bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2022–10–16
fifty-five papers selected by
Viktor Korolchuk, Newcastle University



  1. EMBO J. 2022 Oct 10. e111115
      Mitochondria and peroxisomes are closely related metabolic organelles, both in terms of origin and in terms of function. Mitochondria and peroxisomes can also be turned over by autophagy, in processes termed mitophagy and pexophagy, respectively. However, despite their close relationship, it is not known if both organelles are turned over under similar conditions, and if so, how this might be coordinated molecularly. Here, we find that multiple selective autophagy pathways are activated upon iron chelation and show that mitophagy and pexophagy occur in a BNIP3L/NIX-dependent manner. We reveal that the outer mitochondrial membrane-anchored NIX protein, previously described as a mitophagy receptor, also independently localises to peroxisomes and drives pexophagy. We show this process happens in vivo, with mouse tissue that lacks NIX having a higher peroxisomal content. We further show that pexophagy is stimulated under the same physiological conditions that activate mitophagy, including cardiomyocyte and erythrocyte differentiation. Taken together, our work uncovers a dual role for NIX, not only in mitophagy but also in pexophagy, thus illustrating the interconnection between selective autophagy pathways.
    Keywords:  autophagy; mitochondria; mitophagy; peroxisomes; pexophagy
    DOI:  https://doi.org/10.15252/embj.2022111115
  2. Nat Aging. 2022 Jun;2(6): 494-507
      The effects of aging on the brain are widespread and can have dramatic implications on the overall health of an organism. Mitochondrial dysfunction is a hallmark of brain aging, but, the interplay between mitochondrial quality control, neuronal aging, and organismal health is not well understood. Here, we show that aging leads to a decline in mitochondrial autophagy (mitophagy) in the Drosophila brain with a concomitant increase in mitochondrial content. We find that induction of BCL2-interacting protein 3 (BNIP3), a mitochondrial outer membrane protein, in the adult nervous system induces mitophagy and prevents the accumulation of dysfunctional mitochondria in the aged brain. Importantly, neuronal induction of BNIP3-mediated mitophagy increases organismal longevity and healthspan. Furthermore, BNIP3-mediated mitophagy in the nervous system improves muscle and intestinal homeostasis in aged flies, indicating cell non-autonomous effects. Our findings identify BNIP3 as a therapeutic target to counteract brain aging and prolong overall organismal health with age.
    Keywords:  Autophagy; Intestinal barrier dysfunction; Intestinal stem cell; Mito-QC; Mitophagy; Muscle aging; Neuronal aging
    DOI:  https://doi.org/10.1038/s43587-022-00214-y
  3. Front Cell Neurosci. 2022 ;16 996593
      Autophagy is an essential process for maintaining cellular homeostasis. Highlighting the importance of proper functioning of autophagy in neurons, disruption of autophagy is a common finding in neurodegenerative diseases. In recent years, evidence has emerged for the role of autophagy in regulating critical axonal functions. In this review, we discuss kinase regulation of autophagy in neurons, and provide an overview of how autophagic kinases regulate axonal processes, including axonal transport and axonal degeneration and regeneration. We also examine mechanisms for disruption of this process leading to neurodegeneration, focusing on the role of TBK1 in pathogenesis of Amyotrophic Lateral Sclerosis.
    Keywords:  ALS; TBK1; ULK1; autophagy; axon; kinase; mTOR
    DOI:  https://doi.org/10.3389/fncel.2022.996593
  4. Methods Enzymol. 2022 ;pii: S0076-6879(22)00245-2. [Epub ahead of print]675 131-158
      The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient levels in the cell and based on the availability, regulates cellular growth and proliferation. Its activity is tightly modulated by two GTPase units, the Rag GTPases and the Rheb GTPase. The Rag GTPases are the central hub of amino acid sensing as they summarize the amino acid signals from upstream regulators and control the subcellular localization of mTORC1. Unique from canonical signaling GTPases, the Rag GTPases are obligatory heterodimers, and the two subunits coordinate their nucleotide loading states to regulate their functional states. Robust biochemical analysis is indispensable to understanding the molecular mechanism governing the GTPase cycle. This chapter discusses protocols for purifying and biochemically characterizing the Rag GTPase heterodimer. We described two purification protocols to recombinantly produce the Rag GTPase heterodimer in large quantities. We then described assays to quantitatively measure the nucleotide binding and hydrolysis by the Rag GTPases. These assays allow for a thorough investigation of this unique heterodimeric GTPase, and they could be applicable to investigations of other noncanonical GTPases.
    Keywords:  Cooperativity; Enzymatic mechanism; GTP hydrolysis; Kinetics; Rag GTPase; mTORC1
    DOI:  https://doi.org/10.1016/bs.mie.2022.07.007
  5. Front Mol Neurosci. 2022 ;15 1005631
      Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates fundamental cellular processes including growth control, autophagy and metabolism. mTOR has key functions in nervous system development and mis-regulation of mTOR signaling causes aberrant neurodevelopment and neurological diseases, collectively called mTORopathies. In this mini review we discuss recent studies that have deepened our understanding of the key roles of the mTOR pathway in human nervous system development and disease. Recent advances in single-cell transcriptomics have been exploited to reveal specific roles for mTOR signaling in human cortical development that may have contributed to the evolutionary divergence from our primate ancestors. Cerebral organoid technology has been utilized to show that mTOR signaling is active in and regulates outer radial glial cells (RGCs), a population of neural stem cells that distinguish the human developing cortex. mTOR signaling has a well-established role in hamartoma syndromes such as tuberous sclerosis complex (TSC) and other mTORopathies. New ultra-sensitive techniques for identification of somatic mTOR pathway mutations have shed light on the neurodevelopmental origin and phenotypic heterogeneity seen in mTORopathy patients. These emerging studies suggest that mTOR signaling may facilitate developmental processes specific to human cortical development but also, when mis-regulated, cause cortical malformations and neurological disease.
    Keywords:  cortex; mTOR; mTORopathy; neuron; organoid; tuberous sclerosis
    DOI:  https://doi.org/10.3389/fnmol.2022.1005631
  6. EMBO Rep. 2022 Oct 10. e53065
      Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses.
    Keywords:  autophagic vesicles; autophagy; cargo profiling; lipid profiling; vesicle isolation
    DOI:  https://doi.org/10.15252/embr.202153065
  7. Cells. 2022 Sep 26. pii: 2999. [Epub ahead of print]11(19):
      Autophagy is a vital process for cell survival and it preserves homeostasis by recycling or disassembling unnecessary or dysfunctional cellular constituents. Autophagy ameliorates skin integrity, regulating epidermal differentiation and constitutive pigmentation. It induces melanogenesis and contributes to skin color through melanosome turnover. Autophagy activity is involved in skin phenotypic plasticity and cell function maintenance and, if altered, it concurs to the onset and/or progression of hypopigmentary and hyperpigmentary disorders. Overexpression of autophagy exerts a protective role against the intrinsic metabolic stress occurring in vitiligo skin, while its dysfunction has been linked to the tuberous sclerosis complex hypopigmentation. Again, autophagy impairment reduces melanosome degradation by concurring to pigment accumulation characterizing senile lentigo and melasma. Here we provide an updated review that describes recent findings on the crucial role of autophagy in skin pigmentation, thus revealing the complex interplay among melanocyte biology, skin environment and autophagy. Hence, targeting this process may also represent a promising strategy for treating pigmentary disorders.
    Keywords:  AMPK; autophagy; hyperpigmentation; hypopigmentation; mTOR; melasma; senile lentigo; skin pigmentation; vitiligo
    DOI:  https://doi.org/10.3390/cells11192999
  8. Nat Commun. 2022 Oct 12. 13(1): 6007
      Virus infection affects cellular proteostasis and provides an opportunity to study this cellular process under perturbation. The proteostasis network in the endoplasmic reticulum (ER) is composed of the calnexin cycle, and the two protein degradation pathways ER-associated protein degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD/ER-phagy/reticulophagy). Here we show that calnexin and calreticulin trigger Zaire Ebolavirus (EBOV) glycoprotein GP1,2 misfolding. Misfolded EBOV-GP1,2 is targeted by ERAD machinery, but this results in lysosomal instead of proteasomal degradation. Moreover, the ER Ub ligase RNF185, usually associated with ERAD, polyubiquitinates EBOV-GP1,2 on lysine 673 via ubiquitin K27-linkage. Polyubiquinated GP1,2 is subsequently recruited into autophagosomes by the soluble autophagy receptor sequestosome 1 (SQSTM1/p62), in an ATG3- and ATG5-dependent manner. We conclude that EBOV hijacks all three proteostasis mechanisms in the ER to downregulate GP1,2 via polyubiquitination and show that this increases viral fitness. This study identifies linkages among proteostasis network components previously thought to function independently.
    DOI:  https://doi.org/10.1038/s41467-022-33805-9
  9. Autophagy. 2022 Oct 10. 1-15
      Macroautophagy/autophagy or mitophagy plays crucial roles in the maintenance of pancreatic β-cell function. PPP3/calcineurin can modulate the activity of TFEB, a master regulator of lysosomal biogenesis and autophagy gene expression, through dephosphorylation. We studied whether PPP3/calcineurin inhibitors can affect the mitophagy of pancreatic β-cells and pancreatic β-cell function employing FK506, an immunosuppressive drug against graft rejection. FK506 suppressed rotenone- or oligomycin+antimycin-A-induced mitophagy measured by Mito-Keima localization in acidic lysosomes or RFP-LC3 puncta colocalized with TOMM20 in INS-1 insulinoma cells. FK506 diminished nuclear translocation of TFEB after treatment with rotenone or oligomycin+antimycin A. Forced TFEB nuclear translocation by a constitutively active TFEB mutant transfection restored impaired mitophagy by FK506, suggesting the role of decreased TFEB nuclear translocation in FK506-mediated mitophagy impairment. Probably due to reduced mitophagy, recovery of mitochondrial potential or quenching of mitochondrial ROS after removal of rotenone or oligomycin+antimycin A was delayed by FK506. Mitochondrial oxygen consumption was reduced by FK506, indicating reduced mitochondrial function by FK506. Likely due to mitochondrial dysfunction, insulin release from INS-1 cells was reduced by FK506 in vitro. FK506 treatment also reduced insulin release and impaired glucose tolerance in vivo, which was associated with decreased mitophagy and mitochondrial COX activity in pancreatic islets. FK506-induced mitochondrial dysfunction and glucose intolerance were ameliorated by an autophagy enhancer activating TFEB. These results suggest that diminished mitophagy and consequent mitochondrial dysfunction of pancreatic β-cells contribute to FK506-induced β-cell dysfunction or glucose intolerance, and autophagy enhancement could be a therapeutic modality against post-transplantation diabetes mellitus caused by PPP3/calcineurin inhibitors.
    Keywords:  Calcineurin; TFEB; mitophagy; pancreatic β-cell; post-transplantation diabetes mellitus
    DOI:  https://doi.org/10.1080/15548627.2022.2132686
  10. Acta Pharm Sin B. 2022 Oct;12(10): 3743-3782
      UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
    Keywords:  Autophagy; Biological function; Human diseases; Non-autophagy; Small-molecule drug; ULK1-targeted therapy; UNC-51-like kinase 1 (ULK1)
    DOI:  https://doi.org/10.1016/j.apsb.2022.06.004
  11. Cells. 2022 Oct 10. pii: 3179. [Epub ahead of print]11(19):
      Mitochondria are highly dynamic, double-membrane-enclosed organelles that sustain cellular metabolism and, hence, cellular, and organismal homeostasis. Dysregulation of the mitochondrial network might, therefore, confer a potentially devastating vulnerability to high-energy-requiring cell types, contributing to a broad variety of hereditary and acquired diseases, which include inborn errors of metabolism, cancer, neurodegeneration, and aging-associated adversities. In this Review, we highlight the biological functions of mitochondria-localized enzymes, from the perspective of understanding the pathophysiology of the inherited disorders destroying mitochondrial homeostasis and cellular metabolism. Using methylmalonic acidemia (MMA) as a paradigm of mitochondrial dysfunction, we discuss how mitochondrial-directed signaling pathways sustain the physiological homeostasis of specialized cell types and how these may be disturbed in disease conditions. This Review also provides a critical analysis of molecular underpinnings, through which defects in the autophagy-mediated quality control and surveillance systems contribute to cellular dysfunction, and indicates potential therapeutic strategies for affected tissues. These insights might, ultimately, advance the discovery and development of new therapeutics, not only for methylmalonic acidemia but also for other currently intractable mitochondrial diseases, thus transforming our ability to modulate health and homeostasis.
    Keywords:  epithelial cell distress; kidney tubule; metabolism; mitochondria; mitophagy; oxidative stress; signaling
    DOI:  https://doi.org/10.3390/cells11193179
  12. Front Cell Infect Microbiol. 2022 ;12 1039282
      
    Keywords:  autophagic regulation; autophagy; host defense; infectious diseases; pathogens
    DOI:  https://doi.org/10.3389/fcimb.2022.1039282
  13. J Crohns Colitis. 2022 Oct 11. pii: jjac148. [Epub ahead of print]
       BACKGROUND AND AIM: Functional loss of the gut epithelium's paracellular tight junction (TJ) barrier and defective autophagy are factors potentiating inflammatory bowel disease (IBD). Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming claudin-2 degradation. How autophagy regulates the TJ barrier forming proteins remain unknown. Here, we investigated the role of autophagy in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement.
    RESULTS: Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, mouse colonocytes, and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN-/- nullified its TJ barrier enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endocytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. In-vivo, autophagy induction by rapamycin enhanced occludin levels in WT mouse intestines and protected against LPS and TNF-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis.
    CONCLUSION: Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 MAPK-dependent mechanism.
    Keywords:  autophagy; inflammatory bowel disease; intestinal permeability; occludin; tight junction
    DOI:  https://doi.org/10.1093/ecco-jcc/jjac148
  14. EMBO J. 2022 Oct 11. e110963
      Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.
    Keywords:  PKA; autophagy; brain; phosphorylation; synapse
    DOI:  https://doi.org/10.15252/embj.2022110963
  15. Int J Mol Sci. 2022 Sep 27. pii: 11410. [Epub ahead of print]23(19):
      Autophagy is a highly conserved self-degradation mechanism in eukaryotes. Excess or harmful intracellular content can be encapsulated by double-membrane autophagic vacuoles and transferred to vacuoles for degradation in plants. Current research shows three types of autophagy in plants, with macroautophagy being the most important autophagic degradation pathway. Until now, more than 40 autophagy-related (ATG) proteins have been identified in plants that are involved in macroautophagy, and these proteins play an important role in plant growth regulation and stress responses. In this review, we mainly introduce the research progress of autophagy in plant vegetative growth (roots and leaves), reproductive growth (pollen), and resistance to biotic (viruses, bacteria, and fungi) and abiotic stresses (nutrients, drought, salt, cold, and heat stress), and we discuss the application direction of plant autophagy in the future.
    Keywords:  abiotic stress; autophagy; biotic stress; reproductive growth; vegetative growth
    DOI:  https://doi.org/10.3390/ijms231911410
  16. J Immunol Res. 2022 ;2022 1481154
      Autophagy and phagocytosis are two important processes that capture and digest materials found in cellular interiors and exteriors, respectively. Aged red blood cells (RBCs) are cleared by phagocytes in vivo. We focused on determining whether autophagy occurs after phagocytes swallow sunset erythrocytes, and whether the degree of autophagy is related to scavenging ability of phagocytes to erythrocytes. In addition, the ability of NLR family pyrin domain containing protein 3 (NLRP3) inflammasome to regulate erythrocyte clearance by phagocytes and its association with autophagy-related protein 16-like protein 1 (ATG16L1) are confirmed. We constructed a stable and low-NLRP3 expression THP-1 cell line using CRISPR/Cas9 technology. The analysis of erythrocyte clearance and autophagy of THP-1 cells with low NLRP3 expression showed that autophagy changes together when THP-1 engulfs aged RBCs. The occurrence of autophagy was dominated by microtubule-associated protein 1A/1B-light chain 3- (LC3-) associated phagocytosis accompanied by canonical autophagy. A negative correlation exists between the clearance of RBCs by THP-1 cells and the degree of autophagy. Downregulating the expression of NLRP3 in THP-1 cells can simultaneously inhibit the scavenging ability of THP-1 to erythrocytes and the degree of autophagy. In addition, the autophagy inhibitor bafilomycin A1 (BafA1) can enhance the phagocytosis ability of THP-1 to erythrocytes and promote the NLRP3 activation in THP-1 cells, while the autophagy inducer rapamycin inhibits the phagocytosis ability of THP-1 to RBCs and downregulates the NLRP3 activation. Results showed that autophagy and phagocytosis may be dynamic balance processes that can provide sufficient nutrition and energy to cells. Choosing NLRP3 as a target may regulate the phagocytic ability and the degree of autophagy in the meantime. These findings may be a potential strategy for regulating the clearance rate of phagocytes to aged RBCs and the secretion of proinflammatory cytokines to ensure transfusion safety.
    DOI:  https://doi.org/10.1155/2022/1481154
  17. Aging (Albany NY). 2022 Oct 13. 14(undefined):
      We defined the mechanisms by which the chaperone ATPase inhibitor AR12 and the multi-kinase inhibitor neratinib interacted to reduce expression of Tau and amyloid-precursor protein (APP) in microglia and neuronal cells. AR12 and neratinib interacted to increase the phosphorylation of eIF2A S51 and the expression of BAG3, Beclin1 and ATG5, and in parallel, enhanced autophagosome formation and autophagic flux. Knock down of BAG3, Beclin1 or ATG5 abolished autophagosome formation and significantly reduced degradation of p62, LAMP2, Tau, APP, and GRP78 (total and plasma membrane). Knock down of Rubicon, a key component of LC3-associated phagocytosis (LAP), significantly reduced autophagosome formation but not autophagic flux and prevented degradation of Tau, APP, and cell surface GRP78, but not ER-localized GRP78. Knock down of Beclin1, ATG5 or Rubicon or over-expression of GRP78 prevented the significant increase in eIF2A phosphorylation. Knock down of eIF2A prevented the increase in BAG3 expression and significantly reduced autophagosome formation, autophagic flux, and it prevented Tau and APP degradation. We conclude that AR12 has the potential to reduce Tau and APP levels in neurons and microglia via the actions of LAP, endoplasmic reticulum stress signaling and macroautophagy. We hypothesize that the initial inactivation of GRP78 catalytic function by AR12 facilitates an initial increase in eIF2A phosphorylation which in turn is essential for greater levels of eIF2A phosphorylation, greater levels of BAG3 and macroautophagy and eventually leading to significant amounts of APP/Tau degradation.
    Keywords:  AR12; Alzheimer’s disease; GRP78; LAP / LANDO; macroautophagy
    DOI:  https://doi.org/10.18632/aging.204337
  18. J Cell Biol. 2023 Jan 02. pii: e202203045. [Epub ahead of print]222(1):
      At the trans-Golgi, complex traffic connections exist to the endolysosomal system additional to the main Golgi-to-plasma membrane secretory route. Here, we investigated three hits in a Drosophila screen displaying secretory cargo accumulation in autophagic vesicles: ESCRT-III component Vps20, SNARE-binding Rop, and lysosomal pump subunit VhaPPA1-1. We found that Vps20, Rop, and lysosomal markers localize near the trans-Golgi. Furthermore, we document that the vicinity of the trans-Golgi is the main cellular location for lysosomes and that early, late, and recycling endosomes associate as well with a trans-Golgi-associated degradative compartment where basal microautophagy of secretory cargo and other materials occurs. Disruption of this compartment causes cargo accumulation in our hits, including Munc18 homolog Rop, required with Syx1 and Syx4 for Rab11-mediated endosomal recycling. Finally, besides basal microautophagy, we show that the trans-Golgi-associated degradative compartment contributes to the growth of autophagic vesicles in developmental and starvation-induced macroautophagy. Our results argue that the fly trans-Golgi is the gravitational center of the whole endomembrane system.
    DOI:  https://doi.org/10.1083/jcb.202203045
  19. Front Oncol. 2022 ;12 946086
      The activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1) is an intrinsically disordered protein that regulates the survival and death of cancer cells by modulating autophagy. Although the roles of autophagy in cancer are controversial and context-dependent, inhibition of autophagy under some circumstances can be a useful strategy for cancer therapy. As AMBRA1 is a pivotal autophagy-associated protein, targeting AMBRA1 similarly may be an underlying strategy for cancer therapy. Emerging evidence indicates that AMBRA1 can also inhibit cancer formation, maintenance, and progression by regulating c-MYC and cyclins, which are frequently deregulated in human cancer cells. Therefore, AMBRA1 is at the crossroad of autophagy, tumorigenesis, proliferation, and cell cycle. In this review, we focus on discussing the mechanisms of AMBRA1 in autophagy, mitophagy, and apoptosis, and particularly the roles of AMBRA1 in tumorigenesis and targeted therapy.
    Keywords:  AMBRA1; autophagy; mitophagy; targeted therapy; tumorigenesis
    DOI:  https://doi.org/10.3389/fonc.2022.946086
  20. Cells. 2022 Oct 07. pii: 3153. [Epub ahead of print]11(19):
      Transcription factor EB (TFEB) is considered the master transcriptional regulator of autophagy and lysosomal biogenesis, which regulates target gene expression through binding to CLEAR motifs. TFEB dysregulation has been linked to the development of numerous pathological conditions; however, several other lines of evidence show that TFEB might be a point of convergence of diverse signaling pathways and might therefore modulate other important biological processes such as cellular senescence, DNA repair, ER stress, carbohydrates, and lipid metabolism and WNT signaling-related processes. The regulation of TFEB occurs predominantly at the post-translational level, including phosphorylation, acetylation, SUMOylating, PARsylation, and glycosylation. It is noteworthy that TFEB activation is context-dependent; therefore, its regulation is subjected to coordinated mechanisms that respond not only to nutrient fluctuations but also to stress cell programs to ensure proper cell homeostasis and organismal health. In this review, we provide updated insights into novel post-translational modifications that regulate TFEB activity and give an overview of TFEB beyond its widely known role in autophagy and the lysosomal pathway, thus opening the possibility of considering TFEB as a potential therapeutic target.
    Keywords:  DNA damage repair and cell cycle; WNT signaling; carbohydrate; cellular senescence; endoplasmic reticulum stress; lipids; metabolism; transcriptional factor EB (TFEB)
    DOI:  https://doi.org/10.3390/cells11193153
  21. Cells. 2022 Sep 26. pii: 2991. [Epub ahead of print]11(19):
      Establishing the role of non-coding RNA (ncRNA), especially microRNAs (miRNAs), in the regulation of cell function constitutes a current research challenge. Two to six miRNAs can act in clusters; particularly, the miR-17-92 family, composed of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a is well-characterized. This cluster functions during embryonic development in cell differentiation, growth, development, and morphogenesis and is an established oncogenic cluster. However, its role in the regulation of cellular metabolism, mainly in lipid metabolism and autophagy, has received less attention. Here, we argue that the miR-17-92 cluster is highly relevant for these two processes, and thus, could be involved in the study of pathologies derived from lysosomal deficiencies. Lysosomes are related to both processes, as they control cholesterol flux and regulate autophagy. Accordingly, we compiled, analyzed, and discussed current evidence that highlights the cluster's fundamental role in regulating cellular energetic metabolism (mainly lipid and cholesterol flux) and atherosclerosis, as well as its critical participation in autophagy regulation. Because these processes are closely related to lysosomes, we also provide experimental data from the literature to support our proposal that the miR-17-92 cluster could be involved in the pathogenesis and effects of lysosomal storage diseases (LSD).
    Keywords:  autophagy; cholesterol; enzyme deficiency; lysosomal storage diseases; metabolism; vesicle trafficking
    DOI:  https://doi.org/10.3390/cells11192991
  22. FEBS Lett. 2022 Oct 10.
      Aminopeptidase I (Ape1) is one of the major cargoes of the cytoplasm-to-vacuole targeting (Cvt) pathway, which is a kind of selective autophagy, in Saccharomyces cerevisiae. After synthesis, the Ape1 precursor (prApe1) undergoes phase separation to form liquid droplets, termed Ape1 droplets, in the cytoplasm. In this study, we found that cells expressing prApe1-GFP exhibited temperature-sensitive formation of Ape1 droplets, which affected its transport. Moreover, we showed that endogenous Ape1 transport was defective at high temperatures in various laboratory strains due to the defect in the formation of Ape1 droplets at these temperatures. Finally, we found that gene disruptants showing heat-tolerant growth suppressed the temperature sensitivity of the Ape1 transport. The formation of Ape1 droplets might be an indicator of cytoplasmic integrity at high temperature.
    Keywords:  aminopeptidase I; autophagy; biosynthesis; cytoplasm-to-vacuole targeting pathway; liquid-liquid phase separation; pre-autophagosomal structure; selective autophagy; temperature sensitive; vacuole; yeast
    DOI:  https://doi.org/10.1002/1873-3468.14509
  23. Molecules. 2022 Sep 22. pii: 6230. [Epub ahead of print]27(19):
      Autophagy is the multistep mechanism for the elimination of damaged organelles and misfolded proteins. This mechanism is preceded and may induce other program cell deaths such as apoptosis. This study unraveled the potential pharmacological effect of 24MD in inducing the autophagy of lung cancer cells. Results showed that 24MD was concomitant with autophagy induction, indicating by autophagosome staining and the induction of ATG5, ATG7 and ubiquitinated protein, p62 expression after 12-h treatment. LC3-I was strongly conversed to LC3-II, and p62 was downregulated after 24-h treatment. The apoptosis-inducing activity was found after 48-h treatment as indicated by annexin V-FITC/propidium iodide staining and the activation of caspase-3. From a mechanistic perspective, 24-h treatment of 24MD at 60 μM substantially downregulated p-mTOR. Meanwhile, p-PI3K and p-Akt were also suppressed by 24MD at concentrations of 80 and 100 μM, respectively. We further confirmed m-TOR-mediated autophagic activity by comparing the effect of 24MD with rapamycin, a potent standard mTOR1 inhibitor through Western blot and immunofluorescence assays. Although 24MD could not suppress p-mTOR as much as rapamycin, the combination of rapamycin and 24MD could increase the mTOR suppressive activity and LC3 activation. Changing the substituent groups (R groups) from dimethylphenol to ethylphenol in EMD or changing methylazanedyl to cyclohexylazanedyl in 24CD could only induce apoptosis activity but not autophagic inducing activity. We identified 24MD as a novel compound targeting autophagic cell death by affecting mTOR-mediated autophagy.
    Keywords:  apoptosis; benzoxazine dimers; mTOR inhibitor; non-small cell lung cancer; rapamycin
    DOI:  https://doi.org/10.3390/molecules27196230
  24. Cell Biosci. 2022 Oct 08. 12(1): 167
      Huntington's disease (HD) is a neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein encoded from extra tracts of CAG repeats in exon 1 of the HTT gene. mHTT proteins are neurotoxic to render the death of neurons and a series of disease-associated phenotypes. The mHTT is degraded through autophagy pathway and ubiquitin-proteasome system (UPS). This study identified a small molecule, J3, as an autophagy inducer by high-content screening. The results revealed that J3 could inhibit mTOR, thus promoting autophagic flux and long-lived protein degradation. Further, J3 selectively lowered the soluble and insoluble mHTT but not wild type HTT levels in cell models. The HdhQ140 mice showed reduced HD-associated activity and loss of motor functions. However, administration of J3 showed increased activity and a slight improvement in the motor function in the open-field test, balance beam test, and rotarod tests. Furthermore, in vivo studies revealed that J3 decreased T-HTT and misfolded protein levels in the striatum and increased the levels of the medium spiny neuron marker DARPP-32. In addition, J3 showed good permeability across the brain-blood barrier efficiently, suggesting that J3 was a promising candidate for the treatment of HD.
    Keywords:  Autophagy; HdhQ140; Huntington’s disease; J3; mHTT
    DOI:  https://doi.org/10.1186/s13578-022-00906-3
  25. Autophagy. 2022 Oct 10. 1-2
      More than 55 million people are suffering from Alzheimer's disease (AD), but there is still no effective treatment for it. Therefore, novel therapeutic approaches and regulatory mechanisms of protein quality control need to be further evaluated and dissected. The lysosome is one of the major degradative organelles that maintain cellular homeostasis and protein quality control. In our recent study, we have identified a group of LYsosome-Enhancing Compounds (LYECs), which significantly promote the activation of TFEB (transcription factor EB) and lysosome biogenesis via inhibiting dopamine transporters (DAT). Injection of LH2-051, a member of the LYECs identified in this study, significantly improves learning, memory, and cognitive function of APP-PSEN1 mice, in which the enhanced capability of lysosomal degradation promotes the clearance of amyloid protein aggregates. In summary, this study reports novel mechanisms of neurotransporter-mediated lysosome biogenesis and shows that DAT inhibition can alleviate the pathogenesis of Alzheimer's disease.
    Keywords:  Alzheimer‘s disease; TFEB; lysosome biogenesis; lysosome-enhancing compounds
    DOI:  https://doi.org/10.1080/15548627.2022.2131247
  26. Nat Commun. 2022 Oct 10. 13(1): 5986
      Enteroviruses are non-enveloped positive-sense RNA viruses that cause diverse diseases in humans. Their rapid multiplication depends on remodeling of cytoplasmic membranes for viral genome replication. It is unknown how virions assemble around these newly synthesized genomes and how they are then loaded into autophagic membranes for release through secretory autophagy. Here, we use cryo-electron tomography of infected cells to show that poliovirus assembles directly on replication membranes. Pharmacological untethering of capsids from membranes abrogates RNA encapsidation. Our data directly visualize a membrane-bound half-capsid as a prominent virion assembly intermediate. Assembly progression past this intermediate depends on the class III phosphatidylinositol 3-kinase VPS34, a key host-cell autophagy factor. On the other hand, the canonical autophagy initiator ULK1 is shown to restrict virion production since its inhibition leads to increased accumulation of virions in vast intracellular arrays, followed by an increased vesicular release at later time points. Finally, we identify multiple layers of selectivity in virus-induced autophagy, with a strong selection for RNA-loaded virions over empty capsids and the segregation of virions from other types of autophagosome contents. These findings provide an integrated structural framework for multiple stages of the poliovirus life cycle.
    DOI:  https://doi.org/10.1038/s41467-022-33483-7
  27. Cell Death Differ. 2022 Oct 08.
      The role of autophagy in cancer is context-dependent. In the present study, we aimed to investigate the regulator and underlying mechanism of autophagy. We found that a sirtuin (SIRT) family member, SIRT4, was significantly associated autophagy pathway in pancreatic ductal adenocarcinoma (PDAC). Specifically, in vitro cell culture experiments and in vivo transgenic and xenografted animal models revealed that SIRT4 could inhibit tumor growth and promote autophagy in PDAC. In terms of the mechanism, we demonstrated that SIRT4 activated the phosphorylation of p53 protein by suppressing glutamine metabolism, which was crucial in SIRT4-induced autophagy. AMPKα was implicated in the regulation of autophagy and phosphorylation of p53 mediated by SIRT4, contributing to the suppression of pancreatic tumorigenesis. Notably, the clinical significance of the SIRT4/AMPKα/p53/autophagy axis was demonstrated in human PDAC specimens. Collectively, these findings suggested that SIRT4-induced autophagy further inhibited tumorigenesis and progression of PDAC, highlighting the potential of SIRT4 as a therapeutic target for cancer.
    DOI:  https://doi.org/10.1038/s41418-022-01063-3
  28. Autophagy. 2022 Oct 10. 1-2
      In plants, macroautophagy/autophagy is a key mechanism that contributes to their ability to cope with a wide range of environmental constraints such as drought, nutrient starvation or pathogen resistance. Nevertheless, the molecular mechanisms of plant autophagy, and notably that of autophagosome formation, remain poorly understood. As the starting point of our recent paper, we considered the potential functional contribution of lipids in the numerous membrane-remodeling steps involved in this process. By combining biochemistry, genetics, cell biology and high-resolution 3D imaging, we unraveled the function of the lipid phosphatidylinositol-4-phosphate (PtdIns4P) in autophagy in Arabidopsis thaliana, thus providing novel insights into the assembly of autophagosomes in plant cells.
    Keywords:  Arabidopsis; autophagosomes; environmental stresses; lipids; phosphatidylinositol-4-phosphate; plasma membrane
    DOI:  https://doi.org/10.1080/15548627.2022.2132042
  29. Int J Mol Sci. 2022 Sep 21. pii: 11110. [Epub ahead of print]23(19):
      Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals.
    Keywords:  ageing; autophagy; cholesterol ester; epidermis; lipidome; sphingomyelin; transcriptome; triglyceride
    DOI:  https://doi.org/10.3390/ijms231911110
  30. Cells. 2022 Sep 26. pii: 2996. [Epub ahead of print]11(19):
      Autophagy is a stress-induced process that eliminates damaged organelles and dysfunctional cargos in cytoplasm, including unfolded proteins. Autophagy is involved in constructing the immunosuppressive microenvironment during tumor initiation and progression. It appears to be one of the most common processes involved in cancer immunotherapy, playing bidirectional roles in immunotherapy. Accumulating evidence suggests that inducing or inhibiting autophagy contributes to immunotherapy efficacy. Hence, exploring autophagy targets and their modifiers to control autophagy in the tumor microenvironment is an emerging strategy to facilitate cancer immunotherapy. This review summarizes recent studies on the role of autophagy in cancer immunotherapy, as well as the molecular targets of autophagy that could wake up the immune response in the tumor microenvironment, aiming to shed light on its immense potential as a therapeutic target to improve immunotherapy.
    Keywords:  autophagy; cancer; immunotherapy
    DOI:  https://doi.org/10.3390/cells11192996
  31. EMBO J. 2022 Oct 11. e111289
      The NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self-assembling entities that coat the bacteria to induce NF-κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF-κB activation. IRGM suppresses RIPK2-dependent pro-inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection- and DSS-induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.
    Keywords:  Irgm1; NOD1/2-RIPK2-NF-κB; RIPosomes; autophagy; inflammation
    DOI:  https://doi.org/10.15252/embj.2022111289
  32. Oncol Rep. 2022 Dec;pii: 208. [Epub ahead of print]48(6):
      Autophagy is a highly conserved process that maintains cellular homeostasis during evolution. Autophagy can occur in the form of macroautophagy, microautophagy or molecular chaperone autophagy, among which macroautophagy is the most common. Apoptosis exists in all kinds of cell organisms, and is a kind of programmed cell death which is regulated by pro‑apoptotic factors and anti‑apoptotic signals. The main biological feature of apoptosis is the activation of caspase. Apoptosis is induced by a variety of cell signals, such as endoplasmic reticulum stress, induction of toxic substances, stimulation of pathogenic microorganisms and DNA damage. Inextricable links are found between autophagy and apoptosis. Studies have found that numerous of the autophagy molecules and autophagy signaling pathways involved in the process of autophagy are related to apoptosis. In addition to regulating autophagy, the autophagy signaling pathway also regulates apoptosis. The interaction between the two can achieve a dynamic balance to certain extent, which maintains the basic physiological functions of cells and reduces the damage to the body under stress. Disease occurs when the balance between autophagy and apoptosis is disrupted. Tumors form due to the ability of cells to avoid apoptosis. Autophagy is closely related to apoptosis, there must be a close connection between the three. In the present review, the mechanism between autophagy and apoptosis and the impact of their interaction on tumorigenesis shall be discussed.
    Keywords:  apoptosis; autophagy; tumorigenesis
    DOI:  https://doi.org/10.3892/or.2022.8423
  33. Cell Death Dis. 2022 Oct 12. 13(10): 865
      Acute-on-chronic liver failure is a distinct clinical syndrome characterized by a dysregulated immune response and extensive hepatocyte death without satisfactory therapies. As a cytoplasmic degradative and quality-control process, autophagy was implicated in maintaining intracellular homeostasis, and decreased hepatic autophagy was found in many liver diseases and contributes to disease pathogenesis. Previously, we identified the therapeutic potential of mesenchymal stem cells (MSCs) in ACLF patients; however, the intrinsic mechanisms are incompletely understood. Herein, we showed that MSCs restored the impaired autophagic flux and alleviated liver injuries in ACLF mice, but these effects were abolished when autophago-lysosomal maturation was inhibited by leupeptin (leu), suggesting that MSCs exerted their hepatoprotective function in a pro-autophagic dependent manner. Moreover, we described a connection between transcription factor EB (TFEB) and autophagic activity in this context, as evidenced by increased nuclei translocation of TFEB elicited by MSCs were capable of promoting liver autophagy. Mechanistically, we confirmed that let-7a-5p enriched in MSCs derived exosomes (MSC-Exo) could activate autophagy by targeting MAP4K3 to reduce TFEB phosphorylation, and MAP4K3 knockdown partially attenuates the effect of anti-let-7a-5p oligonucleotide via decreasing the inflammatory response, in addition, inducing autophagy. Altogether, these findings revealed that the hepatoprotective effect of MSCs may partially profit from its exosomal let-7a-5p mediating autophagy repairment, which may provide new insights for the therapeutic target of ACLF treatment.
    DOI:  https://doi.org/10.1038/s41419-022-05303-9
  34. Cells. 2022 Sep 30. pii: 3080. [Epub ahead of print]11(19):
      Autophagosome biogenesis occurs in the transient subdomains of the endoplasmic reticulum that are called omegasomes, which, in fluorescence microscopy, appear as small puncta, which then grow in diameter and finally shrink and disappear once the autophagosome is complete. Autophagosomes are formed by phagophores, which are membrane cisterns that elongate and close to form the double membrane that limits autophagosomes. Earlier electron-microscopy studies showed that, during elongation, phagophores are lined by the endoplasmic reticulum on both sides. However, the morphology of the very early phagophore precursors has not been studied at the electron-microscopy level. We used live-cell imaging of cells expressing markers of phagophore biogenesis combined with correlative light-electron microscopy, as well as electron tomography of ATG2A/B-double-deficient cells, to reveal the high-resolution morphology of phagophore precursors in three dimensions. We showed that phagophores are closed or nearly closed into autophagosomes already at the stage when the omegasome diameter is still large. We further observed that phagophore precursors emerge next to the endoplasmic reticulum as bud-like highly curved membrane cisterns with a small opening to the cytosol. The phagophore precursors then open to form more flat cisterns that elongate and curve to form the classically described crescent-shaped phagophores.
    Keywords:  ATG13; ATG2; DFCP1; autophagy; correlative light-electron microscopy; isolation membrane; omegasome; phagophore
    DOI:  https://doi.org/10.3390/cells11193080
  35. Leukemia. 2022 Oct 11.
      The FLT3-ITD mutation is associated with poor prognosis in acute myeloid leukemia (AML). FLT3 tyrosine kinase inhibitors (TKIs) demonstrate clinical efficacy but fail to target leukemia stem cells (LSC) and do not generate sustained responses. Autophagy is an important cellular stress response contributing to hematopoietic stem cells (HSC) maintenance and promoting leukemia development. Here we investigated the role of autophagy in regulating FLT3-ITD AML stem cell function and response to TKI treatment. We show that autophagy inhibition reduced quiescence and depleted repopulating potential of FLT3-ITD AML LSC, associated with mitochondrial accumulation and increased oxidative phosphorylation. However, TKI treatment reduced mitochondrial respiration and unexpectedly antagonized the effects of autophagy inhibition on LSC attrition. We further show that TKI-mediated targeting of AML LSC and committed progenitors was p53-dependent, and that autophagy inhibition enhanced p53 activity and increased TKI-mediated targeting of AML progenitors, but decreased p53 activity in LSC and reduced TKI-mediated LSC inhibition. These results provide new insights into the role of autophagy in differentially regulating AML stem and progenitor cells, reveal unexpected antagonistic effects of combined oncogenic tyrosine kinase inhibition and autophagy inhibition in AML LSC, and suggest an alternative approach to target AML LSC quiescence and regenerative potential.
    DOI:  https://doi.org/10.1038/s41375-022-01719-6
  36. Int J Mol Sci. 2022 Sep 28. pii: 11445. [Epub ahead of print]23(19):
      Glutamate-induced neural toxicity in autophagic neuron death is partially mediated by increased oxidative stress. Therefore, reducing oxidative stress in the brain is critical for treating or preventing neurodegenerative diseases. Selaginella tamariscina is a traditional medicinal plant for treating gastrointestinal bleeding, hematuria, leucorrhea, inflammation, chronic hepatitis, gout, and hyperuricemia. We investigate the inhibitory effects of Selaginella tamariscina ethanol extract (STE) on neurotoxicity and autophagic cell death in glutamate-exposed HT22 mouse hippocampal cells. STE significantly increased cell viability and mitochondrial membrane potential and decreased the expression of reactive oxygen species, lactate dehydrogenase release, and cell apoptosis in glutamate-exposed HT22 cells. In addition, while glutamate induced the excessive activation of mitophagy, STE attenuated glutamate-induced light chain (LC) 3 II and Beclin-1 expression and increased p62 expression. Furthermore, STE strongly enhanced the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation activation. STE strongly inhibited glutamate-induced autophagy by activating the PI3K/Akt/mTOR signaling pathway. In contrast, the addition of LY294002, a PI3K/Akt inhibitor, remarkably suppressed cell viability and p-Akt and p62 expression, while markedly increasing the expression of LC3 II and Beclin-1. Our findings indicate that autophagy inhibition by activating PI3K/Akt/mTOR phosphorylation levels could be responsible for the neuroprotective effects of STE on glutamate neuronal damage.
    Keywords:  Selaginella tamariscina; anti-autophagy; mammalian target of rapamycin; neuroprotective effects; phosphatidylinositol 3-kinase; protein kinase B
    DOI:  https://doi.org/10.3390/ijms231911445
  37. Adv Healthc Mater. 2022 Oct 12. e2202117
      Manipulation of autophagic processes has emerged as a promising strategy for synergizing nanoagent-mediated PTT. Most of the current studies focus on improving PTT efficacy by inhibiting pro-survival autophagy induced by the heat generated from the photothermal process. However, autophagy induced by the nanoagents is usually ignored, which may weaken the effect of autophagy-mediated efficacy improvement in PTT if induced autophagy is pro-death. Therefore, this work aims at developing a nanoagent that is able to induce heat-synergetic pro-survival autophagy to optimize the efficacy of PTT. We develop an approach to coat carbon layer, polyethylenimine (PEI) and folic acid (FA) on NaYF4 :Er,Yb,Nd@NaNdF4 (DCPF) nanoparticles successively, giving access to the nanoagent to induce pro-survival autophagy. The synthetic imaging-guided photothermal nanoagent displays outstanding targeting ability and biocompatibility based on the surface modification of PEI and FA. By using an autophagy inhibitor chloroquine (CQ), a conspicuously synergistic effect on DCPF-mediated PTT in vitro and in vivo tumor models (HeLa) are achieved. This study presents a promising strategy to enhance the efficacy of imaging-guided PTT by modulating the autophagy induced by the nanoagent. This article is protected by copyright. All rights reserved.
    Keywords:  NIR fluorescence imaging; Photothermal therapy; Pro-survival autophagy; Rare-earth nanocomposites; Surface modification
    DOI:  https://doi.org/10.1002/adhm.202202117
  38. Nutrients. 2022 Sep 26. pii: 3995. [Epub ahead of print]14(19):
      Diabetic nephropathy (DN), a metabolic disease, is characterized by severe systemic metabolic disorders. A unique dietary pattern, such as intermittent fasting (IF) has shown promising protective effects on various metabolic diseases, such as diabetes and cardiovascular and nervous system diseases. However, its role in regulating kidney disease, especially in DN, is still being investigated. Here, we summarize the current research progress, highlighting the relationship between IF and the risk factors for the progression of DN, and discuss the potential mechanisms by which IF improves renal injury in DN. Finally, we propose IF as a potential strategy to prevent and delay DN progression. Abbreviation: DN: Diabetic nephropathy; IF: Intermittent fasting; CPT1A: Carnitine palmitoyltransferase 1A; L-FABP: Liver-type fatty acid-binding protein; STZ: Streptozotocin; LDL: Low-density lipoproteins; HIIT: High-intensity interval training; CKD: Chronic kidney disease; ACEI: Angiotensin-converting enzyme inhibitors; ARB: Angiotensin receptor blockers; MDA: Malondialdehyde; mtDNA: Mitochondrial DNA; UCP3: Uncoupling protein-3; MAM: Mitochondria-associated endoplasmic reticulum membrane; PBMCs: Peripheral blood mononuclear cells; ERK1/2: Extracellular signal-regulated kinase 1/2; DRP1: Dynamin-related protein 1; β-HB: β-Hydroxybutyrate; AcAc: Acetoacetate; GEO: Gene Expression Omnibus; NCBI: National Center for Biotechnology Information; mTORC1: Mechanistic target of rapamycin complex 1; HMGCS2: 3-Hydroxy-3-methylglutaryl-CoA synthase 2; GSK3β: Glycogen synthase kinase 3β; AKI: Acute kidney injury; CMA: Chaperone-mediated autophagy; FGF21: Fibroblast growth factor 21.
    Keywords:  autophagy; diabetic nephropathy; intermittent fasting; ketone body; mitochondria
    DOI:  https://doi.org/10.3390/nu14193995
  39. Cells. 2022 Sep 27. pii: 3018. [Epub ahead of print]11(19):
      Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3' untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand-receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.
    Keywords:  AKT; DMPK; LBPA; autophagy; endosomes; lysosomes; muscle atrophy
    DOI:  https://doi.org/10.3390/cells11193018
  40. Cells. 2022 Sep 30. pii: 3075. [Epub ahead of print]11(19):
      The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR), is a cell-surface-located receptor that can induce highly diffusible messengers (IP3, Ca2+, cAMP) in the cytoplasm to activate various cellular responses. Recently, it has also been suggested that the CaSR mediates the intracellular communications between the endoplasmic reticulum (ER), mitochondria, nucleus, protease/proteasome, and autophagy-lysosome, which are involved in related cardiovascular diseases. The complex intracellular signaling of this receptor challenges it as a valuable therapeutic target. It is, therefore, necessary to understand the mechanisms behind the signaling characteristics of this receptor in intracellular communication. This review provides an overview of the recent research progress on the various regulatory mechanisms of the CaSR in related cardiovascular diseases and the heart-kidney interaction; the associated common causes are also discussed.
    Keywords:  calcium-sensing receptor; cardiovascular diseases; lysosome; mitochondria; nucleus; proteasome
    DOI:  https://doi.org/10.3390/cells11193075
  41. J Cell Biol. 2022 Nov 07. pii: e202109133. [Epub ahead of print]221(11):
      Lysosomes mediate hydrolase-catalyzed macromolecule degradation to produce building block catabolites for reuse. Lysosome function requires an osmo-sensing machinery that regulates osmolytes (ions and organic solutes) and water flux. During hypoosmotic stress or when undigested materials accumulate, lysosomes become swollen and hypo-functional. As a membranous organelle filled with cargo macromolecules, catabolites, ions, and hydrolases, the lysosome must have mechanisms that regulate its shape and size while coordinating content exchange. In this review, we discussed the mechanisms that regulate lysosomal fusion and fission as well as swelling and condensation, with a focus on solute and water transport mechanisms across lysosomal membranes. Lysosomal H+, Na+, K+, Ca2+, and Cl- channels and transporters sense trafficking and osmotic cues to regulate both solute flux and membrane trafficking. We also provide perspectives on how lysosomes may adjust the volume of themselves, the cytosol, and the cytoplasm through the control of lysosomal solute and water transport.
    DOI:  https://doi.org/10.1083/jcb.202109133
  42. Nat Commun. 2022 Oct 14. 13(1): 6080
      Disturbed lipid metabolism precedes alcoholic liver injury. Whether and how AhR alters degradation of lipids, particularly phospho-/sphingo-lipids during alcohol exposure, was not explored. Here, we show that alcohol consumption in mice results in induction and activation of aryl hydrocarbon receptor (AhR) in the liver, and changes the hepatic phospho-/sphingo-lipids content. The levels of kynurenine, an endogenous AhR ligand, are elevated with increased hepatic tryptophan metabolic enzymes in alcohol-fed mice. Either alcohol or kynurenine treatment promotes AhR activation with autophagy dysregulation via AMPK. Protein Phosphatase 2 Regulatory Subunit-Bdelta (Ppp2r2d) is identified as a transcriptional target of AhR. Consequently, PPP2R2D-dependent AMPKα dephosphorylation causes autophagy inhibition and mitochondrial dysfunction. Hepatocyte-specific AhR ablation attenuates steatosis, which is associated with recovery of phospho-/sphingo-lipids content. Changes of AhR targets are corroborated using patient specimens. Overall, AhR induction by alcohol inhibits autophagy in hepatocytes through AMPKα, which is mediated by Ppp2r2d gene transactivation, revealing an AhR-dependent metabolism of phospho-/sphingo-lipids.
    DOI:  https://doi.org/10.1038/s41467-022-33749-0
  43. Biochem Biophys Rep. 2022 Dec;32 101358
      During development, the interconnected generation of various neural cell types within the cerebellar primordium is essential. Over embryonic (E) days E9-E13, Purkinje cells (PCs), and cerebellar nuclei (CN) neurons are among the created primordial neurons. The molecular and cellular mechanisms fundamental for the early cerebellar neurogenesis, migration/differentiation, and connectivity are not clear yet. Autophagy has a vital role in controlling cellular phenotypes, such as epithelial-to-mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT). Transforming growth factor-beta 1 (TGF-β1) is the main player in pre-and postnatal development and controlling cellular morphological type via various mechanisms, such as autophagy. Thus, we hypothesized that TGF-β1 may regulate early cerebellar development by modifying the levels of cell adhesion molecules (CAMs) and consequently autophagy pathway in the mouse cerebellar primordium. We demonstrated the stimulation of the canonical TGF-β1 signaling pathway at the point that concurs with the generation of the nuclear transitory zone and PC plate in mice. Furthermore, our data show that the stimulated TGF-β1 signaling pathway progressively and chronologically could upregulate the expression of β-catenin (CTNNB1) and N-cadherin (CDH2) with the most expression at E11 and E12, leading to upregulation of chromodomain helicase DNA binding protein 8 (CDH8) and neural cell adhesion molecule 1 (NCAM1) expression, at E12 and E13. Finally, we demonstrated that the stimulated TGF-β signaling pathway may impede the autophagic flux at E11/E12. Nevertheless, basal autophagy flux happens at earlier developmental phases from E9-E10. Our study determined potential role of the TGF-β signaling and its regulatory impacts on autophagic flux during cerebellar development and cadherin expression, which can facilitate the proliferation, migration/differentiation, and placement of PCs and the CN neurons in their designated areas.
    Keywords:  Autophagy; Autophagy flux; Cerebellum early development; Transforming growth factor-beta
    DOI:  https://doi.org/10.1016/j.bbrep.2022.101358
  44. Genome. 2022 Oct 14.
      Autophagy is an important process that maintains adult tissue homeostasis and functions by protecting cells in autonomous and non-cell-autonomous ways. By degrading toxic components or proteins involved in cell signaling pathways, autophagy preserves the balance among stem cells, progenitors, and differentiated cells in various tissues. In this minireview, we discuss recent studies performed in Drosophila that highlight new roles of autophagy in adult cell fate decisions, including quiescence, proliferation, differentiation, and death.
    DOI:  https://doi.org/10.1139/gen-2022-0069
  45. Front Physiol. 2022 ;13 1004275
      Autophagy is a highly conserved process that is indispensable for cell survival, embryonic development, and tissue homeostasis. Activation of autophagy protects cells against oxidative stress and is a major adaptive response to injury. When autophagy is dysregulated by factors such as smoking, environmental insults and aging, it can lead to enhanced formation of aggressors and production of reactive oxygen species (ROS), resulting in oxidative stress and oxidative damage to cells. ROS activates autophagy, which in turn promotes cell adaptation and reduces oxidative damage by degrading and circulating damaged macromolecules and dysfunctional cell organelles. The cellular response triggered by oxidative stress includes changes in signaling pathways that ultimately regulate autophagy. Chronic obstructive pulmonary disease (COPD) is the most common lung disease among the elderly worldwide, with a high mortality rate. As an induced response to oxidative stress, autophagy plays an important role in the pathogenesis of COPD. This review discusses the regulation of oxidative stress and autophagy in COPD, and aims to provide new avenues for future research on target-specific treatments for COPD.
    Keywords:  autophagy; chronic obstructive pulmonary disease; interplay; molecular mechanism; oxidative stress
    DOI:  https://doi.org/10.3389/fphys.2022.1004275
  46. Front Pharmacol. 2022 ;13 976932
      Mechanistic target of rapamycin (mTOR) C1 and its downstream effectors have been implicated in synaptic plasticity and memory. Our prior work demonstrated that reactivation of cocaine memory engages a signaling pathway consisting of Akt, glycogen synthase kinase-3β (GSK3β), and mTORC1. The present study sought to identify other components of mTORC1 signaling involved in the reconsolidation of cocaine contextual memory, including eukaryotic translation initiation factor 4E (eIF4E)-eIF4G interactions, p70 S6 kinase polypeptide 1 (p70S6K, S6K1) activity, and activity-regulated cytoskeleton (Arc) expression. Cocaine contextual memory was established in adult CD-1 mice using conditioned place preference. After cocaine place preference was established, mice were briefly re-exposed to the cocaine-paired context to reactivate the cocaine memory and brains examined. Western blot analysis showed that phosphorylation of the mTORC1 target, p70S6K, in nucleus accumbens and hippocampus was enhanced 60 min following reactivation of cocaine memories. Inhibition of mTORC1 with systemic administration of rapamycin or inhibition of p70S6K with systemic PF-4708671 after reactivation of cocaine contextual memory abolished the established cocaine place preference. Immunoprecipitation assays showed that reactivation of cocaine memory did not affect eIF4E-eIF4G interactions in nucleus accumbens or hippocampus. Levels of Arc mRNA were significantly elevated 60 and 120 min after cocaine memory reactivation and returned to baseline 24 h later. These findings demonstrate that mTORC1 and p70S6K are required for reconsolidation of cocaine contextual memory.
    Keywords:  Arc/Arg3.1; cocaine; conditioned place preference; mechanistic target of rapamycin complex 1; p70S6 kinase; rapamycin; reconsolidation
    DOI:  https://doi.org/10.3389/fphar.2022.976932
  47. EMBO Rep. 2022 Oct 10. e55470
      CD4+ T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized. We demonstrate here that the autophagy receptor, T6BP, influences both autophagy-dependent and -independent endogenous presentation of HIV- and HCMV-derived peptides. By studying the immunopeptidome of MHC-II molecules, we show that T6BP affects both the quantity and quality of peptides presented. T6BP silencing induces the mislocalization of the MHC-II-loading compartments and rapid degradation of the invariant chain (CD74) without altering the expression and internalization kinetics of MHC-II molecules. Defining the interactome of T6BP, we identify calnexin as a T6BP partner. We show that the calnexin cytosolic tail is required for this interaction. Remarkably, calnexin silencing replicates the functional consequences of T6BP silencing: decreased CD4+ T cell activation and exacerbated CD74 degradation. Altogether, we unravel T6BP as a key player of the MHC-II-restricted endogenous presentation pathway, and we propose one potential mechanism of action.
    Keywords:  CD4+ T cell activation; calnexin; immunopeptidome; interactome; virus
    DOI:  https://doi.org/10.15252/embr.202255470
  48. Free Radic Res. 2022 Oct 11. 1-21
      We have previously demonstrated that low density lipoprotein (LDL) can be oxidised by iron in the lysosomes of macrophages. Some of the iron content of lysosomes might be delivered through autophagy of ferritin (the main iron-storage protein in the body). We have now investigated the effects of ferritin-mediated LDL oxidation on macrophage function. The addition of ferritin to human THP-1 cells and human monocyte-derived macrophages increased lysosomal lipid peroxidation, as shown by LPO-Foam, a fluorescent probe targetted to lysosomes. Incubating THP-1 cells with ferritin and native LDL or LDL aggregated by sphingomyelinase, to allow their endocytosis and delivery to lysosomes, led to the formation of lysosomal ceroid (an advanced lipid oxidation product), indicative of lysosomal LDL oxidation. Incubating THP-1 cells with ferritin and LDL caused metabolic activation of the cells, as shown by increased extracellular acidification and oxygen consumption measured by a Seahorse analyser. LDL oxidised by ferritin in lysosomes might be released from macrophages when the cells die and lyse and affect neighbouring cells in atherosclerotic lesions. Adding LDL oxidised by ferritin at lysosomal pH (pH 4.5) to macrophages increased their intracellular reactive oxygen species formation, shown using dihydroethidium, and increased apoptosis. Ferritin might therefore contribute to LDL oxidation in the lysosomes of macrophages and have atherogenic effects.
    Keywords:  LDL oxidation; atherosclerosis; ferritin; lysosome; macrophage
    DOI:  https://doi.org/10.1080/10715762.2022.2133703
  49. Front Cardiovasc Med. 2022 ;9 1024917
      
    Keywords:  cardiovascular disease; degradation mechanisms; energy metabolism; inflammation; mitophagy
    DOI:  https://doi.org/10.3389/fcvm.2022.1024917
  50. Nat Commun. 2022 Oct 10. 13(1): 5659
      Plant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines low blue (LB) light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently trigger growth adaptations to enhance light access. However, how these conditions, differing in light quality and quantity, similarly promote hypocotyl growth remains unknown. Using RNA sequencing we show that these two features of shade trigger different transcriptional reprogramming. LB induces starvation responses, suggesting a switch to a catabolic state. Accordingly, LB promotes autophagy. In contrast, LRFR induced anabolism including expression of sterol biosynthesis genes in hypocotyls in a manner dependent on PHYTOCHROME-INTERACTING FACTORs (PIFs). Genetic analyses show that the combination of sterol biosynthesis and autophagy is essential for hypocotyl growth promotion in vegetative shade. We propose that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific lipid biosynthetic processes.
    DOI:  https://doi.org/10.1038/s41467-022-33384-9
  51. PLoS Genet. 2022 Oct;18(10): e1010431
      It is widely stated in the literature that closed mature autophagosomes (APs) fuse with lysosomes/vacuoles during macroautophagy/autophagy. Previously, we showed that unclosed APs accumulated as clusters outside vacuoles in Vps21/Rab5 and ESCRT mutants after a short period of nitrogen starvation. However, the fate of such unclosed APs remains unclear. In this study, we used a combination of cellular and biochemical approaches to show that unclosed double-membrane APs entered vacuoles and formed unclosed single-membrane autophagic bodies after prolonged nitrogen starvation or rapamycin treatment. Vacuolar hydrolases, vacuolar transport chaperon (VTC) proteins, Ypt7, and Vam3 were all involved in the entry of unclosed double-membrane APs into vacuoles in Vps21-mutant cells. Overexpression of the vacuolar hydrolases, Pep4 or Prb1, or depletion of most VTC proteins promoted the entry of unclosed APs into vacuoles in Vps21-mutant cells, whereas depletion of Pep4 and/or Prb1 delayed the entry into vacuoles. In contrast to the complete infertility of diploid cells of typical autophagy mutants, diploid cells of Vps21 mutant progressed through meiosis to sporulation, benefiting from the entry of unclosed APs into vacuoles after prolonged nitrogen starvation. Overall, these data represent a new observation that unclosed double-membrane APs can enter vacuoles after prolonged autophagy induction, most likely as a survival strategy.
    DOI:  https://doi.org/10.1371/journal.pgen.1010431
  52. Arch Toxicol. 2022 Oct 10.
      Bladder cells are constantly exposed to multiple xenobiotics and bioactive metabolites. In addition to this challenging chemical environment, they are also exposed to shear stress originating from urine and interstitial fluids. Hence, physiological function of bladder cells relies on a high biochemical and biomechanical adaptive competence, which, in turn, is largely supported via autophagy-related mechanisms. As a negative side of this plasticity, bladder cancer cells are known to adapt readily to chemotherapeutic programs. At the molecular level, autophagy was described to support resistance against pharmacological treatments and to contribute to the maintenance of cell structure and metabolic competence. In this study, we enhanced autophagy with rapamycin (1-100 nM) and assessed its effects on the motility of bladder cells, as well as the capability to respond to shear stress. We observed that rapamycin reduced cell migration and the mechanical-induced translocation potential of Krüppel-like transcription factor 2 (KLF2). These effects were accompanied by a rearrangement of cytoskeletal elements and mitochondrial loss. In parallel, intracellular acetylation levels were decreased. Mechanistically, inhibition of the NAD + -dependent deacetylase sirtuin-1 (SIRT1) with nicotinamide (NAM; 0.1-5 mM) restored acetylation levels hampered by rapamycin and cell motility. Taken together, we described the effects of rapamycin on cytoskeletal elements crucial for mechanotransduction and the dependency of these changes on the mitochondrial turnover caused by autophagy activation. Additionally, we could show that targeted metabolic intervention could revert the outcome of autophagy activation, reinforcing the idea that bladder cells can easily adapt to multiple xenobiotics and circumvent in this way the effects of single chemicals.
    Keywords:  Acetylation; Migration; Mitophagy; Rapamycin; Shear stress (fluid); T24 bladder cancer cells
    DOI:  https://doi.org/10.1007/s00204-022-03375-2
  53. Arch Toxicol. 2022 Oct 10.
      Mitoxantrone (MTX) is an antineoplastic agent used to treat advanced breast cancer, prostate cancer, acute leukemia, lymphoma and multiple sclerosis. Although it is known to cause cumulative dose-related cardiotoxicity, the underlying mechanisms are still poorly understood. This study aims to compare the cardiotoxicity of MTX and its' pharmacologically active metabolite naphthoquinoxaline (NAPHT) in an in vitro cardiac model, human-differentiated AC16 cells, and determine the role of metabolism in the cardiotoxic effects. Concentration-dependent cytotoxicity was observed after MTX exposure, affecting mitochondrial function and lysosome uptake. On the other hand, the metabolite NAPHT only caused concentration-dependent cytotoxicity in the MTT reduction assay. When assessing the effect of different inhibitors/inducers of metabolism, it was observed that metyrapone (a cytochrome P450 inhibitor) and phenobarbital (a cytochrome P450 inducer) slightly increased MTX cytotoxicity, while 1-aminobenzotriazole (a suicide cytochrome P450 inhibitor) decreased fairly the MTX-triggered cytotoxicity in differentiated AC16 cells. When focusing in autophagy, the mTOR inhibitor rapamycin and the autophagy inhibitor 3-methyladenine exacerbated the cytotoxicity caused by MTX and NAPHT, while the autophagy blocker, chloroquine, partially reduced the cytotoxicity of MTX. In addition, we observed a decrease in p62, beclin-1, and ATG5 levels and an increase in LC3-II levels in MTX-incubated cells. In conclusion, in our in vitro model, neither metabolism nor exogenously given NAPHT are major contributors to MTX toxicity as seen by the residual influence of metabolism modulators used on the observed cytotoxicity and by NAPHT's low cytotoxicity profile. Conversely, autophagy is involved in MTX-induced cytotoxicity and MTX seems to act as an autophagy inducer, possibly through p62/LC3-II involvement.
    Keywords:  Autophagy; Cardiotoxicity; Differentiated AC16 cardiac cells; Metabolism; Mitoxantrone; Naphthoquinoxaline metabolite
    DOI:  https://doi.org/10.1007/s00204-022-03363-6
  54. Biol Trace Elem Res. 2022 Oct 13.
      Metabolic-associated fatty liver disease (MAFLD) (previously known as nonalcoholic fatty liver disease (NAFLD)) is a disease with high worldwide prevalence, but with limited available therapeutic interventions. Autophagy is a cell survival mechanism for clearing excess lipids in hepatocytes and affects the occurrence and development of MAFLD. In addition, some studies have shown that magnesium deficiency is common in patients with obesity and metabolic syndrome. Magnesium supplementation can effectively improve metabolism-related diseases such as obesity and fatty liver. Our study successfully constructed a cellular model of MAFLD by 1 mM free fatty acid (FFA) intervention in LO2 cells for 24 h, and there was an increase in lipid accumulation in hepatocytes after FFA intervention. Magnesium supplementation was shown to reduce lipid deposition in hepatocytes induced by FFA, and Western blotting (WB) analysis showed that magnesium supplementation could downregulate the expression of Fasn and SREBP1 and increase the expression of LPL, suggesting that magnesium can reduce lipid accumulation by reducing lipid synthesis and increasing lipid oxidation. Magnesium supplementation could affect cellular lipid metabolism by activating the AMPK/mTOR pathway to stimulate autophagy. Our results identified a relationship between magnesium and lipid accumulation in hepatocytes and showed that magnesium supplementation reduced lipid deposition in hepatocytes by activating autophagy by activating the AMPK-mTOR pathway.
    Keywords:  Autophagy; Lipid metabolism; Magnesium; Metabolic-associated fatty liver disease
    DOI:  https://doi.org/10.1007/s12011-022-03438-6
  55. Front Genet. 2022 ;13 769936
      Polymorphisms in the Apolipoprotein L1 (APOL1) gene are common in ancestrally African populations, and associate with kidney injury and cardiovascular disease. These risk variants (RV) provide an advantage in resisting Trypanosoma brucei, the causal agent of African trypanosomiasis, and are largely absent from non-African genomes. Clinical associations between the APOL1 high risk genotype (HRG) and disease are stronger in those with comorbid infectious or immune disease. To understand the interaction between cytokine exposure and APOL1 cytotoxicity, we established human umbilical vein endothelial cell (HUVEC) cultures representing each APOL1 genotype. Untreated HUVECs were compared to IFNɣ-exposed; and APOL1 expression, mitochondrial function, lysosome integrity, and autophagic flux were measured. IFNɣ increased median APOL1 expression across all genotypes 22.1 (8.3 to 29.8) fold (p=0.02). Compared to zero risk variant-carrying HUVECs (0RV), HUVECs carrying 2 risk variant copies (2RV) showed both depressed baseline and maximum mitochondrial oxygen consumption (p<0.01), and impaired mitochondrial networking on MitoTracker assays. These cells also demonstrated a contracted lysosomal compartment, and an accumulation of autophagosomes suggesting a defect in autophagic flux. Upon blocking autophagy with non-selective lysosome inhibitor, hydroxychloroquine, autophagosome accumulation between 0RV HUVECs and untreated 2RV HUVECs was similar, implicating lysosomal dysfunction in the HRG-associated autophagy defect. Compared to 0RV and 2RV HUVECs, HUVECs carrying 1 risk variant copy (1RV) demonstrated intermediate mitochondrial respiration and autophagic flux phenotypes, which were exacerbated with IFNɣ exposure. Taken together, our data reveal that IFNɣ induces APOL1 expression, and that each additional RV associates with mitochondrial dysfunction and autophagy inhibition. IFNɣ amplifies this phenotype even in 1RV HUVECs, representing the first description of APOL1 pathobiology in variant heterozygous cell cultures.
    Keywords:  APOL1; Autophagy; HUVECs; Mitochondria; interferon
    DOI:  https://doi.org/10.3389/fgene.2022.769936