bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2022‒09‒04
48 papers selected by
Viktor Korolchuk, Newcastle University

  1. Brain. 2022 Aug 30. pii: awac313. [Epub ahead of print]
      Loss-of-function mutations in the PRKN, PINK1 and PARK7 genes (encoding parkin, PINK1 and DJ-1, respectively) cause autosomal recessive forms of Parkinson's disease. PINK1 and parkin jointly mediate selective autophagy of damaged mitochondria (mitophagy), but the mechanisms by which loss of DJ-1 induces Parkinson's disease, are not well understood. Here, we investigated PINK1/parkin-mediated mitophagy in cultured human fibroblasts and iPSC-derived neurons with homozygous PARK7 mutations. We found that DJ-1 is essential for PINK1/parkin-mediated mitophagy. Loss of DJ-1 did not interfere with PINK1 or parkin activation after mitochondrial depolarization, but blocked mitophagy further downstream by inhibiting recruitment of the selective autophagy receptor optineurin to depolarized mitochondria. By contrast, starvation-induced, non-selective autophagy was not affected by loss of DJ-1. In wild-type fibroblasts and iPSC-derived dopaminergic neurons, endogenous DJ-1 translocated to depolarized mitochondria in close proximity with optineurin. DJ-1 translocation to depolarized mitochondria was dependent on PINK1 and parkin and did not require oxidation of cysteine residue 106 of DJ-1. Overexpression of DJ-1 did not rescue the mitophagy defect of PINK1- or parkin-deficient cells. These findings position DJ-1 downstream of PINK1 and parkin in the same pathway and suggest that disruption of PINK1/parkin/DJ-1-mediated mitophagy is a common pathogenic mechanism in autosomal recessive Parkinson's disease.
    Keywords:  DJ-1; Parkinson’s disease; autophagy; mitophagy; optineurin
  2. Autophagy. 2022 Aug 28. 1-3
      The ability to maintain a functional proteome by clearing damaged or misfolded proteins is critical for cell survival, and aggregate-prone proteins accumulate in many neurodegenerative diseases, such as Huntington, Alzheimer, and Parkinson diseases. The removal of such proteins is mainly mediated by the ubiquitin-proteasome system and autophagy, and the activity of these systems declines in disease or with age. We recently found that targeting VCP/p97 with compounds like SMER28 enhances macroautophagy/autophagy flux mediated by the increased activity of the PtdIns3K complex I. Additionally, we found that SMER28 binding to VCP stimulates aggregate-prone protein clearance via the ubiquitin-proteasome system. This concurrent action of SMER28 on both degradation pathways resulted in the selective decrease in disease-causing proteins but not their wild-type counterparts. These results reveal a promising mode of VCP activation to counteract the toxicity caused by aggregate-prone proteins.
    Keywords:  Aggregate-prone proteins; PI3P; SMER28; VCP/p97; autophagy activation; ubiquitin–proteasome system
  3. Autophagy. 2022 Sep 02. 1-3
      ATG4B, a cysteine protease promoting autophagosome formation by reversibly modifying Atg8-family proteins, plays a vital role in controlling macroautophagy/autophagy initiation in response to stress. However, the molecular mechanism underlying the regulation of ATG4B activity is far from well elucidated. In the current study, we firstly revealed that the acetylation level of ATG4B at lysine residue 39 (K39) is strongly involved in regulating its activity and autophagy. Specifically, SIRT2 deacetylates ATG4B K39, enhancing ATG4B activity and autophagic flux, which can be antagonized by EP300/p300. Starvation treatment contributes to EP300 suppression and SIRT2 activation, promoting the deacetylation of ATG4B K39, which leads to the elevation of ATG4B activity and finally autophagy initiation. Mechanistic investigation showed that starvation reduces CCNE (cyclin E), resulting in the downregulation of the CCNE-CDK2 protein complex, decreasing the phosphorylation of SIRT2 Ser331 and finally activating SIRT2. In addition, we confirmed that SIRT2 promotes autophagy via suppressing acetylation of ATG4B at K39 using sirt2 gene knockout (sirt2-/-) mice. Collectively, our results have revealed the acetylation-mediated regulation of ATG4B cysteine protease activity in autophagy initiation in response to nutritional deficiency.
    Keywords:  ATG4B; Acetylation; EP300; SIRT2; autophagy; starvation
  4. Stem Cell Reports. 2022 Aug 17. pii: S2213-6711(22)00378-2. [Epub ahead of print]
      Disruption of endolysosomal and autophagy-lysosomal systems is increasingly implicated in neurodegeneration. Sodium-proton exchanger 6 (NHE6) contributes to the maintenance of proper endosomal pH, and loss-of function mutations in the X-linked NHE6 lead to Christianson syndrome (CS) in males. Neurodegenerative features of CS are increasingly recognized, with postmortem and clinical data implicating a role for tau. We generated cortical neurons from NHE6 knockout (KO) and isogenic wild-type control human induced pluripotent stem cells. We report elevated phosphorylated and sarkosyl-insoluble tau in NHE6 KO neurons. We demonstrate that NHE6 KO leads to lysosomal and autophagy dysfunction involving reduced lysosomal number and protease activity, diminished autophagic flux, and p62 accumulation. Finally, we show that treatment with trehalose or rapamycin, two enhancers of autophagy-lysosomal function, each partially rescue this tau phenotype. We provide insight into the neurodegenerative processes underlying NHE6 loss of function and into the broader role of the endosome-lysosome-autophagy network in neurodegeneration.
    Keywords:  Alzheimer disease and related dementias; Christianson syndrome; NHE6; SLC9A6; autophagy; endosome; iPSC; lysosome; tau; trehalose
  5. Sci Adv. 2022 Sep 02. 8(35): eabo1215
      Selective degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is initiated by ER-phagy receptors, which facilitate the incorporation of ER fragments into autophagosomes. FAM134 reticulon family proteins (FAM134A, FAM134B, and FAM134C) are ER-phagy receptors with structural similarities and nonredundant functions. Whether they respond differentially to the stimulation of ER-phagy is unknown. Here, we describe an activation mechanism unique to FAM134C during starvation. In fed conditions, FAM134C is phosphorylated by casein kinase 2 (CK2) at critical residues flanking the LIR domain. Phosphorylation of these residues negatively affects binding affinity to the autophagy proteins LC3. During starvation, mTORC1 inhibition limits FAM134C phosphorylation by CK2, hence promoting receptor activation and ER-phagy. Using a novel tool to study ER-phagy in vivo and FAM134C knockout mice, we demonstrated the physiological relevance of FAM134C phosphorylation during starvation-induced ER-phagy in liver lipid metabolism. These data provide a mechanistic insight into ER-phagy regulation and an example of autophagy selectivity during starvation.
  6. Antioxid Redox Signal. 2022 Sep 02.
      SIGNIFICANCE: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and MPT (mitochondrial membrane-permeability transition)-derived necrosis has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases.RECENT ADVANCES: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular context. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis.
    CRITICAL ISSUES: The dual roles of autophagy, either pro-survival or pro-death characteristics intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship.
    FUTURE DIRECTIONS: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied.
  7. Neurobiol Dis. 2022 Aug 25. pii: S0969-9961(22)00247-9. [Epub ahead of print] 105855
      Alzheimer's disease (AD), an age-dependent neurodegenerative disorder, is the most prevalent neurodegenerative disease worldwide. The primary pathological hallmarks of AD are the deposition of β-amyloid plaques and neurofibrillary tangles. Autophagy, a pathway of clearing damaged organelles, macromolecular aggregates, and long-lived proteins via lysosomal degradation, has emerged as critical for proteostasis in the central nervous system (CNS). Studies have demonstrated that defective autophagy is strongly implicated in AD pathogenesis. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy, enhances the expression of related genes that control autophagosome formation, lysosome function, and autophagic flux. The study of TFEB has greatly increased over the last decade, and the dysfunction of TFEB has been reported to be strongly associated with the pathogenesis of many neurodegenerative disorders, including AD. Here, we delineate the basic understanding of TFEB dysregulation involved in AD pathogenesis, highlighting the existing work that has been conducted on TFEB-mediated autophagy in neurons and other nonneuronal cells in the CNS. Additionally, we summarize the small molecule compounds that target TFEB-regulated autophagy involved in AD therapy. Our review may yield new insights into therapeutic approaches by targeting TFEB and provide a broadly applicable basis for the clinical treatment of AD.
    Keywords:  Alzheimer's disease; Autophagy; Aβ plaque; Lysosome; Tau phosphorylation; Transcription factor EB
  8. Nat Commun. 2022 Sep 02. 13(1): 5164
      Mitophagy is essential to maintain mitochondrial function and prevent diseases. It activates upon mitochondria depolarization, which causes PINK1 stabilization on the mitochondrial outer membrane. Strikingly, a number of conditions, including mitochondrial protein misfolding, can induce mitophagy without a loss in membrane potential. The underlying molecular details remain unclear. Here, we report that a loss of mitochondrial protein import, mediated by the pre-sequence translocase-associated motor complex PAM, is sufficient to induce mitophagy in polarized mitochondria. A genome-wide CRISPR/Cas9 screen for mitophagy inducers identifies components of the PAM complex. Protein import defects are able to induce mitophagy without a need for depolarization. Upon mitochondrial protein misfolding, PAM dissociates from the import machinery resulting in decreased protein import and mitophagy induction. Our findings extend the current mitophagy model to explain mitophagy induction upon conditions that do not affect membrane polarization, such as mitochondrial protein misfolding.
  9. Autophagy. 2022 Aug 29.
      Autophagy (i.e., macroautophagy) plays a significant role in the replication of hepatitis B virus (HBV). In our recent study, we examined the underlying mechanism and discovered that autophagic membranes participated in different steps of the HBV life cycle. We found that phagophores are involved in the assembly of HBV nucleocapsids, autophagosomes participate in the trafficking of HBV nucleocapsids, amphisomes likely participate in the maturation and egress of mature HBV particles, and autolysosomes negatively regulate HBV replication. Our work provides important insights for understanding the relationship between autophagic membranes and HBV replication and raises the possibility of targeting the autophagic pathway for the development of novel drugs against HBV.
  10. PLoS Pathog. 2022 Aug 31. 18(8): e1010350
      Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy.
  11. DNA Cell Biol. 2022 Aug 26.
      Autophagy maintains intracellular homeostasis in the cardiovascular system, including in cardiomyocytes, endothelial cells (ECs), and arterial smooth muscle cells. Mitophagy, a selective autophagy that specifically removes damaged and dysfunctional mitochondria, is particularly important for cardiovascular homeostasis. Dysfunctional mitophagy contributes to cardiovascular disease, particularly atherosclerosis (AS). This review focuses on the advances of regulator mechanisms of mitophagy and its potential roles in AS. The findings are beneficial to understanding the pathological processes of atherosclerotic lesions and provide new ideas for the prevention and clinical treatment of AS.
    Keywords:  atherosclerosis; autophagy; cardiovascular disease; mitochondrial dysfunction; mitophagy
  12. Mol Biol Cell. 2022 Aug 31. mbcE22040139
      Lysosomes are dynamic organelles that can remodel their membrane as an adaptive response to various cell signaling events including membrane damage. Recently, we have discovered that damaged lysosomes form and sort tubules into moving vesicles. We named this process LYTL for LYsosomal Tubulation/ sorting driven by LRRK2, as the Parkinson's disease protein LRRK2 promotes tubulation by recruiting the motor adaptor protein JIP4 to lysosomes via phosphorylated RAB proteins. Here we use spinning-disk microscopy combined with super-resolution to further characterize LYTL after membrane damage with LLOMe. We identified the endoplasmic reticulum (ER) colocalizing with sites of fission of lysosome-derived tubules. In addition, modifying the morphology of the ER by reducing ER tubules leads to a decrease in LYTL sorting suggesting that contact with tubular ER is necessary for lysosomal membrane sorting. Given the central roles of LRRK2 and lysosomal biology in PD, these discoveries are likely relevant to disease pathology and highlight interactions between organelles in this model. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
  13. Autophagy. 2022 Aug 30.
      Substrates that are selected for degradation by autophagy interact in more complex eukaryotes with Atg8-family proteins via the LC3-interacting region (LIR) that is often preceded by either acidic residues or phosphorylated serine or threonine. These upstream amino acid residues increase binding affinity of the LIR motif to its binding site on the surface of LC3/GABARAP. It is not fully understood whether or how phosphorylation functionally replaces acidic residues in the LIR-Atg8-family protein interactions. A recent study by Chino et al., discussed in this article, analyzed phosphorylation of two serine residues upstream of the LIR motif in TEX264, a reticulophagy receptor that exhibits a high binding affinity to LC3/GABARAP proteins. The authors found a structural basis for the high-affinity interaction yielded by phosphorylation, but not by an acidic residue in place of phosphoserine. Furthermore, finding that phosphorylation of TEX264 generates its high binding affinity to Atg8-family proteins uncovers a mechanistic alternative to that utilized by other reticulophagy receptors when they interact with LC3/GABARAP.
    Keywords:  Casein kinase 2; LC3-interacting region; crystallography; intrinsically disordered protein region; isothermal titration calorimetry
  14. Cell Rep. 2022 Aug 30. pii: S2211-1247(22)01112-3. [Epub ahead of print]40(9): 111292
      Cell competition is a process by which unwanted cells are eliminated from tissues. Apical extrusion is one mode whereby normal epithelial cells remove transformed cells, but it remains unclear how this process is mechanically effected. In this study, we show that autophagic and endocytic fluxes are attenuated in RasV12-transformed cells surrounded by normal cells due to lysosomal dysfunction, and that chemical manipulation of lysosomal activity compromises apical extrusion. We further find that RasV12 cells deficient in autophagy initiation machinery are resistant to elimination pressure exerted by normal cells, suggesting that non-degradable autophagic vacuoles are required for cell competition. Moreover, in vivo analysis revealed that autophagy-ablated RasV12 cells are less readily eliminated by cell competition, and remaining transformed cells destroy ductal integrity, leading to chronic pancreatitis. Collectively, our findings illuminate a positive role for autophagy in cell competition and reveal a homeostasis-preserving function of autophagy upon emergence of transformed cells.
    Keywords:  CP: Cell biology; autophagic flux; cell competition; lysosomal dysfunction; non-degradable autophagic vacuoles; pancreatic cancer
  15. Cell Mol Life Sci. 2022 Aug 29. 79(9): 501
      BACKGROUND: Poly-GA, a dipeptide repeat protein unconventionally translated from GGGGCC (G4C2) repeat expansions in C9orf72, is abundant in C9orf72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9orf72-ALS/FTD). Although the poly-GA aggregates have been identified in C9orf72-ALS/FTD neurons, the effects on UPS (ubiquitin-proteasome system) and autophagy and their exact molecular mechanisms have not been fully elucidated.RESULTS: Herein, our in vivo experiments indicate that the mice expressing ploy-GA with 150 repeats instead of 30 repeats exhibit significant aggregates in cells. Mice expressing 150 repeats ploy-GA shows behavioral deficits and activates autophagy in the brain. In vitro findings suggest that the poly-GA aggregates influence proteasomal by directly binding proteasome subunit PSMD2. Subsequently, the poly-GA aggregates activate phosphorylation and ubiquitination of p62 to recruit autophagosomes. Ultimately, the poly-GA aggregates lead to compensatory activation of autophagy. In vivo studies further reveal that rapamycin (autophagy activator) treatment significantly improves the degenerative symptoms and alleviates neuronal injury in mice expressing 150 repeats poly-GA. Meanwhile, rapamycin administration to mice expressing 150 repeats poly-GA reduces neuroinflammation and aggregates in the brain.
    CONCLUSION: In summary, we elucidate the relationship between poly-GA in the proteasome and autophagy: when poly-GA forms complexes with the proteasome, it recruits autophagosomes and affects proteasome function. Our study provides support for further promoting the comprehension of the pathogenesis of C9orf72, which may bring a hint for the exploration of rapamycin for the treatment of ALS/FTD.
    Keywords:  ALS; Autophagy; C9orf72; Poly-GA; Proteasome
  16. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022 Jul 28. pii: 1672-7347(2022)07-0936-06. [Epub ahead of print]47(7): 936-941
      Autophagy is a regulatory mechanism that packages damaged organelles, proteins, and pathogens to form vesicles and transports to lysosomes for degradation, enabling the recycle of useful components. Therefore, autophagy plays an important role in biological growth regulation and homeostasis. In the past two decades, growing evidence has shown that microRNA (miRNA) is closely related to autophagy. MiRNA-21 promotes or inhibits autophagy via regulating relevant pathways for different downstream target genes, and plays a role in tumors, ischemia-reperfusion injury, and other diseases.
    Keywords:  autophagy; ischemia-reperfusion injury; microRNA-21; tumor
  17. Hum Cell. 2022 Sep 01.
      MicroRNA dysregulation is a hallmark of hepatocellular carcinoma (HCC), leading to tumor growth and metastasis. Previous screening on patient specimens identified miR-198 as the most downregulated miRNA in HCC. Here, we show that miR-198 compensation leads to self-release into extracellular vesicles (EVs). Importantly, the vesicular secretion is mediated by autophagy-related pathway, initiated by sequestration of p62/miR-198 complexes in autophagosome-associated vesicle fractions. miR-198 is selectively recognized and loaded by p62 into autophagosomal fractions, whereas mutated miR-198 forms neither induce autophagy and nor interact with p62. Gain and loss of function experiments, using a CRIPR/Cas knockout (KO) and transgenic site-specific p62 mutants, identified p62 as an essential repressor of cellular miR-198 abundancy. Notably, EVs, harboring miR-198/p62 protein complexes, can be uptaken by cells in the close vicinity, leading to change of gene expression in recipient cells. In conclusion, miR-198 enhances autophagy; conversely autophagic protein p62 reduces the miR-198 levels by sorting into extracellular space. miR-198 is at first transcribed as primary miRNA, after being processed into single stranded mature miR-198 form, it is transported into cytoplasm ①. By interaction with p62 protein, miR-198 conglomerates and forms a binding complex ②. Since LC3 protein is an interaction partner of p62 protein, hence miR-198 is included into autophagosomes ③. By fusion with multivesicular bodies (MVB), miR-198-binding complex was recruited into amphisomes ④, the latter of which quickly turns into secretory MVB containing intraluminal vesicles⑤. By fusion with cell membrane, intraluminal vesicles were released into extracellular space as EVs ⑥.
    Keywords:  Autophagy; EV; HCC; SQSTM1; microRNA
  18. Cell Rep. 2022 Aug 30. pii: S2211-1247(22)01098-1. [Epub ahead of print]40(9): 111278
      Caloric restriction and acute fasting are known to reduce seizures but through unclear mechanisms. mTOR signaling has been suggested as a potential mechanism for seizure protection from fasting. We demonstrate that brain mTORC1 signaling is reduced after acute fasting of mice and that neuronal mTORC1 integrates GATOR1 complex-mediated amino acid and tuberous sclerosis complex (TSC)-mediated growth factor signaling. Neuronal mTORC1 is most sensitive to withdrawal of leucine, arginine, and glutamine, which are dependent on DEPDC5, a component of the GATOR1 complex. Metabolomic analysis reveals that Depdc5 neuronal-specific knockout mice are resistant to sensing significant fluctuations in brain amino acid levels after fasting. Depdc5 neuronal-specific knockout mice are resistant to the protective effects of fasting on seizures or seizure-induced death. These results establish that acute fasting reduces seizure susceptibility in a DEPDC5-dependent manner. Modulation of nutrients upstream of GATOR1 and mTORC1 could offer a rational therapeutic strategy for epilepsy treatment.
    Keywords:  CP: Metabolism; CP: Neuroscience; GATOR1; SUDEP; TSC; amino acids; cell signaling; epilepsy; fasting; mTOR; metabolomics; seizures
  19. Elife. 2022 Sep 01. pii: e68773. [Epub ahead of print]11
      The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2 (RagA/C in humans), and the GTPase activating complex SEAC/GATOR. However, it remains unclear if, and how, other proteins/pathways regulate TORC1 in simple eukaryotes like yeast. Here we report that the previously unstudied GPCR-like protein, Ait1, binds to TORC1-Gtr1/2 in Saccharomyces cerevisiae and holds TORC1 around the vacuole during log-phase growth. Then, during amino acid starvation, Ait1 inhibits TORC1 via Gtr1/2 using a loop that resembles the RagA/C binding domain in the human protein SLC38A9. Importantly, Ait1 is only found in the Saccharomycetaceae/codaceae, two closely related families of yeast that have lost the ancient TORC1 regulators Rheb and TSC1/2. Thus, the TORC1 circuit found in the Saccharomycetaceae/codaceae, and likely other simple eukaryotes, has undergone significant rewiring during evolution.
    Keywords:  S. cerevisiae; cell biology
  20. J Biol Chem. 2022 Aug 27. pii: S0021-9258(22)00880-8. [Epub ahead of print] 102437
      mTOR, which is part of mTOR complex 1 (mTORC1) and mTORC2, controls cellular metabolism in response to levels of nutrients and other growth signals. A hallmark of mTORC2 activation is the phosphorylation of Akt, which becomes upregulated in cancer. How mTORC2 modulates Akt phosphorylation remains poorly understood. Here, we found that the RNA binding protein, AUF1 (ARE/poly(U)-binding/degradation factor 1), modulates mTORC2/Akt signaling. We determined that AUF1 is required for phosphorylation of Akt at Thr308, Thr450, and Ser473, and that AUF1 also mediates phosphorylation of the mTORC2-modulated metabolic enzyme GFAT1 at Ser243. Additionally, AUF1 immunoprecipitation followed by qRT-PCR revealed that the mRNAs of Akt, GFAT1, and the mTORC2 component SIN1 associate with AUF1. Furthermore, expression of the p40 and p45, but not the p37 or p42, isoforms of AUF1 specifically mediate Akt phosphorylation. In the absence of AUF1, subcellular fractionation indicated that Akt fails to localize to the membrane. However, ectopic expression of a membrane-targeted allele of Akt is sufficient to allow Akt-Ser473 phosphorylation despite AUF1 depletion. Finally, conditions that enhance mTORC2 signaling, such as acute glutamine withdrawal augment AUF1 phosphorylation while mTOR inhibition abolishes AUF1 phosphorylation. Our findings unravel a role for AUF1 in promoting membrane localization of Akt to facilitate its phosphorylation on this cellular compartment. Targeting AUF1 could have therapeutic benefit for cancers with upregulated mTORC2/Akt signaling.
    Keywords:  AUF1; Akt; RNA binding protein; glutamine; hnRNP D; mTOR; mTORC2
  21. Oxid Med Cell Longev. 2022 ;2022 7086807
      Mitochondria-associated membranes (MAMs), physical connection sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM), are involved in numerous cellular processes, such as calcium ion transport, lipid metabolism, autophagy, ER stress, mitochondria morphology, and apoptosis. Autophagy is a highly conserved intracellular process in which cellular contents are delivered by double-membrane vesicles, called autophagosomes, to the lysosomes for destruction and recycling. Autophagy, typically triggered by stress, eliminates damaged or redundant protein molecules and organelles to maintain regular cellular activity. Dysfunction of MAMs or autophagy is intimately associated with various diseases, including aging, cardiovascular, infections, cancer, multiple toxic agents, and some genetic disorders. Increasing evidence has shown that MAMs play a significant role in autophagy development and maturation. In our study, we concentrated on two opposing functions of MAMs in autophagy: facilitating the formation of autophagosomes and inhibiting autophagy. We recognized the link between MAMs and autophagy in the occurrence and progression of the diseases and therefore collated and summarized the existing intrinsic molecular mechanisms. Furthermore, we draw attention to several crucial data and open issues in the area that may be helpful for further study.
  22. Acta Pharmacol Sin. 2022 Aug 30.
      Amyotrophic lateral sclerosis (ALS) is one of the most common fatal neurodegenerative diseases in adults. ALS pathogenesis is associated with toxic SOD1 aggregates generated by mutant SOD1. Since autophagy is responsible for the clearance of toxic protein aggregates including SOD1 aggregates, autophagy induction has been considered as a potential strategy for treating ALS. Autophagic signaling is initiated by unc-51 like autophagy activating kinase 1 (ULK1) complex. We previously identified that BL-918 as a specific ULK1 activator, which exerted cytoprotective effect against Parkinson's disease in vitro and in vivo. In this study we investigated whether BL-918 exerted a therapeutic effect against ALS, and characterized its pharmacokinetic profile in rats. In hSODG93A-NSC34 cells, treatment with BL-918 (5, 10 μM) dose-dependently induced ULK1-dependent autophagy, and eliminated toxic SOD1 aggregates. In SODG93A mice, administration of BL-918 (40, 80 mg/kg, b.i.d., i.g.) dose-dependently prolonged lifespan and improved the motor function, and enhanced the clearance of SOD1 aggregates in spinal cord and cerebral cortex through inducing autophagy. In the pharmacokinetic study conducted in rats, we found BL-918 and its 2 metabolites (M8 and M10) present in spinal cord and brain; after intragastric and intravenous administration, BL-918 reached the highest blood concentration compared to M8 and M10. Collectively, ULK1 activator BL-918 displays a therapeutic potential on ALS through inducing cytoprotective autophagy. This study provides a further clue for autophagic dysfunction in ALS pathogenesis.
    Keywords:  BL-918; ULK1; amyotrophic lateral sclerosis; cytoprotective autophagy; pharmacokinetic
  23. Insect Sci. 2022 Aug 31.
      Autophagy plays an important role in tissue remodeling during insect development. The interplay between autophagy-related (ATG) proteins and caspases regulates the autophagic activity of ATGs, thereby modulating the process of autophagy. Our previous study characterized BmCaspase-8-like (BmCasp8L) as a caspase suppressor that inhibits apoptosis and immune signaling by suppressing the activation of death-related ced-3/Nedd2-like caspase (DREDD), a caspase-8 homolog in silkworm. In this study, we explored the regulatory role of BmCasp8L in autophagy. We found that the expression of Bmcasp8l increased from the late spinning stage to the pupa stage in the posterior silk gland, correlating with the expression patterns of Bmatg8 and Bmatg6. RNAi-mediated downregulation of BmCasp8L expression significantly decreased starvation-induced autophagic influx as determined by the levels of BmATG8-PE and the percentage of cells displaying punctate EGFP-BmATG8. Conversely, the overexpression of BmCasp8L significantly increased autophagic influx. We also found that BmCasp8L underwent autophagic degradation induced by starvation and that it was colocalized with BmATG8. Lastly, we demonstrated that BmDREDD attenuated autophagy and BmCasp8L suppressed BmDREDD-mediated cleavage of BmATG6. Taken together, our results demonstrated that BmCasp8L is a novel proautophagic molecule that suppresses BmDREDD-mediated cleavage of BmATG6 and is a target for autophagy. This article is protected by copyright. All rights reserved.
    Keywords:  ATG6; ATG8; Bombyx mori; Caspase-8-like; DREDD; autophagy
  24. Front Pharmacol. 2022 ;13 966012
      Autophagy is a self-degradation process in which damaged proteins and organelles are engulfed into autophagosomes for digestion and eventually recycled for cellular metabolism to maintain intracellular homeostasis. Accumulating studies have reported that autophagy has the Janus role in cancer as a tumor suppressor or an oncogenic role to promote the growth of established tumors and developing drug resistance. Importantly, cytoprotective autophagy plays a prominent role in many types of human cancers, thus inhibiting autophagy, and has been regarded as a promising therapeutic strategy for cancer therapy. Here, we focus on summarizing small-molecule compounds inhibiting the autophagy process, as well as further discuss other dual-target small-molecule compounds, combination strategies, and other strategies to improve potential cancer therapy. Therefore, these findings will shed new light on exploiting more small-molecule compounds inhibiting cytoprotective autophagy as candidate drugs for fighting human cancers in the future.
    Keywords:  autophagy; cancer therapy; cytoprotective autophagy; inhibitor; small-molecule compound
  25. EMBO J. 2022 Aug 29. e111161
      Phagocytosis is the necessary first step to sense foreign microbes or particles and enables activation of innate immune pathways such as inflammasomes. However, the molecular mechanisms underlying how phagosomes modulate inflammasome activity are not fully understood. We show that in murine dendritic cells (DCs), the lysosomal histidine/peptide solute carrier transporter SLC15A4, associated with human inflammatory disorders, is recruited to phagosomes and is required for optimal inflammasome activity after infectious or sterile stimuli. Dextran sodium sulfate-treated SLC15A4-deficient mice exhibit decreased colon inflammation, reduced IL-1β production by intestinal DCs, and increased autophagy. Similarly, SLC15A4-deficient DCs infected with Salmonella typhimurium show reduced caspase-1 cleavage and IL-1β production. This correlates with peripheral NLRC4 inflammasome assembly and increased autophagy. Overexpression of constitutively active mTORC1 rescues decreased IL-1β levels and caspase1 cleavage, and restores perinuclear inflammasome positioning. Our findings support that SLC15A4 couples phagocytosis with inflammasome perinuclear assembly and inhibition of autophagy through phagosomal content sensing. Our data also reveal the previously unappreciated importance of mTORC1 signaling pathways to promote and sustain inflammasome activity.
    Keywords:  SLC15A4; dendritic cells; inflammasomes; mTORC1; phagocytosis
  26. Mol Biol Cell. 2022 Aug 31. mbcE22030111
      Macroautophagy is a homeostatic process required to clear cellular waste. Neuronal autophagosomes form constitutively in the distal tip of the axon and are actively transported toward the soma, with cargo degradation initiated en route. Cargo turnover requires autophagosomes to fuse with lysosomes to acquire degradative enzymes; however, directly imaging these fusion events in the axon is impractical. Here we use a quantitative model, parameterized and validated using data from primary hippocampal neurons, to explore the autophagosome maturation process. We demonstrate that retrograde autophagosome motility is independent from fusion, and that most autophagosomes fuse with only a few lysosomes during axonal transport. Our results indicate breakdown of the inner autophagosomal membrane is much slower in neurons than in non-neuronal cell types, highlighting the importance of this late maturation step. Together, rigorous quantitative measurements and mathematical modeling elucidate the dynamics of autophagosome-lysosome interaction and autophagosomal maturation in the axon. [Media: see text].
  27. PLoS One. 2022 ;17(8): e0273710
      Huntington's Disease (HD) is a dominantly inherited neurodegenerative disease for which the major causes of mortality are neurodegeneration-associated aspiration pneumonia followed by cardiac failure. mTORC1 pathway perturbations are present in HD models and human tissues. Amelioration of mTORC1 deficits by genetic modulation improves disease phenotypes in HD models, is not a viable therapeutic strategy. Here, we assessed a novel small molecule mTORC1 pathway activator, NV-5297, for its improvement of the disease phenotypes in the N171-82Q HD mouse model. Oral dosing of NV-5297 over 6 weeks activated mTORC1, increased striatal volume, improved motor learning and heart contractility. Further, the heart contractility, heart fibrosis, and survival were improved in response to the cardiac stressor isoprenaline when compared to vehicle-treated mice. Cummulatively, these data support mTORC1 activation as a therapeutic target in HD and consolidates NV-5297 as a promising drug candidate for treating central and peripheral HD phenotypes and, more generally, mTORC1-deficit related diseases.
  28. J Cell Biol. 2022 Oct 03. pii: e202206140. [Epub ahead of print]221(10):
      Lysosomes are highly dynamic organelles implicated in multiple diseases. Using live super-resolution microscopy, we found that lysosomal tethering events rarely undergo lysosomal fusion, but rather untether over time to reorganize the lysosomal network. Inter-lysosomal untethering events are driven by a mitochondrial Mid51/Fis1 complex that undergoes coupled oligomerization on the outer mitochondrial membrane. Importantly, Fis1 oligomerization mediates TBC1D15 (Rab7-GAP) mitochondrial recruitment to drive inter-lysosomal untethering via Rab7 GTP hydrolysis. Moreover, inhibiting Fis1 oligomerization by either mutant Fis1 or a Mid51 oligomerization mutant potentially associated with Parkinson's disease prevents lysosomal untethering events, resulting in misregulated lysosomal network dynamics. In contrast, dominant optic atrophy-linked mutant Mid51, which does not inhibit Mid51/Fis1 coupled oligomerization, does not disrupt downstream lysosomal dynamics. As Fis1 conversely also regulates Mid51 oligomerization, our work further highlights an oligomeric Mid51/Fis1 mitochondrial complex that mechanistically couples together both Drp1 and Rab7 GTP hydrolysis machinery at mitochondria-lysosome contact sites. These findings have significant implications for organelle networks in cellular homeostasis and human disease.
  29. Cancer Discov. 2022 Sep 02. 12(9): 2023-2025
      SUMMARY: Autophagy is an adaptive response to metabolic and therapeutic stress, especially in treatment-refractory cancers such as pancreatic cancer. In this issue of Cancer Discovery, two groups establish ferritinophagy, a selective autophagy program that could become a drug target, as the mechanism that pumps iron into mitochondria via the lysosome, enabling survival and therapy resistance in pancreas cancer. See related article by Santana-Codina et al., p. 2180 (3). See related article by Ravichandran et al., p. 2198 (4).
  30. Mol Cell. 2022 Aug 23. pii: S1097-2765(22)00761-4. [Epub ahead of print]
      The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.
    Keywords:  Doa4; Tul1; endosome; lysosome; phosphatidylethanolamine; phospholipids; ubiquitin; ubiquitin-like proteins; vacuole
  31. Front Cell Dev Biol. 2022 ;10 949196
      Genetic evidence in living organisms from yeast to plants and animals, including humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or mTOR for mammalian/mechanistic) signal transduction pathway as a master regulator of growth through the control of cell size and cell number. Among the mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant flies and mice reveals that S6K1 predominantly regulates cell size versus cell proliferation. Here we review the putative mechanisms of S6K1 action on cell size by considering the main functional categories of S6K1 targets: substrates involved in nucleic acid and protein synthesis, fat mass accumulation, retrograde control of insulin action, senescence program and cytoskeleton organization. We discuss how S6K1 may be involved in the observed interconnection between cell size, regenerative and ageing responses.
    Keywords:  ageing; growth; mTOR; nutrition; senescence; signal transduction
  32. Transl Psychiatry. 2022 Aug 31. 12(1): 355
      Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
  33. World J Gastroenterol. 2022 Jul 14. 28(26): 3063-3070
      Crohn's disease (CD) is driven by the loss of tolerance to intestinal microbiota and excessive production of pro-inflammatory cytokines. These pro-inflammatory cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs). Impaired activation of PRR-mediated signaling pathways is associated with chronic gastrointestinal inflammation, as shown by the fact that loss-of-function mutations in the nucleotide-binding oligomerization domain 2 gene increase the risk of CD development. Autophagy is an intracellular degradation process, during which cytoplasmic nutrients and intracellular pathogens are digested. Given that impaired reaction to intestinal microbiota alters signaling pathways mediated by PRRs, it is likely that dysfunction of the autophagic machinery is involved in the development of CD. Indeed, the loss-of-function mutation T300A in the autophagy related 16 like 1 (ATG16L1) protein, a critical regulator of autophagy, increases susceptibility to CD. Recent studies have provided evidence that ATG16L1 is involved not only in autophagy, but also in PRR-mediated signaling pathways. ATG16L1 negatively regulates pro-inflammatory cytokine responses of macrophages and DCs after these cells sense the intestinal microbiota by PRRs. Here, we discuss the molecular mechanisms underlying the development of CD in the T300A ATG16L1 mutation by focusing on PRR-mediated signaling pathways.
    Keywords:  ATG16L1; Autophagy; Crohn’s disease; Cytokine; Innate immunity; Pattern recognition receptors
  34. Front Cell Dev Biol. 2022 ;10 950767
      Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many neuronal functions that are perturbed in amyotrophic lateral sclerosis (ALS) and perturbation to ER-mitochondria signaling is seen in cell and transgenic models of ALS. However, there is currently little evidence that ER-mitochondria signaling is altered in human ALS. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPI51 tethers are now known to regulate a number of ER-mitochondria signaling functions. These include delivery of Ca2+ from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and ALS spinal cords. We show that VAPB protein levels are reduced in ALS. Proximity ligation assays were then used to quantify the VAPB-PTPIP51 interaction in spinal cord motor neurons in control and ALS cases. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in ALS. Thus, we identify a new pathogenic event in post-mortem ALS.
    Keywords:  PTPIP51; VAPB; amyotrophic lateral sclerosis; endoplasmic reticulum; mitochondria
  35. Biomaterials. 2022 Aug 14. pii: S0142-9612(22)00383-0. [Epub ahead of print] 121743
      Although substantial data indicate that the osteogenic potential of periodontal ligament stem cells (PDLSCs) is compromised under inflammatory conditions, the underlying mechanism remains largely unexplored. In this study, we found that both the autophagy levels and autophagic flux levels were decreased in PDLSCs incubated under inflammatory conditions (I-PDLSCs). Based on the increased expression of LC3 II (at an autophagy level) and decreased accumulation of LC3 II (at an autophagic flux level) in I-PDLSCs, we speculated that the disruption of I-PDLSC autophagy arose from dysfunction of the cellular autophagy-lysosome system. Subsequently, our hypothesis was demonstrated by inhibited autophagosome-lysosome fusion, damaged lysosomal function, and suppressed activation of transcription factor EB (TFEB, a master regulator of the autophagy-lysosome system) in I-PDLSCs and verified by TFEB overexpression in I-PDLSCs. We found that gold nanoparticle (Au NP) treatment rescued the osteogenic potential of I-PDLSCs by restoring the inflammation-compromised autophagy-lysosome system. In this context, Au NP ceased to be effective when TFEB was knocked down in PDLSCs. Our data demonstrate the crucial role of the autophagy-lysosome system in cellular osteogenesis under inflammatory conditions and suggest a new target for rescuing inflammation-induced cell dysfunction using nanomaterials to aid cell biology and tissue regeneration.
    Keywords:  Autophagy–lysosome dysfunction; Gold nanoparticle; Inflammatory condition; PDLSCs; TFEB
  36. Autophagy. 2022 Sep 02. 1-14
      ABBREVIATIONS: ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; ATG16L1: autophagy related 16-like 1 (S. cerevisiae); BECN1: beclin 1, autophagy related; CASP1: caspase 1; CASP4/CASP11: caspase 4, apoptosis-related cysteine peptidase; CIM: conditionally immortalized macrophage; CLP: cecal ligation and puncture; CSS: cytokine storm syndrome; DC: dendritic cell; IFNG/IFNγ: interferon gamma; IFNGR1: interferon gamma receptor 1; ip: intraperitoneal; iv: intravenous; IL12/p70: interleukin 12, p70 heterodimer; IL18: Interleukin 18; ITGAX/CD11c: integrin alpha X; LAP: LC3-associated phagocytosis; LPS: lipopolysaccharide; LYZ2/LYSM: lysozyme 2; MAP1LC3A/LC3: microtubule-associated protein 1 light chain 3 alpha; RB1CC1/FIP200: RB1-inducible coiled-coil 1; S100A8/MRP8: S100 calcium binding protein A8 (calgranulin A); TICAM1/TRIF: TIR domain containing adaptor molecule 1; TLR4: toll-like receptor 4; TNF: tumor necrosis factor.
    Keywords:  Autophagy; cytokine storm syndrome; interferon gamma; myeloid cells; tumor necrosis factor
  37. Acta Neuropathol. 2022 Sep 02.
      Since the initial identification of TMEM106B as a risk factor for frontotemporal lobar degeneration (FTLD), multiple genetic studies have found TMEM106B variants to modulate disease risk in a variety of brain disorders and healthy aging. Neurodegenerative disorders are typically characterized by inclusions of misfolded proteins and since lysosomes are an important site for cellular debris clearance, lysosomal dysfunction has been closely linked to neurodegeneration. Consequently, many causal mutations or genetic risk variants implicated in neurodegenerative diseases encode proteins involved in endosomal-lysosomal function. As an integral lysosomal transmembrane protein, TMEM106B regulates several aspects of lysosomal function and multiple studies have shown that proper TMEM106B protein levels are crucial for maintaining lysosomal health. Yet, the precise function of TMEM106B at the lysosomal membrane is undetermined and it remains unclear how TMEM106B modulates disease risk. Unexpectedly, several independent groups recently showed that the C-terminal domain (AA120-254) of TMEM106B forms amyloid fibrils in the brain of patients with a diverse set of neurodegenerative conditions. The recognition that TMEM106B can form amyloid fibrils and is present across neurodegenerative diseases sheds new light on TMEM106B as a central player in neurodegeneration and brain health, but also raises important new questions. In this review, we summarize current knowledge and place a decade's worth of TMEM106B research into an exciting new perspective.
    Keywords:  Aggregation; Amyloid fibrils; Frontotemporal dementia; Lysosomal dysfunction; Progranulin; TMEM106B
  38. Traffic. 2022 Aug 27.
      Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease (PD). A plethora of evidence has indicated a role for LRRK2 in endolysosomal trafficking in neurons, while LRRK2 function in glia, although highly expressed, remains largely unknown. Here we present evidence that LRRK2/dLRRK mediates a lysosomal pathway that contributes to glial cell death and the survival of dopaminergic (DA) neurons. LRRK2/dLRRK knockdown in the immortalized microglia or flies results in enlarged and swelling lysosomes fewer in number. These lysosomes are less mobile, wrongly acidified, exhibit defective membrane permeability and reduced activity of the lysosome hydrolase Cathespin B. In addition, LRRK2/dLRRK depletion causes glial apoptosis, DA neurodegeneration, and locomotor deficits in an age-dependent manner. Taken together, these findings demonstrate a functional role of LRRK2/dLRRK in regulating the glial lysosomal pathway; deficits in lysosomal biogenesis and function linking to glial apoptosis potentially underlie the mechanism of DA neurodegeneration, providing insights on LRRK2/dLRRK function in normal and pathological brains.
    Keywords:  LRRK2/dLRRK; PD; glia; homeostasis; lysosome
  39. J Cell Biol. 2022 Sep 05. pii: e202205123. [Epub ahead of print]221(9):
      The nuclear envelope (NE) is a specialization of the endoplasmic reticulum with distinct biochemistry that defines inner and outer membranes connected at a pore membrane that houses nuclear pore complexes (NPCs). Quality control mechanisms that maintain the physical integrity and biochemical identity of these membranes are critical to ensure that the NE acts as a selective barrier that also contributes to genome stability and metabolism. As the proteome of the NE is highly integrated, it is challenging to turn over by conventional ubiquitin-proteasome and autophagy mechanisms. Further, removal of entire sections of the NE requires elaborate membrane remodeling that is poorly understood. Nonetheless, recent work has made inroads into discovering specializations of cellular degradative machineries tailored to meeting the unique challenges imposed by the NE. In addition, cells have evolved mechanisms to surveil and repair the NE barrier to protect against the deleterious effects of a breach in NE integrity, in the form of either a ruptured NE or a dysfunctional NPC. Here, we synthesize the most recent work exploring NE quality control mechanisms across eukaryotes.
  40. New Phytol. 2022 Sep 02.
      The target of rapamycin (TOR) protein kinase is a master regulator of cell growth in all eukaryotes, from unicellular yeast and algae to multicellular animals and plants. TOR balances the synthesis and degradation of proteins, lipids, carbohydrates and nucleic acids in response to nutrients, growth factors and cellular energy to promote cell growth. Among nutrients, amino acids and glucose are central regulators of TOR activity in evolutionary distant eukaryotes such as mammals, plants and algae. However, these organisms obtain the nutrients through totally different metabolic processes. While photosynthetic eukaryotes can use atmospheric CO2 as the sole carbon source for all reactions in the cell, heterotrophic organisms get nutrients from other sources of organic carbon including glucose. Here, we discuss the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR, focusing on the role of amino acids and carbon sources upstream of this signaling pathway.
    Keywords:  CO2; amino acid; carbon; glucose; nutrient; target of rapamycin (TOR)
  41. FEBS Lett. 2022 Aug 24.
      Precise control of the two major proteolysis systems [i.e. ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP)] is important for proper cell function. Here, we explored whether UPS and ALP affect each other in two neurotoxin-based cell death models of Parkinson's disease. Monitoring UPS and ALP activity using their specific reporter plasmids revealed that treatment with the neurotoxin MPP+ or the neurotoxin 6-OHDA decreased proteasome activity in dopaminergic MN9D cells. Interestingly, ALP inhibition relieved or potentiated the decrease in proteasome activity induced by the two toxins. Moreover, suppression of proteasome activity promoted 6-OHDA-induced excessive autophagic flux, potentiating ALP dysregulation. In contrast, MPP+ -induced impairment of ALP was alleviated by proteasome inhibition. These findings suggest a dynamic interplay between UPS and ALP operating in MN9D cells under two distinct toxin-mediated cell death pathways.
    Keywords:  6-OHDA; MPP+; Parkinson's disease; autophagy-lysosomal pathway; neuronal cell death; ubiquitin-proteasome system
  42. Autophagy. 2022 Aug 28. 1-14
      Macroautophagy/autophagy is a conserved mechanism launched by host organisms to fight against virus infection. Double-membraned autophagosomes in arthropod vectors can be remodeled by arboviruses to accommodate virions and facilitate persistent viral propagation, but the underlying mechanism is unknown. Rice gall dwarf virus (RGDV), a plant nonenveloped double-stranded RNA virus, induces the formation of virus-containing double-membraned autophagosomes to benefit persistent viral propagation in leafhopper vectors. In this study, it was found that the capsid protein P2 of RGDV alone induced autophagy. P2 specifically interacted with GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and ATG4B both in vitro and in vivo. Furthermore, the GAPDH-ATG4B complex could be recruited to virus-induced autophagosomes. Silencing of GAPDH or ATG4B expression suppressed ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, P2 could directly recruit the GAPDH-ATG4B complex to induce the formation of initial autophagosomes. Furthermore, such autophagosomes were modified to evade fusion with lysosomes for degradation, and thus could be persistently exploited by viruses to facilitate efficient propagation. GAPDH bound to ATG14 and inhibited the interaction of ATG14 with SNAP29, thereby preventing ATG14-SNARE proteins from mediating autophagosome-lysosome fusion. Taken together, these results highlight how RGDV activates GAPDH to initiate autophagosome formation and block autophagosome degradation, finally facilitating persistent viral propagation in insect vectors. The findings reveal a positive regulation of immune response in insect vectors during viral infection.
    Keywords:  Autophagosome-lysosome fusion; Capsid protein; GAPDH (glyceraldehyde-3-phosphate dehydrogenase); incomplete autophagy; rice gall dwarf virus
  43. Commun Biol. 2022 Aug 30. 5(1): 889
      The cell adhesion molecule CD44 has been implicated in diverse biological functions including the pathological responses to infections and inflammatory diseases. The variable forms of CD44 contribute to functional variations, which are not yet defined in teleost. Here, we show that zebrafish CD44a plays a protective role in the host defense against Edwardsiella piscicida infection. Zebrafish CD44a deficiency inhibits cell growth and proliferation, impairs cell growth and death pathways, and regulates the expression levels of many genes involved in p53 signaling, apoptosis and autophagy. In addition, CD44a gene disruption in zebrafish leads to inhibition of apoptosis and induction of autophagy, with the increased susceptibility to E. piscicida infection. Furthermore, we show that zebrafish CD44a variants including CD44a_tv1 and CD44a_tv2 promote the translocation of p53 from the nucleus to the cytoplasm and interact with p53 in the cytoplasm. Mechanistically, zebrafish CD44a_tv1 mediates the beneficial effect for larvae survival infected with E. piscicida is depending on the CASP8-mediated apoptosis. However, the antibacterial effect of zebrafish CD44a_tv2 depends on the cytoplasmic p53-mediated inhibition of autophagy. Collectively, our results identify that different mechanisms regulate CD44a variants-mediated antibacterial responses.
  44. Plant Cell. 2022 Sep 02. pii: koac273. [Epub ahead of print]
      In multicellular eukaryotes, autophagy is a conserved process that delivers cellular components to the vacuole or lysosome for recycling during development and stress responses. Induction of autophagy activates AUTOPHAGY-RELATED PROTEIN 1 (ATG1) and ATG13 to form a protein kinase complex that initiates autophagosome formation. However, the detailed molecular mechanism underlying the regulation of this protein complex in plants remains unclear. Here, we determined that in Arabidopsis thaliana, the regulatory proteins 14-3-3λ and 14-3-3κ redundantly modulate autophagy dynamics by facilitating SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA (SINAT)-mediated proteolysis of ATG13a and ATG13b. 14-3-3λ and 14-3-3κ directly interacted with SINATs and ATG13a/b in vitro and in vivo. Compared to wild type, the 14-3-3λ 14-3-3κ double mutant showed increased tolerance to nutrient starvation, delayed leaf senescence, and enhanced starvation-induced autophagic vesicles. Moreover, 14-3-3s were required for SINAT1-mediated ubiquitination and degradation of ATG13a. Consistent with their roles in ATG degradation, the 14-3-3λ 14-3-3κ double mutant accumulated higher levels of ATG1a/b/c and ATG13a/b than the wild type upon nutrient deprivation. Furthermore, the specific association of 14-3-3s with phosphorylated ATG13a was crucial for ATG13a stability and formation of the ATG1-ATG13 complex. Thus, our findings demonstrate that 14-3-3λ and 14-3-3κ function as molecular adaptors to regulate autophagy by modulating the homeostasis of phosphorylated ATG13.
  45. Oxid Med Cell Longev. 2022 ;2022 1898844
      Platelet transfusion is a life-saving therapy to prevent bleeding; however, the availability of platelets for transfusion is limited by the markedly short shelf life owing to the development of platelet storage lesions (PSLs). The mechanism of PSLs remains obscure. Dissection of the intracellular biological changes in stored platelets may help to reduce PSLs and improve platelet transfusion efficiency. In the present study, we explore the changes of stored platelets at room temperature under constant agitation. We found that platelets during storage showed an increased reactive oxygen species (ROS) generation accompanied with receptor shedding, apoptosis, and diminished platelet aggregation. ROS scavenger reduced platelet shedding but also impaired platelet aggregation. Autophagy is a conserved catabolic process that sequesters protein aggregates and damaged organelles into lysosomes for degradation and platelets' own intact autophagic system. We revealed that there exist a stable autophagic flux in platelets at the early stage of storage, and the autophagic flux in platelets perished after long-term storage. Treatment stored platelets with rapamycin, which stimulates autophagy in eukaryotic cells, markedly ameliorated PSLs, and improved platelet aggregation in response to extracellular stimuli.
  46. Nat Commun. 2022 Sep 02. 13(1): 5174
      CD4+ T cells are pivotal cells playing roles in the orchestration of humoral and cytotoxic immune responses. It is known that CD4+ T cell proliferation relies on autophagy, but identification of the autophagosomal cargo involved is missing. Here we create a transgenic mouse model, to enable direct mapping of the proteinaceous content of autophagosomes in primary cells by LC3 proximity labelling. Interleukin-7 receptor-α, a cytokine receptor mostly found in naïve and memory T cells, is reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy show increased interleukin-7 receptor-α surface expression, while no defect in internalisation is observed. Mechanistically, excessive surface interleukin-7 receptor-α sequestrates the common gamma chain, impairing the interleukin-2 receptor assembly and downstream signalling crucial for T cell proliferation. This study shows that key autophagy substrates can be reliably identified in this mouse model and help mechanistically unravel autophagy's contribution to healthy physiology and disease.
  47. Mol Biol Cell. 2022 Aug 31. mbcE22070281
      Huntington's disease is characterized by accumulation of the aggregation-prone mutant Huntingtin (mHTT) protein. Here, we show that expression of exon 1 of mHTT in mouse cultured cells activates IRE1, the transmembrane sensor of stress in the endoplasmic reticulum, leading to degradation of the Blos1 mRNA and repositioning of lysosomes and late endosomes toward the microtubule organizing center. Overriding Blos1 degradation results in excessive accumulation of mHTT aggregates in both cultured cells and primary neurons. Although mHTT is degraded by macroautophagy when highly expressed, we show that prior to the formation of large aggregates, mHTT is degraded via an ESCRT-dependent, macroautophagy-independent pathway consistent with endosomal microautophagy. This pathway is enhanced by Blos1 degradation and appears to protect cells from a toxic, less aggregated form of mHTT.
  48. Cell Oncol (Dordr). 2022 Aug 29.
      BACKGROUND: Prostate cancer is the leading cause of cancer in men, and its incidence increases with age. Among other risk factors, pre-existing metabolic diseases have been recently linked with prostate cancer, and our current knowledge recognizes prostate cancer as a condition with important metabolic anomalies as well. In malignancies, metabolic disorders are commonly associated with aberrations in mTOR, which is the master regulator of protein synthesis and energetic homeostasis. Although there are reports demonstrating the high dependency of prostate cancer cells for lipid derivatives and even for carbohydrates, the understanding regarding amino acids, and the relationship with the mTOR pathway ultimately resulting in metabolic aberrations, is still scarce.CONCLUSIONS AND PERSPECTIVES: In this review, we briefly provide evidence supporting prostate cancer as a metabolic disease, and discuss what is known about mTOR signaling and prostate cancer. Next, we emphasized on the amino acids glutamine, leucine, serine, glycine, sarcosine, proline and arginine, commonly related to prostate cancer, to explore the alterations in their regulatory pathways and to link them with the associated metabolic reprogramming events seen in prostate cancer. Finally, we display potential therapeutic strategies for targeting mTOR and the referred amino acids, as experimental approaches to selectively attack prostate cancer cells.
    Keywords:  Amino acids; Cancer metabolism; Prostate cancer; mTOR