy. Based on this, this study will further explore the regulation of autophagy by GAPDH after SAH, which may provide a new treatment strategy for improving the prognosis of SAH patients.
    METHODS: The rat SAH model was established by endovascular puncturing, and the trend of autophagy in hippocampal neurons at different time points was discussed. Additionally, an in vitro SAH model was created using the oxygenated hemoglobin and hippocampal neuronal HT22 cell line. Through siRNA and overexpression adenovirus techniques, we further investigated the relationship between the key enzyme GAPDH and autophagy in the in vitro SAH model.
    RESULTS: We observed significant neuronal damage in the hippocampus 24 h after SAH, and the proteomics showed significant enrichment of autophagy-related pathways at this time point. Further studies showed that the expression of LC3 and Beclin1 peaked at 24 h, and the nuclear translocation of GAPDH occurred simultaneously with SAH-induced neuronal autophagy. Our in vitro SAH model confirmed the role of GAPDH in regulating the level of autophagy in HT22 cells. Knockdown of GAPDH significantly reduced the level of autophagy, while overexpression of GAPDH increased the level of autophagy.
    CONCLUSION: This study shows the trend of autophagy in hippocampal neurons after SAH, and reveals the regulatory role of GAPDH in SAH-induced autophagy. However, further studies are needed to reveal the exact mechanism of GAPDH in the nuclear translocation regulation of autophagy and validate in animal models.
    Keywords:  Autophagy; Glyceraldehyde-3-phosphate dehydrogenase; Subarachnoid hemorrhage
    DOI:  https://doi.org/10.1016/j.expneurol.2023.114577
  33. FEBS Lett. 2023 Oct 19.
      The discovery of microautophagy, the direct engulfment cytoplasmic material by the lysosome, dates back to 1966 in a morphological study of mammalian cells by Christian de Duve. Since then, studies on microautophagy have shifted towards the elucidation of the physiological significance of the process. However, in contrast to macroautophagy, studies on the molecular mechanisms of microautophagy have been limited. Only recent studies revealed that ATG proteins involved in macroautophagy are also operative in several types of microautophagy and that ESCRT proteins, responsible for the multivesicular body pathway, play a central role in most microautophagy processes. In this review we summarize our current knowledge on the function of ATG and ESCRT proteins in microautophagy.
    Keywords:  ATG; ESCRT; autophagy; lysosome; microautophagy; vacuole
    DOI:  https://doi.org/10.1002/1873-3468.14760
  34. Cardiovasc Toxicol. 2023 Dec;23(11-12): 388-405
      Zinc homeostasis is essential for maintaining redox balance, cell proliferation, and apoptosis. However, excessive zinc exposure is toxic and leads to mitochondrial dysfunction. In this study, we established a zinc overload model by treating rat cardiomyocyte H9c2 cells with Zn2+ at different concentrations. Our results showed that zinc overload increased LDH and reactive oxygen species (ROS) levels, leading to cell death, mitochondrial membrane potential decrease and impaired mitochondrial function and dynamics. Furthermore, zinc overload activated the PINK1/Parkin signaling pathway and induced mitochondrial autophagy via ROS, while NAC inhibited mitophagy and weakened the activation of PINK1/Parkin pathway, thereby preserving mitochondrial biogenesis. In addition, our data also showed that Mfn2 deletion increased ROS production and exacerbated cytotoxicity induced by zinc overload. Our results therefore suggest that Zn2+-induced ROS generation causes mitochondrial autophagy and mitochondrial dysfunction, damaging H9c2 cardiomyocytes. Additionally, Mfn2 may play a key role in zinc ion-mediated endoplasmic reticulum and mitochondrial interactions. Our results provide a new perspective on zinc-induced toxicology.
    Keywords:  H9c2; Mitofusin-2; Mitophagy; Reactive oxygen species; Zinc overload
    DOI:  https://doi.org/10.1007/s12012-023-09811-8
  35. J Agric Food Chem. 2023 Oct 20.
      Skeletal muscle dysfunction caused by obesity is characterized by the decline in mitochondrial content and function. 5-Heptadecylresorcinol (AR-C17) is a specific bioactive component derived from whole wheat and rye, which has been evidenced to improve obesity-associated skeletal muscle dysregulation. However, the mechanism underlying its protective activity requires further exploration. Herein, we found that AR-C17 (5, 10, and 20 μM) intervention reversed PA-induced (0.5 mM) reduction in mitochondrial content, mitochondrial membrane potential, and mitochondrial energy metabolism in C2C12 cells. Meanwhile, AR-C17 evidently alleviated PA-mediated myotube mitochondrial dysfunction via elevating mitochondria autophagy flux and upregulating the expression level of autophagy-related protein, while this effect was abolished by an autophagy inhibitor (3-MA). Further analysis showed that SIRT3-FOXO3A-PINK-Parkin-mediated mitophagy was involved in the modulation of myocyte mitochondrial dysfunction by AR-C17. In addition, AR-C17 administration (30 and 150 mg/kg/day) significantly improved high-fat-diet-induced mitochondrial dysregulation in mice skeletal muscle tissue via SIRT3-dependent mitophagy. Our findings indicate that skeletal muscle cells are responsive to AR-C17, which improves myogenesis and mitophagy in vitro and in vivo.
    Keywords:  5-heptadecylresorcinol; SIRT3; mitochondrial function; mitophagy; skeletal muscle
    DOI:  https://doi.org/10.1021/acs.jafc.3c01452
  36. Physiol Behav. 2023 Oct 18. pii: S0031-9384(23)00302-5. [Epub ahead of print] 114377
      Major affective disorders are highly prevalent, however, current treatments are limited in their effectiveness due to a lack of understanding of underlying molecular mechanisms. Recent studies have shown that reduced activity of p70 S6 kinase 1 (S6K1), a downstream target of the mechanistic target of rapamycin complex 1 (mTORC1), is linked to anxiety-like behavior in both humans and rodents. The purpose of this study was to investigate the relationship between S6K1 and anxiety-like behavior following chronic mild stress (CMS) and drug-induced inhibition of S6K1. Following CMS, anxiety-like behavior was evaluated using an open field (OF) and elevated plus maze (EPM) in adult male C57/Bl6 mice. After behavior analysis, samples of the hippocampus were harvested for quantification of S6K1, S6 ribosomal protein, GSK3β and beta tubulin via western blot. Our results demonstrate that CMS mice exhibit anxiety-like behavior in the OF and EPM and reduced activity of S6K1 in the hippocampus (HPC). We measured phosphorylation levels of GSK3β and found that GSK3β phosphorylation was also reduced following CMS compared to control mice. Furthermore, pharmacological inhibition of S6K1 with PF-4708671 in male mice was sufficient to produce anxiety-like behavior in the OF and EPM. These results further support the significant role of S6K1 in the pathogenesis of anxiety and affective disorders.
    Keywords:  anxiety; chronic mild stress; hippocampus; mTORC1; mice; p70 S6K1
    DOI:  https://doi.org/10.1016/j.physbeh.2023.114377
  37. Traffic. 2023 Oct 17.
      In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.
    Keywords:  ATP7B; TGN-endolysosome contact; TGN-proximal lysosomes; Wilson disease; endolysosomes; hepatocytes; trans-Golgi network
    DOI:  https://doi.org/10.1111/tra.12919
  38. J Neuroinflammation. 2023 Oct 20. 20(1): 240
       BACKGROUND: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Impaired autophagy in plaque-associated microglia (PAM) has been reported to accelerate amyloid plaque deposition and cognitive impairment in AD pathogenesis. Recent evidence suggests that the transcription factor EB (TFEB)-mediated activation of the autophagy-lysosomal pathway is a promising treatment approach for AD. Moreover, the complementary therapy of intermittent hypoxia therapy (IHT) has been shown to upregulate autophagy and impart beneficial effects in patients with AD. However, the effect of IHT on PAM remains unknown.
    METHODS: 8-Month-old APP/PS1 mice were treated with IHT for 28 days. Spatial learning memory capacity and anxiety in mice were investigated. AD pathology was determined by the quantity of nerve fibers and synapses density, numbers of microglia and neurons, Aβ plaque deposition, pro-inflammatory factors, and the content of Aβ in the brain. TFEB-mediated autophagy was determined by western blot and qRT-PCR. Primary microglia were treated with oligomeric Aβ 1-42 (oAβ) combined with IHT for mechanism exploration. Differential genes were screened by RNA-seq. Autophagic degradation process of intracellular oAβ was traced by immunofluorescence.
    RESULTS: In this study, we found that IHT ameliorated cognitive function by attenuating neuronal loss and axonal injury in an AD animal model (APP/PS1 mice) with beta-amyloid (Aβ) pathology. In addition, IHT-mediated neuronal protection was associated with reduced Aβ accumulation and plaque formation. Using an in vitro PAM model, we further confirmed that IHT upregulated autophagy-related proteins, thereby promoting the Aβ autophagic degradation by PAM. Mechanistically, IHT facilitated the nuclear localization of TFEB in PAM, with TFEB activity showing a positive correlation with Aβ degradation by PAM in vivo and in vitro. In addition, IHT-induced TFEB activation was associated with the inhibition of the AKT-MAPK-mTOR pathway.
    CONCLUSIONS: These results suggest that IHT alleviates neuronal damage and neuroinflammation via the upregulation of TFEB-dependent Aβ clearance by PAM, leading to improved learning and memory in AD mice. Therefore, IHT may be a promising non-pharmacologic therapy in complementary medicine against AD.
    Keywords:  Alzheimer's disease; Autophagy; Beta-amyloid degradation; Plaque-associated microglia; Transcription factor EB
    DOI:  https://doi.org/10.1186/s12974-023-02931-6
  39. Cold Spring Harb Perspect Med. 2023 Oct 17. pii: a041193. [Epub ahead of print]
      NAD+, the essential metabolite involved in multiple reactions such as the regulation of cellular metabolism, energy production, DNA repair, mitophagy and autophagy, inflammation, and neuronal function, has been the subject of intense research in the field of aging and disease over the last decade. NAD+ levels decline with aging and in some age-related diseases, and reduction in NAD+ affects all the hallmarks of aging. Here, we present an overview of the discovery of NAD+, the cellular pathways of producing and consuming NAD+, and discuss how imbalances in the production rate and cellular request of NAD+ likely contribute to aging and age-related diseases including neurodegeneration. Preclinical studies have revealed great potential for NAD+ precursors in promotion of healthy aging and improvement of neurodegeneration. This has led to the initiation of several clinical trials with NAD+ precursors to treat accelerated aging, age-associated dysfunctions, and diseases including Alzheimer's and Parkinson's. NAD supplementation has great future potential clinically, and these studies will also provide insight into the mechanisms of aging.
    DOI:  https://doi.org/10.1101/cshperspect.a041193
  40. Front Physiol. 2023 ;14 1249264
      Bile duct epithelial cells, named cholangiocytes, may undergo a neoplastic transformation leading to cholangiocarcinoma. The role autophagy plays in cancer is still debated and few information are available in cholangiocarcinoma. We report in vitro data, at least in part validated in vivo,i ndicating that autophagy is impaired in intrahepatic cholangiocarcinoma cells, as compared to healthy cholangiocytes, evaluated through LC3II and p62 Western blot analyses. Autophagy impairment was found to be associated with low expression of TFEB protein and high expression of three proteins i.e., c-FLIP, caspase-10 and cleaved BCLAF-1, as compared to healthy cholangiocytes. We highlight biological effects of autophagy impairment in cholangiocarcinoma showing that autophagy induction, via rapamycin, as well as caspase inhibition, via Q-VD-OPh, are able to reduce proliferation marker PCNA level, colony size and protein content of cultured cholangiocarcinoma cells. The increased protein expression of p62, c-FLIP, caspase-10 observed in vitro in cholangiocarcinoma cells was paralleled by significant increase at gene expression levels in vivo; in fact, significant increase of transcript levels of p62, c-FLIP and caspase-10 was observed in 34 biopsies from human cholangiocarcinoma patients compared to 9 biopsies from 9 healthy controls, as reported in the GEPIA2 public database. The significant increase of p62 level in cholangiocarcinoma was found as a relatively uncommon finding in solid cancers, since it was also found in only 7 cancer types out of 31 cancer types investigated, including melanoma and hepatocarcinoma. In conclusion, we present data suggesting a molecular machinery controlling autophagy in cholangiocytes and autophagy impairment in cholangiocarcinoma.
    Keywords:  autophagic genes and proteins; cancer; caspase; cholangiocytes; proliferation markers
    DOI:  https://doi.org/10.3389/fphys.2023.1249264
  41. Phytother Res. 2023 Oct 18.
      Licochalcone A (LCA) is a bioactive chalcone compound identified in licorice. This study aimed to investigate the effects of LCA on glucolipid metabolism and energy homeostasis, as well as the underlying mechanisms. Blood glucose levels, oral glucose tolerance, serum parameters, and histopathology were examined in high-fat-high-glucose diet (HFD)-induced diabetic mice, with metformin as a positive control. Additionally, changes in key markers related to glucolipid metabolism and mitochondrial function were analyzed to comprehensively assess LCA's effects on metabolism. The results showed that LCA alleviated metabolic abnormalities in HFD-induced diabetic mice, which were manifested by suppression of lipogenesis, promotion of lipolysis, reduction of hepatic steatosis, increase in hepatic glycogenesis, and decrease in gluconeogenesis. In addition, LCA restored energy homeostasis by promoting mitochondrial biogenesis, enhancing mitophagy, and reducing adenosine triphosphate production. Mechanistically, the metabolic benefits of LCA were associated with the downregulation of mammalian target of rapamycin complex 1 and activation of adenosine monophosphate-activated protein kinase, the two central regulators of metabolism. This study demonstrates that LCA can alleviate abnormal glucolipid metabolism and restore energy balance in diet-induced diabetic mice, highlighting its therapeutical potential for the treatment of diabetes.
    Keywords:  AMPK; licochalcone A; mTORC1; mitochondrial functions; type 2 diabetes mellitus
    DOI:  https://doi.org/10.1002/ptr.8044
  42. Autophagy Rep. 2022 ;1(1): 197-200
      Lipid droplets (LDs) are organelles that function as sites for lipid storage. LDs have also been implicated in the cellular response to proteotoxic or lipotoxic stress as sites for sequestering dysfunctional or excess proteins or lipids, and targeting those cargos for degradation by LD microautophagy (microlipophagy, μLP). Here, we describe two mechanisms for μLP in yeast, which are triggered by different stressors. μLP occurs at raft-like liquid ordered microdomains in the vacuolar membrane in yeast exposed to severe nutrient limitations. In contrast, in yeast exposed to ER stress or less severe nutrient limitations, LD uptake at the vacuole is liquid ordered (Lo) microdomain-independent and dependent upon vacuolar membrane remodeling mediated by endosomal sorting complexes required for transport (ESCRT).
    DOI:  https://doi.org/10.1080/27694127.2022.2067643
  43. Neural Regen Res. 2024 Apr;19(4): 825-832
      The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow. Mitochondria are directly affected by direct factors such as ischemia, hypoxia, excitotoxicity, and toxicity of free hemoglobin and its degradation products, which trigger mitochondrial dysfunction. Dysfunctional mitochondria release large amounts of reactive oxygen species, inflammatory mediators, and apoptotic proteins that activate apoptotic pathways, further damaging cells. In response to this array of damage, cells have adopted multiple mitochondrial quality control mechanisms through evolution, including mitochondrial protein quality control, mitochondrial dynamics, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer, to maintain mitochondrial homeostasis under pathological conditions. Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage. This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage, particularly mitochondrial quality control mechanisms. It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.
    Keywords:  mitochondrial biogenesis; mitochondrial dynamics; mitochondrial dysfunction; mitochondrial fission and fusion; mitochondrial quality control; mitophagy; subarachnoid hemorrhage
    DOI:  https://doi.org/10.4103/1673-5374.381493
  44. Anim Nutr. 2023 Dec;15 88-98
      Enhancing hepatic gluconeogenesis is one of the main modes of meeting the glucose requirement of dairy cows. This study attempted to determine whether the gluconeogenesis precursor propionate had an effect on the expression of the main genes involved in gluconeogenesis in calf hepatocytes and elucidate the associated mechanisms. Calf hepatocytes were obtained from 5 healthy calves (1 d old; 30 to 40 kg) and exposed to 0-, 1-, 2.5-, or 5-mM sodium propionate (NaP), which is known to promote the expression of genes involved in the gluconeogenesis pathway, including fructose 1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase. With regard to the underlying mechanism, propionate promoted the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, hepatocyte nuclear factor 4, and forkhead box O1 (transcription factors that regulate the expression of hepatic gluconeogenic genes) by promoting mammalian target of rapamycin complex 1 (mTORC1), but inhibiting mTORC2 activity (P < 0.01). We also established a model of palmitic acid (PA)-induced hepatic injury in calf hepatocytes and found that PA could inhibit the gluconeogenic capacity of calf hepatocytes by suppressing the expression of gluconeogenic genes, inhibiting mTORC1, and promoting the activity of mTORC2 (P < 0.01). In contrast, NaP provided protection to calf hepatocytes by counteracting the inhibitory effect of PA on the gluconeogenic capacity of calf hepatocytes (P < 0.05). Collectively, these findings indicate that NaP enhances the gluconeogenic capacity of calf hepatocytes by regulating the mTOR pathway activity. Thus, in addition to improving the glucose production potential, propionate may have therapeutic potential for the treatment of hepatic injury in dairy cows.
    Keywords:  Gluconeogenesis; Mechanistic target of rapamycin; Palmitic acid; Propionate
    DOI:  https://doi.org/10.1016/j.aninu.2023.07.001
  45. Infect Immun. 2023 Oct 20. e0021723
      Myeloid phagocytes of the respiratory immune system, such as neutrophils, monocytes, and alveolar macrophages, are essential for immunity to Aspergillus fumigatus, the most common etiologic agent of mold pneumonia worldwide. Following the engulfment of A. fumigatus conidia, fusion of the phagosome with the lysosome is a critical process for killing conidia. TFEB and TFE3 are transcription factors that regulate lysosomal biogenesis under stress and are activated by inflammatory stimuli in macrophages, but it is unknown whether TFEB and TFE3 contribute to anti-Aspergillus immunity during infection. We found that lung neutrophils express TFEB and TFE3, and their target genes were upregulated during A. fumigatus lung infection. In addition, A. fumigatus infection induced nuclear accumulation of TFEB and TFE3 in macrophages in a process regulated by Dectin-1 and CARD9. Genetic deletion of Tfeb and Tfe3 impaired macrophage killing of A. fumigatus conidia. However, in a murine immune-competent Aspergillus infection model with genetic deficiency of Tfeb and Tfe3 in hematopoietic cells, we surprisingly found that lung myeloid phagocytes had no defects in conidial phagocytosis or killing. Loss of TFEB and TFE3 did not impact murine survival or clearance of A. fumigatus from the lungs. Our findings indicate that myeloid phagocytes activate TFEB and TFE3 in response to A. fumigatus, and while this pathway promotes macrophage fungicidal activity in vitro, genetic loss can be functionally compensated in the lung, resulting in no measurable defect in fungal control and host survival.
    Keywords:  Aspergillus fumigatus; Fungus; Innate Immunity; Lung; Lysosome; TFE3; TFEB
    DOI:  https://doi.org/10.1128/iai.00217-23
  46. J Mol Endocrinol. 2023 Nov 01. pii: e230035. [Epub ahead of print]71(4):
      Suboptimal in utero environments such as poor maternal nutrition and gestational diabetes can impact fetal birth weight and the metabolic health trajectory of the adult offspring. Fetal growth is associated with alterations in placental mechanistic target of rapamycin (mTOR) signaling; it is reduced in fetal growth restriction and increased in fetal overgrowth. We previously reported that when metabolically challenged by a high-fat diet, placental mTORKO (mTORKOpl) adult female offspring develop obesity and insulin resistance, whereas placental TSC2KO (TSC2KOpl) female offspring are protected from diet-induced obesity and maintain proper glucose homeostasis. In the present study, we sought to investigate whether reducing or increasing placental mTOR signaling in utero alters the programming of adult offspring metabolic tissues preceding a metabolic challenge. Adult male and female mTORKOpl, TSC2KOpl, and respective controls on a normal chow diet were subjected to an acute intraperitoneal insulin injection. Upon insulin stimulation, insulin signaling via phosphorylation of Akt and nutrient sensing via phosphorylation of mTOR target ribosomal S6 were evaluated in the offspring liver, white adipose tissue, and skeletal muscle. Among tested tissues, we observed significant changes only in the liver signaling. In the male mTORKOpl adult offspring liver, insulin-stimulated phospho-Akt was enhanced compared to littermate controls. Basal phospho-S6 level was increased in the mTORKOpl female offspring liver compared to littermate controls and did not increase further in response to insulin. RNA sequencing of offspring liver identified placental mTORC1 programming-mediated differentially expressed genes. The expression of major urinary protein 1 (Mup1) was differentially altered in female mTORKOpl and TSC2KOpl offspring livers and we show that MUP1 level is dependent on overnutrition and fasting status. In summary, deletion of placental mTOR nutrient sensing in utero programs hepatic response to insulin action in a sexually dimorphic manner. Additionally, we highlight a possible role for hepatic and circulating MUP1 in glucose homeostasis that warrants further investigation.
    Keywords:  MUP1; diabetes; fetal programming; insulin sensitivity; mTOR; placenta
    DOI:  https://doi.org/10.1530/JME-23-0035
  47. Trends Plant Sci. 2023 Oct 16. pii: S1360-1385(23)00328-X. [Epub ahead of print]
      Eukaryotic cells' proliferation and growth are controlled by the target of rapamycin kinase (TOR). TOR usually activates in favorable energy and nutritional circumstances. This is challenged by recent research, suggesting that plant cells optimized for nutrient absorption in low nutritional conditions may activate the TOR pathway in a polarized manner.
    DOI:  https://doi.org/10.1016/j.tplants.2023.10.001
  48. Anticancer Drugs. 2023 Oct 16.
      Herein we discuss multiple pre-clinical projects developed by our group that have been translated into patients at Massey Cancer Center. Our work has used multi-kinase inhibitors, for example, sorafenib, regorafenib and neratinib, and combined with additional agents, for example, histone deacetylase inhibitors, the thymidylate synthase inhibitor pemetrexed, and PDE5 inhibitors. In broad-brush terms, our experience has been that these drug combinations enhance signaling by ATM-AMPK-ULK-1 and decrease signaling from growth factor receptors and RAS proteins, thereby lowering the activities of the intracellular signaling kinase ERK1/2, AKT, mTOR and p70S6K. This collectively results in reduced protein synthesis and the induction of an endoplasmic reticulum stress response alongside autophagosome formation and autophagic flux. The rupture of autolysosomes, releasing proteases such as cathepsin B into the cytosol results in the cleavage and activation of the toxic BH3 domain protein BID which cooperates with BAX, BAK and BIM to cause mitochondrial dysfunction, leading to the release of cytochrome c and AIF, which then execute the tumor cell. For each of our two-drug combinations, we then performed additional laboratory-based studies to define the development of evolutionary resistance mechanisms, with the long-term concept of performing new three-drug clinical trials to prolong therapeutic efficacy and disease control.
    DOI:  https://doi.org/10.1097/CAD.0000000000001549
  49. mSphere. 2023 Oct 18. e0044823
      A microbe and its host are in constant communication. An emerging platform for direct communication is the membrane contact sites that form between several pathogens and host organelles. Here, we review our progress on the molecular mechanisms underlying contact sites between host mitochondria and the human parasite Toxoplasma gondii. We discuss open questions regarding their function during infection as well as those formed between the host endoplasmic reticulum and Toxoplasma.
    Keywords:  Toxoplasma gondii; endoplasmic reticulum; membrane; membrane contact sites; mitochondria; pathogens
    DOI:  https://doi.org/10.1128/msphere.00448-23
  50. Transl Neurosci. 2023 Jan 01. 14(1): 20220314
      High concentrations of unconjugated bilirubin (UCB) have toxic effects. The aim of our study was to find a way to elevate UCB tolerance or inhibit its toxicity in neurocytes. It has been reported that cystatin C (CST3) concentrations have a significant positive correlation with total bilirubin (TB) levels and a negative correlation with albumin levels. In addition, CST3 can directly bind UCB, decrease human umbilical vein endothelial cells' permeability, improve blood-brain barrier integrity after ischemic brain injury in mice, and induce autophagy. We hypothesized that CST3 could increase the solubility of UCB, decrease permeability of neurocytes, induce autophagy of neurocytes, and alleviate bilirubin-induced damage. To verify our hypothesis, we measured TB and conjugated bilirubin levels, and the permeability and autophagy of neurocytes treated with UCB and CST3. Our findings suggest that CST3 can protect against UCB-induced damage in neurocytes and that autophagy played an important role in this process.
    Keywords:  autophagy; cystatin C; hyperbilirubinemia; unconjugated bilirubin
    DOI:  https://doi.org/10.1515/tnsci-2022-0314
  51. Autophagy. 2023 Oct 17.
      A multifunctional role of Atg8-family proteins (Atg8 from yeast and human LC3 and GABARAP subfamilies, all referred to here as ATG8s) in macroautophagy/autophagy is carried out by two protein domains, the N-terminal helical domain (NHD) and ubiquitin-like (UBL) domain. Previous studies showed that the NHD of PE-conjugated ATG8s mediates membrane hemifusion via a direct interaction with lipids in trans-membrane association, which would require the NHD in lipidated ATG8s to adopt a solvent-oriented, "open", conformation that unmasks a UBL domain surface needed for membrane tethering. A purpose of the "closed" conformation of the NHD masking the tethering surface on the UBL domain, a conformation seen in the most structures of non-lipidated ATG8s, remained elusive. A recent study by Zhang et al. discussed in this article, showed that the N terminus of lipidated human ATG8s adopts the "closed" conformation when it interacts with the membrane in cis-membrane association, i.e. with the same membrane ATG8 is anchored to. This finding suggests functions for two distinct conformations of the NHD in lipidated ATG8s and raises questions about determinants controlling cis- or trans-membrane associations of the NHD in ATG8-PE.
    Keywords:  ATG8 proteins, cis- and trans-membrane association of lipidated ATG8s; ubiquitin-like
    DOI:  https://doi.org/10.1080/15548627.2023.2272233
  52. Aging Cell. 2023 Oct 19. e13983
      Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.
    Keywords:  autophagy; ghrelin; human aging; progeria; senescence
    DOI:  https://doi.org/10.1111/acel.13983
  53. J Immunol. 2023 Oct 18. pii: ji2200402. [Epub ahead of print]
      Regulatory T cells (Tregs) are critical mediators of immune tolerance and play a diametric role in cancer and autoimmunity. Tumor-infiltrating Tregs are often associated with poor prognosis in solid tumors because their enrichment in the tumor microenvironment contributes to immunosuppression. Conversely, dysregulation in the Treg compartment can disrupt self-tolerance, leading to autoimmunity. In the present study, we describe what is, to our knowledge, a novel regulator of Tregs, the GTPase activator regulator of G protein 1 (RGS1), demonstrating that RGS1-deficient human Tregs show downregulation of Treg-associated genes and are less immunosuppressive. These RGS1-deficient Tregs exhibit perturbations to the FOXP3-c-MYC transcriptional axis and downstream metabolic and autophagy programs by shifting their energy demands toward glycolysis and rendering them less autophagic. Taken together, RGS1 may serve as an apical node of Treg function by regulating the FOXP3-c-MYC transcriptional axis, thereby providing a therapeutic rationale for targeting RGS1 for treatment of cancer and autoimmune diseases.
    DOI:  https://doi.org/10.4049/jimmunol.2200402
  54. FEBS J. 2023 Oct 16.
      StarD7 is a member of the START protein family required for phosphatidylcholine delivery to the mitochondria, thus key to maintain mitochondrial structure. Its deficiency has been associated with an impairment of cellular processes, such as proliferation and migration, and it has also been reported that it is needed in myogenic differentiation. Here, we show that StarD7 deficiency in C2C12 muscle cells results in the accumulation of abnormal mitochondria, a reduced number of mitochondria per cell area and increased glycolysis. In addition, StarD7-deficient cells undergo an increase in mitochondria-ER contact sites, reduced connexin 43 expression, and disturbances in lipid handling, evidenced by lipid droplet accumulation and decreased levels in phosphatidylserine synthase 1 and 2 expression. Interestingly, StarD7-deficient cells showed alterations in mitophagy markers. We observed accumulation of LC3B-II and BNIP3 proteins in mitochondria-enriched fractions and accumulation of autophagolysosomal and lysosomal vesicles in StarD7-deficient cells. Furthermore, live-cell imaging experiments of StarD7 knockdown cells expressing mitochondria-targeted mKeima indicated an enhanced mitochondria delivery into lysosomes. Importantly, StarD7 reconstitution in StarD7-deficient cells restores LC3B-II expression in mitochondria-enriched fractions at similar levels to those observed in control cells. Collectively, these findings suggest that StarD7-deficient C2C12 myoblasts are associated with altered cristae structure, disturbances in neutral lipid accumulation, glucose metabolism, and increased mitophagy flux. The alterations mentioned above allow for the maintenance of mitochondrial function.
    Keywords:  StarD7; cristae morphology; lipid droplet; mitophagy
    DOI:  https://doi.org/10.1111/febs.16979
  55. FASEB J. 2023 Nov;37(11): e23239
      Platelets are highly involved in inflammation and organ injury under pathological conditions. The mitophagy in platelets may restrict hyperactivation of the inflammasome and relieve acute kidney injury (AKI). Cecal ligation puncture (CLP)/LPS-induced AKI Triggering receptor expressed on myeloid cells (TREM-1)-knockout mice models were established. Additionally, septic patients with AKI were also included. TREM-1 expression in platelets and inflammasome activation were examined. Platelet transfer assays were performed to investigate the contribution of platelet TREM-1 to renal injury. Mitophagy was evaluated in the context of inflammation. BNIP3L/Nix knockout mice were used to examine the relationship between platelet mitophagy and inflammatory activation. The results showed that the level of TREM-1 was increased and the platelet inflammasome was hyperactivated in CLP mice and septic patients, and TREM-1 activated platelet inflammasomes. TREM-1 deletion significantly abrogated hyperactivation of the platelet inflammasome and dramatically reduced AKI, whereas ablation of the mitophagy receptor BNIP3L/Nix induced the accumulation of damaged mitochondria and hyperactivation of platelet inflammasomes in CLP mice. BNIP3L/Nix controlled platelet inflammasome activation, and an amplification loop of platelet inflammasome activation and dysfunctional mitochondria controlled sepsis-related AKI. Therefore, targeting TREM-1 and NLRP3/BNIP3L in platelets may represent a novel therapeutic strategy for treating septic AKI.
    Keywords:  BNIP3L/Nix; NLRP3 inflammasome; TREM-1; autophagy; mitochondrion; platelet
    DOI:  https://doi.org/10.1096/fj.202202144RRR
  56. Nat Commun. 2023 Oct 14. 14(1): 6485
      Exocrine acinar cells in salivary glands (SG) are critical for oral health and loss of functional acinar cells is a major clinical challenge. Fibroblast growth factor receptors (FGFR) are essential for early development of multiple organs, including SG. However, the role of FGFR signaling in specific populations later in development and during acinar differentiation are unknown. Here, we use scRNAseq and conditional deletion of murine FGFRs in vivo to identify essential roles for FGFRs in craniofacial, early SG development and progenitor function during duct homeostasis. Importantly, we also discover that FGFR2 via MAPK signaling is critical for seromucous acinar differentiation and secretory gene expression, while FGFR1 is dispensable. We show that FGF7, expressed by myoepithelial cells (MEC), activates the FGFR2-dependent seromucous transcriptional program. Here, we propose a model where MEC-derived FGF7 drives seromucous acinar differentiation, providing a rationale for targeting FGFR2 signaling in regenerative therapies to restore acinar function.
    DOI:  https://doi.org/10.1038/s41467-023-42243-0