bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2022‒02‒27
48 papers selected by
Viktor Korolchuk, Newcastle University



  1. Autophagy. 2022 Feb 20. 1-12
      SQSTM1/p62-type selective macroautophagy/autophagy receptors cross-link poly-ubiquitinated cargo and autophagosomal LC3/Atg8 proteins to deliver them for lysosomal degradation. Consequently, loss of autophagy leads to accumulation of polyubiquitinated protein aggregates that are also frequently seen in various human diseases, but their physiological relevance is incompletely understood. Here, using a genetically non-redundant Drosophila model, we show that specific disruption of ubiquitinated protein autophagy and concomitant formation of polyubiquitinated aggregates has hardly any effect on bulk autophagy, proteasome activity and fly healthspan. We find that accumulation of ref(2)P/SQSTM1 due to a mutation that disrupts its binding to Atg8a results in the co-sequestering of Keap1 and thus activates the cnc/NFE2L2/Nrf2 antioxidant pathway. These mutant flies have increased tolerance to oxidative stress and reduced levels of aging-associated mitochondrial superoxide. Interestingly, ubiquitin overexpression in ref(2)P point mutants prevents the formation of large aggregates and restores the cargo recognition ability of ref(2)P, although it does not prevent the activation of antioxidant responses. Taken together, potential detrimental effects of impaired ubiquitinated protein autophagy are compensated by the aggregation-induced antioxidant response.
    Keywords:  Autophagic receptor; Drosophila; autophagy; longevity; oxidative stress
    DOI:  https://doi.org/10.1080/15548627.2022.2037852
  2. Autophagy. 2022 Feb 19. 1-2
      SQSTM1/p62 is an autophagy receptor, forming droplets to sequester intracellular polyubiquitinated cargo and mediate its delivery for autophagic clearance. SQSTM1 droplets can function as platforms to allow the formation of autophagosomes at their surfaces. It would be interesting to understand how SQSTM1-droplet formation is regulated. We have shown that inflammatory toxicity induces SQSTM1 cleavage by CASP6 at a novel cleavage site, D256. The C-terminal cleavage product is unlikely to be functional, because it is hardly detectable, possibly due to its rapid turnover. The SQSTM1 N-terminal cleavage product (SQSTM1-N) exerts a dominant-negative effect on SQSTM1-droplet production, in turn attenuating SQSTM1 droplets-based autophagosome formation. Our study suggests that the CASP6-SQSTM1 axis negatively regulates SQSTM1 droplets-based autophagy under certain stress conditions.
    Keywords:  Autophagosomes; CASP6; SQSTM1; autophagy; liquid droplets
    DOI:  https://doi.org/10.1080/15548627.2022.2029672
  3. Cells. 2022 Feb 15. pii: 681. [Epub ahead of print]11(4):
      The BCL-2-associated athanogene (BAG) family is a multifunctional group of co-chaperones that are evolutionarily conserved from yeast to mammals. In addition to their common BAG domain, these proteins contain, in their sequences, many specific domains/motifs required for their various functions in cellular quality control, such as autophagy, apoptosis, and proteasomal degradation of misfolded proteins. The BAG family includes six members (BAG1 to BAG6). Recent studies reported their roles in autophagy and/or mitophagy through interaction with the autophagic machinery (LC3, Beclin 1, P62) or with the PINK1/Parkin signaling pathway. This review describes the mechanisms underlying BAG family member functions in autophagy and mitophagy and the consequences in physiopathology.
    Keywords:  BAG; autophagy; mitophagy; quality control
    DOI:  https://doi.org/10.3390/cells11040681
  4. Biochem J. 2022 Feb 17. 479(4): 525-536
      Mitochondria play essential roles in cellular energetics, biosynthesis, and signaling transduction. Dysfunctional mitochondria have been implicated in different diseases such as obesity, diabetes, cardiovascular disease, nonalcoholic fatty liver disease, neurodegenerative disease, and cancer. Mitochondrial homeostasis is controlled by a triad of mitochondrial biogenesis, dynamics (fusion and fission), and autophagy (mitophagy). Studies have underscored FoxO transcription factors as key mitochondrial regulators. Specifically, FoxOs regulate mitochondrial biogenesis by dampening NRF1-Tfam and c-Myc-Tfam cascades directly, and inhibiting NAD-Sirt1-Pgc1α cascade indirectly by inducing Hmox1 or repressing Fxn and Urod. In addition, FoxOs mediate mitochondrial fusion (via Mfn1 and Mfn2) and fission (via Drp1, Fis1, and MIEF2), during which FoxOs elicit regulatory mechanisms at transcriptional, posttranscriptional (e.g. via miR-484/Fis1), and posttranslational (e.g. via Bnip3-calcineurin mediated Drp1 dephosphorylation) levels. Furthermore, FoxOs control mitochondrial autophagy in the stages of autophagosome formation and maturation (e.g. initiation, nucleation, and elongation), mitochondria connected to and engulfed by autophagosome (e.g. via PINK1 and Bnip3 pathways), and autophagosome-lysosome fusion to form autolysosome for cargo degradation (e.g. via Tfeb and cathepsin proteins). This article provides an up-to-date view of FoxOs regulating mitochondrial homeostasis and discusses the potential of targeting FoxOs for therapeutics.
    Keywords:  FoxO; autophagy; fusion and fission; homeostasis; mitochondrial biogenesis; mitophagy
    DOI:  https://doi.org/10.1042/BCJ20210777
  5. Cells. 2022 Feb 15. pii: 678. [Epub ahead of print]11(4):
      PINK1 is a causative gene for Parkinson's disease and the corresponding protein has been identified as a master regulator of mitophagy-the autophagic degradation of damaged mitochondria. It interacts with Beclin1 to regulate autophagy and initiate autophagosome formation, even outside the context of mitophagy. Several other pro-survival functions of this protein have been described and indicate that it might play a role in other disorders, such as cancer and proliferative diseases. In this study, we investigated a novel anti-apoptotic function of PINK1. To do so, we used SH-SY5Y neuroblastoma cells, a neuronal model used in Parkinson's disease and cancer studies, to characterize the pro-survival functions of PINK1 in response to the apoptosis inducer staurosporine. In this setting, we found that staurosporine induces apoptosis but not mitophagy, and we demonstrated that PINK1 protects against staurosporine-induced apoptosis by impairing the pro-apoptotic cleavage of Beclin1. Our data also show that staurosporine-induced apoptosis is preceded by a phase of enhanced autophagy, and that PINK1 in this context regulates the switch from autophagy to apoptosis. PINK1 protein levels progressively decrease after treatment, inducing this switch. The PINK1-Beclin1 interaction is crucial in exerting this function, as mutants that are unable to interact do not show the anti-apoptotic effect. We characterized a new anti-apoptotic function of PINK1 that could provide options for treatment in proliferative or neurodegenerative diseases.
    Keywords:  Beclin1; PINK1; apoptosis; autophagy; cancer; neurodegeneration
    DOI:  https://doi.org/10.3390/cells11040678
  6. Autophagy. 2022 Feb 19. 1-3
      Mitochondrial defects are a hallmark of Alzheimer disease (AD), with pathologically phosphorylated MAPT/tau (phospho-MAPT/tau) reported to induce mitochondrial damage. Mitophagy constitutes a key pathway of mitochondrial quality control by which damaged mitochondria are sequestered within autophagosomes for lysosomal degradation. However, the mechanistic understanding of mitophagy and its association with pathologies under tauopathy conditions remains very limited. Here, we reveal that mitochondrial stress under phospho-MAPT/tau-mediated challenges broadly activates PRKN-mediated mitophagy which induces an unexpected effect - depletion of mitochondria from synaptic terminals, a characteristic feature in early tauopathy. PRKN activation accelerates RHOT1 turnover and consequently halts RHOT1-mediated mitochondrial anterograde movement, which disrupts mitochondrial supply to tauopathy synapses and thereby impairs synaptic function. Strikingly, increasing RHOT1 levels prevents synapse loss and reverses cognitive impairment in tauopathy mice by restoring synaptic mitochondrial populations. Thus, our study uncovers an important early mechanism underlying tauopathy-linked synaptic failure and opens a new avenue for specifically targeting early synaptic dysfunction in tauopathies, including AD.Abbreviations: AAV: adeno-associated virus; AD: Alzheimer disease; FTD: Frontotemporal dementia; LTP: long-term potentiation; Δψm: mitochondrial membrane potential; Phospho-MAPT/tau: hyperphosphorylated Microtubule Associated Protein Tau/tau; RHOT1: ras homolog family member T1; RNAi: RNA interference; Tg: transgenic.
    Keywords:  Alzheimer; PRKN; RHOT1; mitochondrial anterograde transport; mitophagy; synaptic dysfunction; synaptic mitochondrial deficits; tauopathy
    DOI:  https://doi.org/10.1080/15548627.2022.2039987
  7. Physiol Rev. 2022 Feb 21.
      ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
    Keywords:  Autophagy; Disease; ER-phagy; Endoplasmic Reticulum; Lysosomal degradation
    DOI:  https://doi.org/10.1152/physrev.00038.2021
  8. J Biol Chem. 2022 Feb 17. pii: S0021-9258(22)00184-3. [Epub ahead of print] 101744
      The mammalian target of rapamycin complex 1 (mTORC1) signaling pathway is activated by intracellular nutritional sufficiency and extracellular growth signals. It has been reported that mTORC1 acts as a hub that integrates these inputs to orchestrate a number of cellular responses, including translation, nucleotide synthesis, lipid synthesis, and lysosome biogenesis. However, little is known about specific control of mTORC1 signaling downstream of this complex. Here, we demonstrate that Ragulator, a heteropentameric protein complex required for mTORC1 activation in response to amino acids, is critical for inhibiting the nuclear translocation of transcription factor EB (TFEB). We established a unique RAW264.7 clone that lacked Ragulator but retained total mTORC1 activity. In a nutrition-sufficient state, the nuclear translocation of TFEB was markedly enhanced in the clone despite total mTORC1 kinase activity. In addition, as a cellular phenotype, the number of lysosomes was increased by ten-fold in the Ragulator-deficient clone compared to that of control cells. These findings indicate that mTORC1 essentially requires the Ragulator complex for regulating the subcellular distribution of TFEB. Our findings also suggest that other scaffold proteins may be associated with mTORC1 for the specific regulation of downstream signaling.
    Keywords:  Ragulator; lysosome; mammalian target of rapamycin (mTOR); nuclear translocation; scaffold protein; transcription factor EB
    DOI:  https://doi.org/10.1016/j.jbc.2022.101744
  9. FEBS J. 2022 Feb 20.
      Autophagy, a catabolic lysosomal recycling pathway, is often found dysregulated in human diseases. Whereas its prime cell stress-related function is cytoprotection, autophagy has also been linked to the activation of apoptosis and cell death. One group of proteins which participates in the orchestration of autophagy and apoptosis is the family of DRAM proteins. In the current issue of The FEBS Journal, Barthet et al. uncover a compensatory crosstalk between the two newest members of the family, DRAM-4 and DRAM-5, the latter one regulating autophagic activity. Comment on https://doi.org/10.1111/febs.16365.
    Keywords:  DRAM; DRAM-1; DRAM-4; DRAM-5; apoptosis; autophagy; p53
    DOI:  https://doi.org/10.1111/febs.16394
  10. Int J Mol Sci. 2022 Feb 21. pii: 2378. [Epub ahead of print]23(4):
      A major hallmark of Parkinson's disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
    Keywords:  Parkinson’s disease; autophagy; ferritin; ferritinophagy; iron; neurodegeneration; vesicular trafficking; α-synuclein
    DOI:  https://doi.org/10.3390/ijms23042378
  11. Clin Transl Oncol. 2022 Feb 26.
      Autophagy is a lysosomal degradation pathway that is constitutively active in almost every cell of our body at basal level. This self-eating process primarily serves to remove superfluous constituents of the cells and recycle the degraded products. Autophagy plays an essential role in cell homeostasis and can be enhanced in response to stressful conditions. Impairment in the regulation of the autophagic pathway is implicated in pathological conditions such as neurodegeneration, cardiac disorders, and cancer. However, the role of autophagy in cancer initiation and development is controversial and context-dependent. Evidence from various studies has shown that autophagy serves dual purpose and may assist in cancer progression or suppression. In the early stages of cancer initiation, autophagy acts as a quality control mechanism and prevents cancer development. When cancer is established and progresses to a later stage, autophagy helps in the survival of these cells through adaptation to stresses, including exposure to anti-cancer drugs. In this review, we highlight various studies on autophagic pathways and describe the role of autophagy in cancer, specifically acute myeloid leukemia (AML). We also discuss the prognostic significance of autophagy genes involved in AML leukemogenesis and implications in conferring resistance to chemotherapy.
    Keywords:  Acute myeloid leukemia; Autophagy; Autophagy-related protein (ATG); Drug resistance
    DOI:  https://doi.org/10.1007/s12094-022-02804-z
  12. Cell Death Dis. 2022 Feb 18. 13(2): 162
      A persistent accumulation of damaged mitochondria is part of prion disease pathogenesis. Normally, damaged mitochondria are cleared via a major pathway that involves the E3 ubiquitin ligase parkin and PTEN-induced kinase 1 (PINK1) that together initiate mitophagy, recognize and eliminate damaged mitochondria. However, the precise mechanisms underlying mitophagy in prion disease remain largely unknown. Using prion disease cell models, we observed PINK1-parkin-mediated mitophagy deficiency in which parkin depletion aggravated blocked mitochondrial colocalization with LC3-II-labeled autophagosomes, and significantly increased mitochondrial protein levels, which led to inhibited mitophagy. Parkin overexpression directly induced LC3-II colocalization with mitochondria and alleviated defective mitophagy. Moreover, parkin-mediated mitophagy was dependent on PINK1, since PINK1 depletion blocked mitochondrial Parkin recruitment and reduced optineurin and LC3-II proteins levels, thus inhibiting mitophagy. PINK1 overexpression induced parkin recruitment to the mitochondria, which then stimulated mitophagy. In addition, overexpressed parkin and PINK1 also protected neurons from apoptosis. Furthermore, we found that supplementation with two mitophagy-inducing agents, nicotinamide mononucleotide (NMN) and urolithin A (UA), significantly stimulated PINK1-parkin-mediated mitophagy. However, compared with NMN, UA could not alleviate prion-induced mitochondrial fragmentation and dysfunction, and neuronal apoptosis. These findings show that PINK1-parkin-mediated mitophagy defects lead to an accumulation of damaged mitochondria, thus suggesting that interventions that stimulate mitophagy may be potential therapeutic targets for prion diseases.
    DOI:  https://doi.org/10.1038/s41419-022-04613-2
  13. Cell Rep. 2022 Feb 22. pii: S2211-1247(22)00131-0. [Epub ahead of print]38(8): 110407
      Placenta hyperplasia is commonly observed in cloned animals and is believed to impede the proper development of cloned embryos. However, the mechanism underlying this phenomenon is largely unknown. Here, we show that placenta hyperplasia of cloned mouse embryos occurs in both middle and late gestation. Interestingly, restoring paternal-specific expression of an amino acid transporter Slc38a4, which loses maternal H3K27me3-dependent imprinting and becomes biallelically expressed in cloned placentae, rescues the overgrowth of cloned placentae at late gestation. Molecular analyses reveal that loss of Slc38a4 imprinting leads to over-activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in cloned placentae, which is likely due to the increased amino acids transport by SLC38A4. Collectively, our study not only reveals loss of Slc38a4 imprinting is responsible for overgrowth of cloned placentae at late gestation but also suggests the underlying mechanism involves increased amino acid transport and over-activation of mTORC1.
    Keywords:  H3K27me3 imprinting; Slc38a4; amino acid; cloning; late gestation; mTORC1; metabolism; placenta hyperplasia; placenta overgrowth; somatic cell nuclear transfer
    DOI:  https://doi.org/10.1016/j.celrep.2022.110407
  14. Autophagy. 2022 Feb 24. 1-3
      Macroautophagy/autophagy is upregulated in pancreatic ductal adenocarcinoma (PDAC) and PDAC growth is reliant on autophagy. However, autophagy inhibitors as monotherapy have shown limited clinical efficacy. To identify targets that sensitize PDAC cells to autophagy inhibition, we performed a CRISPR-Cas9 genetic loss-of-function screen in cells treated with the lysosomal inhibitor chloroquine (CQ) and identified IGF1R as a sensitizer. IGF1R inhibition increases autophagic flux and sensitivity to CQ-mediated growth suppression both in vitro and in vivo. Importantly, sensitization is further enhanced with the concurrent inhibition of MAPK1/ERK2 (mitogen-activated protein kinase 1)-MAPK3/ERK1. IGF1R and MAPK/ERK inhibition converge on suppression of glycolysis. In summary, IGF1R and MAPK/ERK signaling promotes resistance to CQ/HCQ in PDAC, and their dual inhibition increases sensitivity to autophagy inhibitors.
    Keywords:  Autophagy; IGF1R; MAPK/ERK; pancreatic cancer; targeted therapies
    DOI:  https://doi.org/10.1080/15548627.2022.2042782
  15. RNA. 2022 Feb 24. pii: rna.079129.122. [Epub ahead of print]
      Cellular processes can be regulated at multiple levels, including transcriptional, post-transcriptional and post-translational mechanisms. We have recently shown that the small, non-coding vault RNA1-1 negatively riboregulates p62 oligomerisation in selective autophagy through direct interaction with the autophagic receptor. This function is highly specific for this Pol III transcript, but the determinants of this specificity and a mechanistic explanation of how vault RNA1-1 inhibits p62 oligomerisation are lacking. Here, we combine biochemical and functional experiments to answer these questions. We show that the PB1 domain and adjacent linker region of p62 (aa 1-122) are necessary and sufficient for specific vault RNA1-1 binding, and identify lysine 7 and arginine 21 as key hinges for p62 riboregulation. Chemical structure probing of vault RNA1-1 further reveals a central flexible loop within vault RNA1-1 that is required for the specific interaction with p62. Overall, our data provide molecular insight into how a small RNA riboregulates protein-protein interactions critical to the activation of specific autophagy.
    Keywords:  autophagy; p62; riboregulation; small ncRNA; vault RNA
    DOI:  https://doi.org/10.1261/rna.079129.122
  16. Cells. 2022 Feb 21. pii: 754. [Epub ahead of print]11(4):
      Autophagy is a conserved cellular process of catabolism leading to nutrient recycling upon starvation and maintaining tissue and energy homeostasis. Tissue-specific loss of core-autophagy-related genes often triggers diverse diseases, including cancer, neurodegeneration, inflammatory disease, metabolic disorder, and muscle disease. The nutrient-sensing nuclear receptors peroxisome proliferator-activated receptor α (PPARα) plays a key role in fasting-associated metabolisms such as autophagy, fatty acid oxidation, and ketogenesis. Here we show that autophagy defects impede the transactivation of PPARα. Liver-specific ablation of the Atg7 gene in mice showed reduced expression levels of PPARα target genes in response to its synthetic agonist ligands. Since NRF2, an antioxidant transcription factor, is activated in autophagy-deficient mice due to p62/SQSTM1 accumulation and its subsequent interaction with KEAP1, an E3 ubiquitin ligase. We hypothesize that the nuclear accumulation of NRF2 by autophagy defects blunts the transactivation of PPARα. Consistent with this idea, we find that NRF2 activation is sufficient to inhibit the pharmacologic transactivation of PPARα, which is dependent on the Nrf2 gene. These results reveal an unrecognized requirement of basal autophagy for the transactivation of PPARα by preventing NRF2 from a nuclear translocation and suggest a clinical significance of basal autophagy to expect a pharmacologic efficacy of synthetic PPARα ligands.
    Keywords:  ATG7; KEAP1; NRF2; PPARα; basal autophagy; gene expression; transactivation
    DOI:  https://doi.org/10.3390/cells11040754
  17. Autophagy. 2022 Feb 23. 1-16
      Intrauterine adhesions (IUA), characterized by endometrial fibrosis, is a common cause of uterine infertility. We previously demonstrated that partial epithelial-mesenchymal transition (EMT) and the loss of epithelial homeostasis play a vital role in the development of endometrial fibrosis. As a pro-survival strategy in maintaining cell and tissue homeostasis, macroautophagy/autophagy, conversely, may participate in this process. However, the role of autophagy in endometrial fibrosis remains unknown. Here, we demonstrated that autophagy is defective in endometria of IUA patients, which aggravates EMT and endometrial fibrosis, and defective autophagy is related to DIO2 (iodothyronine deiodinase 2) downregulation. In endometrial epithelial cells (EECs), pharmacological inhibition of autophagy by chloroquine (CQ) promoted EEC-EMT, whereas enhanced autophagy by rapamycin extenuated this process. Mechanistically, silencing DIO2 in EECs blocked autophagic flux and promoted EMT via the MAPK/ERK-MTOR pathway. Inversely, overexpression of DIO2 or triiodothyronine (T3) treatment could restore autophagy and partly reverse EEC-EMT. Furthermore, in an IUA-like mouse model, the autophagy in endometrium was defective accompanied by EEC-EMT, and CQ could inhibit autophagy and aggravate endometrial fibrosis, whereas rapamycin or T3 treatment could improve the autophagic levels and blunt endometrial fibrosis. Together, we demonstrated that defective autophagy played an important role in EEC-EMT in IUA via the DIO2-MAPK/ERK-MTOR pathway, which provided a potential target for therapeutic implications.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle; AMPK: adenosine 5'-monophosphate-activated protein kinase; AKT/protein kinase B: AKT serine/threonine kinase; ATG: autophagy related; CDH1/E-cadherin: cadherin 1; CDH2/N-cadherin: cadherin 2; CQ: chloroquine; CTSD: cathepsin D; DIO2: iodothyronine deiodinase 2; DEGs: differentially expressed genes; EECs: endometrial epithelial cells; EMT: epithelial-mesenchymal transition; FN1: fibronectin 1; IUA: intrauterine adhesions; LAMP1: lysosomal associated membrane protein 1; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; T3: triiodothyronine; T4: tetraiodothyronine; TFEB: transcription factor EB; PBS: phosphate-buffered saline; TEM: transmission electron microscopy; TGFB/TGFβ: transforming growth factor beta.
    Keywords:  Autophagy; epithelial-mesenchymal transition; intrauterine adhesions; iodothyronine deiodinase 2; thyroid hormone
    DOI:  https://doi.org/10.1080/15548627.2022.2038994
  18. Autophagy. 2022 Feb 23. 1-17
      Age-related macular degeneration (AMD) is a leading cause of vision loss with recent evidence indicating an important role for macroautophagy/autophagy in disease progression. In this study we investigate the efficacy of targeting autophagy for slowing dysfunction in a mouse model with features of early AMD. Mice lacking APOE (apolipoprotein E; B6.129P2-Apoetm1UncJ/Arc) and C57BL/6 J- (wild-type, WT) mice were treated with metformin or trehalose in the drinking water from 5 months of age and the ocular phenotype investigated at 13 months. Control mice received normal drinking water. APOE-control mice had reduced retinal function and thickening of Bruch's membrane consistent with an early AMD phenotype. Immunohistochemical labeling showed reductions in MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 beta) and LAMP1 (lysosomal-associated membrane protein 1) labeling in the photoreceptors and retinal pigment epithelium (RPE). This correlated with increased LC3-II:LC3-I ratio and alterations in protein expression in multiple autophagy pathways measured by reverse phase protein array, suggesting autophagy was slowed. Treatment of APOE-mice with metformin or trehalose ameliorated the loss of retinal function and reduced Bruch's membrane thickening, enhancing LC3 and LAMP1 labeling in the ocular tissues and restoring LC3-II:LC3-I ratio to WT levels. Protein analysis indicated that both treatments boost ATM-AMPK driven autophagy. Additionally, trehalose increased p-MAPK14/p38 to enhance autophagy. Our study shows that treatments targeting pathways to enhance autophagy have the potential for treating early AMD and provide support for the use of metformin, which has been found to reduce the risk of AMD development in human patients.Abbreviations:AMD: age-related macular degeneration; AMPK: 5' adenosine monophosphate-activated protein kinase APOE: apolipoprotein E; ATM: ataxia telangiectasia mutated; BCL2L1/Bcl-xL: BCL2-like 1; DAPI: 4'-6-diamidino-2-phenylindole; ERG: electroretinogram; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner and outer photoreceptor segments; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; OCT: optical coherence tomography; ONL: outer nuclear layer; OPs: oscillatory potentials; p-EIF4EBP1: phosphorylated eukaryotic translation initiation factor 4E binding protein 1; p-MAPK14/p38: phosphorylated mitogen-activated protein kinase 14; RPE: retinal pigment epithelium; RPS6KB/p70 S6 kinase: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; TP53/TRP53/p53: tumor related protein 53; TSC2: TSC complex subunit 2; WT: wild type.
    Keywords:  B6.129P2-Apoetm1UncJ; bruch’s membrane; metformin; retina; retinal pigment epithelium; trehalose
    DOI:  https://doi.org/10.1080/15548627.2022.2034131
  19. Cell Rep. 2022 Feb 22. pii: S2211-1247(22)00070-5. [Epub ahead of print]38(8): 110354
      Excessive generation and accumulation of highly reactive oxidizing molecules causes oxidative stress and oxidative damage to cellular components. Accumulating evidence indicates that autophagy diminishes oxidative damage in cells and maintains redox homeostasis by degrading and recycling intracellular damaged components. Here, we show that TRAF6 E3 ubiquitin ligase and A20 deubiquitinase coordinate to regulate ATG9A ubiquitination and autophagy activation in cells responding to oxidative stress. The ROS-dependent TRAF6-mediated non-proteolytic, K48/63-linked ubiquitination of ATG9A enhances its association with Beclin 1 and the assembly of VPS34-UVRAG complex, thereby stimulating autophagy. Notably, expression of the ATG9A ubiquitination mutants impairs ROS-induced VPS34 activation and autophagy. We further find that lipopolysaccharide (LPS)-induced ROS production also stimulates TRAF6-mediated ATG9A ubiquitination. Ablation of ATG9A causes aberrant TLR4 endosomal trafficking and decreases IRF-3 phosphorylation in LPS-stimulated macrophages. Our findings provide important insights into how K48/K63-linked ubiquitination of ATG9A contributes to the regulation of oxidative stress-induced autophagy.
    Keywords:  ATG9A; TRAF6; VPS34 complex; autophagy; oxidative stress
    DOI:  https://doi.org/10.1016/j.celrep.2022.110354
  20. Cells. 2022 Feb 10. pii: 620. [Epub ahead of print]11(4):
      Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
    Keywords:  autophagy; liver; macroautophagy; nuclear receptor
    DOI:  https://doi.org/10.3390/cells11040620
  21. Antioxidants (Basel). 2022 Feb 08. pii: 327. [Epub ahead of print]11(2):
      Autophagy is a degradative conserved process in eukaryotes to recycle unwanted cellular protein aggregates and damaged organelles. Autophagy plays an important role under normal physiological conditions in multiple biological processes, but it is induced under cellular stress. Therefore, it needs to be tightly regulated to respond to different cellular stimuli. In this review, the regulation of autophagy by hydrogen sulfide is described in both animal and plant systems. The underlying mechanism of action of sulfide is deciphered as the persulfidation of specific targets, regulating the pro- or anti-autophagic role of sulfide with a cell survival outcome. This review aims to highlight the importance of sulfide and persulfidation in autophagy regulation comparing the knowledge available in mammals and plants.
    Keywords:  autophagy; autophagy-related genes (ATG); hydrogen sulfide; persulfidation
    DOI:  https://doi.org/10.3390/antiox11020327
  22. Biochim Biophys Acta Mol Cell Res. 2022 Feb 22. pii: S0167-4889(22)00034-9. [Epub ahead of print] 119243
      Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggest a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.
    Keywords:  Alzheimer's disease; Cathepsins; Huntington disease; Lysosome; Neurodegeneration; Neuronal ceroid lipofuscinosis; Parkinson's disease; Synucleinopathies; α-Synuclein
    DOI:  https://doi.org/10.1016/j.bbamcr.2022.119243
  23. Discov Oncol. 2021 Dec 01. 12(1): 58
      In order to maintain a functional mitochondrial network, cells have developed a quality control mechanism, namely mitophagy. This process can be induced through different pathways. The most studied is the so-called PINK1/Parkin pathway, which is associated with ubiquitylation of several mitochondrial proteins that were initially found to be related to Parkinson's disease. Another type of mitophagy is known as receptor-mediated mitophagy, which includes proteins, such as BNIP3 and BNIP3L, also known as Nix. Through these two mechanisms, mitophagy fulfills its functions and maintains cellular homeostasis. Here, we summarize the current knowledge about the mechanisms of mitophagy regulation and their interplay with cancer progression as well as anticancer treatment.
    Keywords:  Autophagy; Cancer; Homeostasis; Mitophagy
    DOI:  https://doi.org/10.1007/s12672-021-00454-1
  24. Dev Cell. 2022 Feb 15. pii: S1534-5807(22)00070-3. [Epub ahead of print]
      The coordinated regulation of growth control and metabolic pathways is required to meet the energetic and biosynthetic demands associated with proliferation. Emerging evidence suggests that the Hippo pathway effector Yes-associated protein 1 (YAP) reprograms cellular metabolism to meet the anabolic demands of growth, although the mechanisms involved are poorly understood. Here, we demonstrate that YAP co-opts the sterol regulatory element-binding protein (SREBP)-dependent lipogenic program to facilitate proliferation and tissue growth. Mechanistically, YAP stimulates de novo lipogenesis via mechanistic target of rapamcyin (mTOR) complex 1 (mTORC1) signaling and subsequent activation of SREBP. Importantly, YAP-dependent regulation of serum- and glucocorticoid-regulated kinase 1 (SGK1) is required to activate mTORC1/SREBP and stimulate de novo lipogenesis. We also find that the SREBP target genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) are conditionally required to support YAP-dependent proliferation and tissue growth. These studies reveal that de novo lipogenesis is a metabolic vulnerability that can be targeted to disrupt YAP-dependent proliferation and tissue growth.
    Keywords:  SGK1; SREBP; YAP; cell metabolism; growth; lipogenesis; mTORC1; proliferation
    DOI:  https://doi.org/10.1016/j.devcel.2022.02.004
  25. Antioxidants (Basel). 2022 Feb 02. pii: 304. [Epub ahead of print]11(2):
      Eukaryotic cells frequently experience fluctuations of the external and internal environments, such as changes in nutrient, energy and oxygen sources, and protein folding status, which, after reaching a particular threshold, become a type of stress. Cells develop several ways to deal with these various types of stress to maintain homeostasis and survival. Among the cellular survival mechanisms, autophagy is one of the most critical ways to mediate metabolic adaptation and clearance of damaged organelles. Autophagy is maintained at a basal level under normal growing conditions and gets stimulated by stress through different but connected mechanisms. In this review, we summarize the advances in understanding the autophagy regulation mechanisms under multiple types of stress including nutrient, energy, oxidative, and ER stress in both yeast and mammalian systems.
    Keywords:  ER stress; autophagy; energy stress; nutrient stress; oxidative stress; regulation
    DOI:  https://doi.org/10.3390/antiox11020304
  26. Autophagy. 2022 Feb 23. 1-3
      NLRP3 (NLR family pyrin domain containing 3) inflammasome is a potent mediator of inflammation due to its ability to produce the pro-inflammatory cytokines IL1B (interleukin 1 beta) and IL18 in response to numerous danger signals and pathogens. Mitophagy, a selective form of autophagy, restricts NLRP3 inflammasome activation by limiting the mitochondrial-derived danger signals. Here, we demonstrated that the adaptor protein APPL1 together with its interaction partner RAB5 in early endosomes negatively regulate NLRP3 inflammasome activation via induction of mitophagy in macrophages. Hematopoietic-deletion of Appl1 exacerbates systemic NLRP3 inflammasome activation in rodent models under obese or septic conditions. Our study identified a new regulatory network between early endosomes and mitochondria in control of NLRP3 inflammasome activation.
    Keywords:  APPL1; NLRP3 inflammasome; RAB5; early endosome; mitochondria; mitophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2040314
  27. Food Chem Toxicol. 2022 Feb 16. pii: S0278-6915(22)00066-7. [Epub ahead of print] 112869
      The tyrosine kinase inhibitors (TKIs) imatinib and lapatinib are associated with severe hepatotoxicity, whose mechanisms are currently under investigation. As amphiphilic drugs, imatinib and lapatinib enrich in lysosomes. In the present study, we investigated their effects on lysosomal morphology and function in HepG2 and HuH-7 cells and explored possible links between lysosomal dysfunction and hepatotoxicity. Both TKIs increased the lysosomal volume time and concentration-dependently in HepG2 and HuH-7 cells. In HepG2 cells, lapatinib and imatinib raised the lysosomal pH and destabilized the lysosomal membrane, thereby impairing lysosomal proteolytic activity such as cathepsin B processing. Imatinib activated the transcription factor EB (TFEB), a regulator of lysosomal biogenesis and function, as demonstrated by nuclear TFEB accumulation and increased expression of TFEB-target genes. Because of lysosomal dysfunction, imatinib impaired mTORC1 activation, a protein complex activated on the lysosomal surface, which explained TFEB activation. HepG2 cells treated with imatinib showed increased levels of MAP1LC3A/B-II and of ATG13 (S318) phosphorylation, indicating induction of autophagy due to TFEB activation. Finally, imatinib induced apoptosis in HepG2 cells in a time and concentration-dependent manner, explained by lysosomal and mitochondrial toxicity. Our findings provide a new lysosome-centered mechanism for imatinib-induced hepatotoxicity that could be extended to other lysosomotropic drugs.
    Keywords:  Autophagy; HepG2 cells; Hepatotoxicity; TFEB; Tyrosine kinase inhibitors (TKI); mTORC1
    DOI:  https://doi.org/10.1016/j.fct.2022.112869
  28. Aging Cell. 2022 Feb 23. e13574
      Aging is an independent risk factor for acute kidney injury and subsequent chronic kidney diseases, while the underlying mechanism is still elusive. Here, we found that renal tubules highly express a conserved lysosomal endopeptidase, legumain, which is significantly downregulated with the growing of age. Tubule-specific legumain-knockout mice exhibit spontaneous renal interstitial fibrosis from the 3rd month. In the tubule-specific legumain-knockout mice and the cultured legumain-knockdown HK-2 cells, legumain deficiency induces the activation of tubular senescence and thus increases the secretion of profibrotic senescence-associated cytokines, which in turn accelerates the activation of fibroblasts. Blockage of senescence mitigates the fibrotic lesion caused by legumain deficiency. Mechanistically, we found that silencing down of legumain leads to the elevated lysosome pH value, enlargement of lysosome size, and increase of lysosomal voltage dependent membrane channel proteins. Either legumain downregulation or aging alone induces the activation of nuclear transcription factors EB (TFEB) while it fails to further upregulate in the elderly legumain-knockdown tubules, accompanied with impaired mitophagy and increased mitochondrial ROS (mtROS) accumulation. Therapeutically, supplementation of exosomal legumain ameliorated fibronectin and collagen I production in an in vitro coculture system of tubular cells and fibroblasts. Altogether, our data demonstrate that loss of legumain in combined with aging dysregulates lysosomal homeostasis, although either aging or legumain deficiency alone induces lysosome adaptation via stimulating lysosomal biogenesis. Consequently, impaired mitophagy leads to mtROS accumulation and therefore activates tubular senescence and boosts the interstitial fibrosis.
    Keywords:  aging-related renal fibrosis; autophagy; legumain (asparagine endopetidase); premature senescence
    DOI:  https://doi.org/10.1111/acel.13574
  29. J Biol Chem. 2022 Feb 16. pii: S0021-9258(22)00180-6. [Epub ahead of print] 101740
      Lysosomes serve as dynamic regulators of cell and organismal physiology by integrating the degradation of macromolecules with receptor and nutrient signaling. Previous studies have established that activation of the transcription factors TFEB and TFE3 induces the expression of lysosomal genes and proteins in signaling-inactive starved cells, that is, under conditions when activity of the master regulator of nutrient-sensing signaling mTORC1 is repressed. How lysosome biogenesis is triggered in signaling-active cells is incompletely understood. Here we identify a role for calcium release from the lumen of the endoplasmic reticulum (ER) in the control of lysosome biogenesis that is independent of mTORC1. We show using functional imaging that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon depletion of INPP5A, an inositol 5-phosphatase downregulated in cancer and defective in spinocerebellar ataxia, or receptor-mediated phospholipase C activation leads to the induction of lysosome biogenesis. This mechanism involves calcineurin and the nuclear translocation and elevated transcriptional activity of TFEB/ TFE3. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lysosome biogenesis via TFEB/ TFE3, thereby contributing to our understanding how cells are able to maintain their lysosome content under conditions of active receptor and nutrient signaling.
    Keywords:  calcium; imaging; inositol-triphosphate; lysosome biogenesis; signaling
    DOI:  https://doi.org/10.1016/j.jbc.2022.101740
  30. Autophagy. 2022 Feb 19. 1-3
      The Golgi apparatus regulates the process of modification and subcellular localization of macromolecules, including proteins and lipids. Aberrant protein sorting caused by defects in the Golgi leads to various diseases in mammals. However, the role of the Golgi apparatus in organismal longevity remained largely unknown. By employing a quantitative proteomic approach, we demonstrated that MON-2, an evolutionarily conserved Arf-GEF protein implicated in Golgi-to-endosome trafficking, promotes longevity via upregulating macroautophagy/autophagy in C. elegans. Our data using cultured mammalian cells indicate that MON2 translocates from the Golgi to the endosome under starvation conditions, subsequently increasing autophagic flux by binding LGG-1/GABARAPL2. Thus, Golgi-to-endosome trafficking appears to be an evolutionarily conserved process for the upregulation of autophagy, which contributes to organismal longevity.
    Keywords:  Aging; C. elegans; Golgi; LGG-1/GABARAPL2; MON-2/MON2; autophagy; lifespan; proteomics
    DOI:  https://doi.org/10.1080/15548627.2022.2039523
  31. Exp Biol Med (Maywood). 2022 Feb 24. 15353702221080435
      The degree of activation of hepatic stellate cells (HSCs) is closely related to the level of autophagy in HSCs. We previously showed that interleukin-10 (IL-10) strongly inhibits HSC activation in rat fibrotic liver. However, little is known about the effect of IL-10 on HSC autophagy. For investigation of the effect of IL-10 on starvation-induced autophagy in immortal rat hepatic stellate cells (HSC-T6) and the molecular mechanism, HSC-T6 cells were incubated with serum-free DMEM for different periods and treated with IL-10 at different concentrations. Transmission electron microscopy (TEM), analysis of autophagic flux and Western blotting (WB) assays were used to observe changes in autophagosome morphology and number and autophagy-related protein expression in HSC-T6 cells and to evaluate the regulatory effect of IL-10 on starvation-induced autophagy. Cryptotanshinone (CPT) and rapamycin (Rapa) were used to block activation of the signal transducer and activator of transcription 3 (STAT3) and mTOR signaling pathways, respectively. STAT3-mTOR-p70s6k signaling pathway proteins were analyzed by WB to assess the signaling pathway by which IL-10 regulates autophagy. WB showed an increased LC3II/I ratio, increased Beclin1 expression, and decreased p62 expression in HSC-T6 cells starved for 3 h (p < 0.05). IL-10 inhibited the increases in the LC3II/I ratio and Beclin1 expression and upregulated p62 expression (p < 0.05), and the optimal IL-10 concentration was 20 ng/mL. TEM and double-labeled immunofluorescence analysis showed that IL-10 inhibited autophagosome formation and autophagic flux, as indicated by the decreased numbers of double-membrane autophagosomes and yellow autophagic puncta. Further examination of signaling pathway molecules showed that phosphorylation of the mTOR, STAT3, and p70s6k proteins was significantly decreased during starvation-induced autophagy, but IL-10 could increase mTOR, STAT3, and p70s6k protein phosphorylation (p < 0.05). Blocking either the mTOR or STAT3 pathway reversed the inhibitory effect of IL-10 on starvation-induced autophagy in HSC-T6 cells (p < 0.05). IL-10 suppresses starvation-induced autophagosome formation through activation of the STAT3-mTOR-p70s6k axis in HSC-T6 cells.
    Keywords:  STAT3-mTOR-p70s6k; autophagy; hepatic stellate cells; interleukin-10; liver fibrosis; signaling axis
    DOI:  https://doi.org/10.1177/15353702221080435
  32. FEBS Lett. 2022 Feb 25.
      Linear ubiquitin chains play pivotal roles in immune signaling by augmenting NF-κB activation and suppressing programmed cell death induced by various stimuli. A20-binding inhibitor of NF-κB 1 (ABIN1) binds to linear ubiquitin chains and attenuates NF-κB activation and cell death induction. Although interactions with linear ubiquitin chains are thought to play a role in ABIN1-mediated suppression of NF-κB and cell death, the underlying molecular mechanisms remain unclear. Here, we show that upon stimulation by Toll-like receptor (TLR) ligands, ABIN1 is phosphorylated on Ser 83 and functions as a selective autophagy receptor. ABIN1 recognizes components of the MyD88 signaling complex via interaction with linear ubiquitin chains conjugated to components of the complex in TLR signaling, which leads to autophagic degradation of signaling proteins and attenuated NF-κB signaling. Our current findings indicate that phosphorylation and linear ubiquitination also play a role in downregulation of signaling via selective induction of autophagy.
    Keywords:  ABIN1; MyDDosome; NF-κB; Toll-like receptors; autophagy; linear ubiquitination
    DOI:  https://doi.org/10.1002/1873-3468.14323
  33. Commun Biol. 2022 Feb 25. 5(1): 173
      Malfunction of autophagy contributes to the progression of many chronic age-associated diseases. As such, improving normal proteostatic mechanisms is an active target for biomedical research and a key focal area for aging research. Endoplasmic reticulum (ER)-based acetylation has emerged as a mechanism that ensures proteostasis within the ER by regulating the induction of ER specific autophagy. ER acetylation is ensured by two ER-membrane bound acetyltransferases, ATase1 and ATase2. Here, we show that ATase inhibitors can rescue ongoing disease manifestations associated with the segmental progeria-like phenotype of AT-1 sTg mice. We also describe a pipeline to reliably identify ATase inhibitors with promising druggability properties. Finally, we show that successful ATase inhibitors can rescue the proteopathy of a mouse model of Alzheimer's disease. In conclusion, our study proposes that ATase-targeting approaches might offer a translational pathway for many age-associated proteopathies affecting the ER/secretory pathway.
    DOI:  https://doi.org/10.1038/s42003-022-03118-0
  34. Int J Mol Sci. 2022 Feb 09. pii: 1939. [Epub ahead of print]23(4):
      Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
    Keywords:  NF-κB; TFE3; TFEB; VCP; autophagy; lysophagy; neurodegenerative disease
    DOI:  https://doi.org/10.3390/ijms23041939
  35. Front Cell Dev Biol. 2021 ;9 826248
      Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
    Keywords:  LD biogenesis; LD breakdown; cancer; lipid droplet (LD); protozoans; viral infection
    DOI:  https://doi.org/10.3389/fcell.2021.826248
  36. J Exp Clin Cancer Res. 2022 Feb 24. 41(1): 76
      BACKGROUND: Mitochondrial dynamics homeostasis is important for cell metabolism, growth, proliferation, and immune responses. The critical GTPase for mitochondrial fission, Drp1 is frequently upregulated in many cancers and is closely implicated in tumorigenesis. However, the mechanism underling Drp1 to influence tumor progression is largely unknown, especially in esophageal squamous cell carcinoma (ESCC).METHODS: Immunohistochemistry was used to examine Drp1 and LC3B expression in tissues of ESCC patients. Autophagic vesicles were investigated by transmission electron microscopy. Fluorescent LC3B puncta and mitochondrial nucleoid were observed by fluorescent and confocal microscopy. Mitochondrial function was evaluated by mitochondrial membrane potential, ROS and ATP levels. Xenograft tumor model was performed in BALB/c nude mice to analyze the role of Drp1 on ESCC progression.
    RESULTS: We found that Drp1 high expression is correlated with poor overall survival of ESCC patients. Drp1 overexpression promotes cell proliferation and xenograft ESCC tumor growth by triggering autophagy. Furthermore, we demonstrated that Drp1 overexpression disturbs mitochondrial function and subsequent induces mitochondrial DNA (mtDNA) released into the cytosol thereby inducing cytosolic mtDNA stress. Mechanistically, cytosolic mtDNA activates the cGAS-STING pathway and facilitates autophagy, which promotes ESCC cancer growth. Moreover, mtDNA digestion with DNase I and autophagy inhibition with chloroquine attenuates the cGAS-STING pathway activation and ESCC cancer growth.
    CONCLUSIONS: Our finding reveals that Drp1 overexpression induces mitochondrial dysfunction and cytosolic mtDNA stress, which subsequently activates the cGAS-STING pathway, triggers autophagy and promotes ESCC progression.
    Keywords:  Autophagy; Drp1; Esophageal Squamous Cell Carcinoma; Mitochondrial DNA stress; cGAS-STING signaling pathway
    DOI:  https://doi.org/10.1186/s13046-022-02262-z
  37. Biophys J. 2022 Feb 21. pii: S0006-3495(22)00156-4. [Epub ahead of print]
      Lysosomes are membrane-bound organelles that serve as the endpoint for endocytosis, phagocytosis, and autophagy, degrading the molecules, pathogens, and organelles localized within them. These cellular functions require intracellular transport. We use fluorescence microscopy to characterize the motion of lysosomes as a function of intracellular region, perinuclear or periphery, and lysosome diameter. Single particle tracking data is complemented by changepoint identification and analysis of a mathematical model for state-switching. We first classify lysosomal motion as motile or stationary. We then study how lysosome location and diameter affects the proportion of time spent in each state and quantify the speed during motile periods. We find that the proportion of time spent stationary is strongly region-dependent, with significantly decreased motility in the perinuclear region. Increased lysosome diameter only slightly decreases speed. Overall, these results demonstrate the importance of decomposing particle trajectories into qualitatively different behaviors before conducting population-wide statistical analysis. Our results suggest that intracellular region is an important factor to consider in studies of intracellular transport.
    DOI:  https://doi.org/10.1016/j.bpj.2022.02.032
  38. Cell Biol Toxicol. 2022 Feb 26.
      Persistent myocardial hypertrophy frequently leads to heart failure (HF). Intramyocardial triacylglycerol (TAG) accumulation is closely related with cardiac remodeling and abnormal contractile function. Adipose triglyceride lipase (ATGL), a key enzyme in TAG metabolism, regulates cardiac function. However, its associated molecular pathways have not been fully defined. Here, cardiac hypertrophy and HF were induced in wild-type (WT) or ATGL knockout (KO) mice through transverse aortic constriction (TAC) for up to 4 weeks. TAC in WT mice significantly reduced cardiac function and autophagy while enhancing left ventricular hypertrophy, interstitial fibrosis, inflammatory response, superoxide generation, and cardiomyocyte apoptosis, accompanied with upregulation of the proteasome activity, reduction of PTEN level and activation of AKT-mTOR signaling, and these effects were further aggravated in ATGL KO mice. Interestingly, ATGL KO-mediated cardiac dysfunction and remodeling were markedly reversed by proteasome inhibitor (epoxomicin) or autophagic activator (rapamycin), but accelerated by PTEN inhibitor (VO-OHpic) or autophagy inhibitor 3-MA. Mechanistically, ATGL KO upregulated proteasome expression and activity, which in turn mediates PTEN degradation leading to activation of AKT-mTOR signaling and inhibition of autophagy, thereby enhancing hypertrophic remodeling and HF. In conclusion, ATGL KO contributes to TAC-induced cardiac dysfunction and adverse remodeling probably associated with the proteasome-PTEN-mTOR-autophagy pathway. Therefore, modulation of this pathway may have a therapeutic effect potential for hypertrophic heart disease. TAC-induced downregulation of ATGL results in increased proteasome (β1i/β2i/β5i) activity, which in turn promotes degradation of PTEN and activation of AKT-mTOR signaling and then inhibits autophagy and ATP production, thereby leading to cardiac hypertrophic remodeling and dysfunction. Conversely, blocking proteasome activity or activating autophagy attenuates these effects.
    Keywords:  ATGL; Autophagy; Cardiac remodeling; PTEN; Proteasome; mTOR
    DOI:  https://doi.org/10.1007/s10565-022-09699-0
  39. J Zhejiang Univ Sci B. 2022 Feb 15. pii: 1673-1581(2022)02-0089-13. [Epub ahead of print]23(2): 89-101
      Cancer is the leading cause of death worldwide. Drugs play a pivotal role in cancer treatment, but the complex biological processes of cancer cells seriously limit the efficacy of various anticancer drugs. Autophagy, a self-degradative system that maintains cellular homeostasis, universally operates under normal and stress conditions in cancer cells. The roles of autophagy in cancer treatment are still controversial because both stimulation and inhibition of autophagy have been reported to enhance the effects of anticancer drugs. Thus, the important question arises as to whether we should try to strengthen or suppress autophagy during cancer therapy. Currently, autophagy can be divided into four main forms according to its different functions during cancer treatment: cytoprotective (cell survival), cytotoxic (cell death), cytostatic (growth arrest), and nonprotective (no contribution to cell death or survival). In addition, various cell death modes, such as apoptosis, necrosis, ferroptosis, senescence, and mitotic catastrophe, all contribute to the anticancer effects of drugs. The interaction between autophagy and these cell death modes is complex and can lead to anticancer drugs having different or even completely opposite effects on treatment. Therefore, it is important to understand the underlying contexts in which autophagy inhibition or activation will be beneficial or detrimental. That is, appropriate therapeutic strategies should be adopted in light of the different functions of autophagy. This review provides an overview of recent insights into the evolving relationship between autophagy and cancer treatment.
    Keywords:  Autophagy; Cancer treatment; Cell death mode; Precision treatment
    DOI:  https://doi.org/10.1631/jzus.B2100804
  40. Sci Rep. 2022 02 24. 12(1): 3134
      Chaperone-mediated autophagy (CMA) is a protein degradation pathway that eliminates soluble cytoplasmic proteins that are damaged, incorrectly folded, or targeted for selective proteome remodeling. However, the role of CMA in skeletal homeostasis under physiological and pathophysiological conditions is unknown. To address the role of CMA for skeletal homeostasis, we deleted an essential component of the CMA process, namely Lamp2a, from the mouse genome. CRISPR-Cas9-based genome editing led to the deletion of both Lamp2a and Lamp2c, another Lamp2 isoform, producing Lamp2AC global knockout (L2ACgKO) mice. At 5 weeks of age female L2ACgKO mice had lower vertebral cancellous bone mass compared to wild-type (WT) controls, whereas there was no difference between genotypes in male mice at this age. The low bone mass of L2ACgKO mice was associated with elevated RANKL expression and the osteoclast marker genes Trap and Cathepsin K. At 18 weeks of age, both male and female L2ACgKO mice had lower vertebral cancellous bone mass compared to WT controls. The low bone mass of L2ACgKO mice was associated with increased osteoclastogenesis and decreased mineral deposition in cultured cells. Consistent with these findings, specific knockdown of Lamp2a in an osteoblastic cell line increased RANKL expression and decreased mineral deposition. Moreover, similar to what has been observed in other cell types, macroautophagy and proteasomal degradation were upregulated in CMA-deficient osteoblasts in culture. Thus, an increase in other protein degradation pathways may partially compensate for the loss of CMA in osteoblasts. Taken together, our results suggest that CMA plays a role in vertebral cancellous bone mass accrual in young adult mice and that this may be due to an inhibitory role of CMA on osteoclastogenesis or a positive role of CMA in osteoblast formation or function.
    DOI:  https://doi.org/10.1038/s41598-022-07157-9
  41. Brain Sci. 2022 Feb 11. pii: 247. [Epub ahead of print]12(2):
      The treatment of spinal cord injury (SCI) is currently a major challenge, with a severe lack of effective therapies for yielding meaningful improvements in function. Therefore, there is a great opportunity for the development of novel treatment strategies for SCI. The modulation of autophagy, a process by which a cell degrades and recycles unnecessary or harmful components (protein aggregates, organelles, etc.) to maintain cellular homeostasis and respond to a changing microenvironment, is thought to have potential for treating many neurodegenerative conditions, including SCI. The discovery of microRNAs (miRNAs), which are short ribonucleotide transcripts for targeting of specific messenger RNAs (mRNAs) for silencing, shows prevention of the translation of mRNAs to the corresponding proteins affecting various cellular processes, including autophagy. The number of known miRNAs and their targets continues to grow rapidly. This review article aims to explore the relationship between autophagy and SCI, specifically with the intent of identifying specific miRNAs that can be useful to modulate autophagy for neuroprotection and the improvement of functional recovery in SCI.
    Keywords:  autophagy; functional recovery; miRNAs, miRNAs for modulation of autophagy; neurodegeneration; neuroprotection; spinal cord injury (SCI)
    DOI:  https://doi.org/10.3390/brainsci12020247
  42. Int J Mol Sci. 2022 Feb 10. pii: 1978. [Epub ahead of print]23(4):
      Meningiomas are the most frequent primary tumors arising in the central nervous system. They typically follow a benign course, with an excellent prognosis for grade I lesions through surgical intervention. Although radiotherapy is a good option for recurrent, progressive, or inoperable tumors, alternative treatments are very limited. mTOR is a protein complex with increasing therapeutical potential as a target in cancer. The current understanding of the mTOR pathway heavily involves it in the development of meningioma. Its activation is strongly dependent on PI3K/Akt signaling and the merlin protein. Both factors are commonly defective in meningioma cells, which indicates their likely function in tumor growth. Furthermore, regarding molecular tumorigenesis, the kinase activity of the mTORC1 complex inhibits many components of the autophagosome, such as the ULK1 or Beclin complexes. mTOR contributes to redox homeostasis, a vital component of neoplasia. Recent clinical trials have investigated novel chemotherapeutic agents for mTOR inhibition, showing promising results in resistant or recurrent meningiomas.
    Keywords:  everolimus; lycopene; mTOR; macroautophagy; meningioma; redox homeostasis; vistusertib
    DOI:  https://doi.org/10.3390/ijms23041978
  43. Front Mol Neurosci. 2022 ;15 805169
      Two key pathological hallmarks of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are the accumulation of misfolded protein aggregates and the chronic progressive neuroinflammation that they trigger. Numerous original research and reviews have provided a comprehensive understanding of how aggregated proteins (amyloid β, pathological tau, and α-synuclein) contribute to the disease, including driving sterile inflammation, in part, through the aggregation of multi-protein inflammasome complexes and the ASC speck [composed of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), Apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain (ASC), and inflammatory caspase-1] involved in innate immunity. Here, we provide a unique perspective on the crosstalk between the aggregation-prone proteins involved in AD/PD and the multi-protein inflammasome complex/ASC speck that fuels feed-forward exacerbation of each other, driving neurodegeneration. Failed turnover of protein aggregates (both AD/PD related aggregates and the ASC speck) by protein degradation pathways, prionoid propagation of inflammation by the ASC speck, cross-seeding of protein aggregation by the ASC speck, and pro-aggregatory cleavage of proteins by caspase-1 are some of the mechanisms that exacerbate disease progression. We also review studies that provide this causal framework and highlight how the ASC speck serves as a platform for the propagation and spreading of inflammation and protein aggregation that drives AD and PD.
    Keywords:  ASC; Alzheimer’s disease; NLRP3; Parkinson’s disease; autophagy-lysosomal degradation; inflammasomes; neuroinflammation; protein aggregation
    DOI:  https://doi.org/10.3389/fnmol.2022.805169
  44. Front Physiol. 2021 ;12 801340
      Chronic liver injury, regardless of the underlying disease, results in gradual alteration of the physiological hepatic architecture and in excessive production of extracellular matrix, eventually leading to cirrhosis Liver cellular architecture consists of different cell populations, among which hepatic stellate cells (HSCs) have been found to play a major role in the fibrotic process. Under normal conditions, HSCs serve as the main storage site for vitamin A, however, pathological stimuli lead to their transdifferentiation into myofibroblast cells, with autophagy being the key regulator of their activation, through lipophagy of their lipid droplets. Nevertheless, the role of autophagy in liver fibrosis is multifaceted, as increased autophagic levels have been associated with alleviation of the fibrotic process. In addition, it has been found that HSCs receive paracrine stimuli from neighboring cells, such as injured hepatocytes, Kupffer cells, sinusoidal endothelial cells, which promote liver fibrosis. These stimuli have been found to be transmitted via exosomes, which are incorporated by HSCs and can either be degraded through lysosomes or be secreted back into the extracellular space via fusion with the plasma membrane. Furthermore, it has been demonstrated that autophagy and exosomes may be concomitantly or reciprocally regulated, depending on the cellular conditions. Given that increased levels of autophagy are required to activate HSCs, it is important to investigate whether autophagy levels decrease at later stages of hepatic stellate cell activation, leading to increased release of exosomes and further propagation of hepatic fibrosis.
    Keywords:  autophagy; exosomes; fibrosis; hepatic stellate cells; liver
    DOI:  https://doi.org/10.3389/fphys.2021.801340
  45. Front Cell Infect Microbiol. 2022 ;12 804011
      Hepatitis B virus (HBV) infection causes acute and chronic liver diseases, including severe hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Interferon alpha 2a (IFNα-2a) is commonly used for treating chronic HBV infection. However, its efficacy remains relatively low. Yet, the immunological and molecular mechanisms for successful IFNα-2a treatment remain elusive. One issue is whether the application of increasing IFNα doses may modulate cellular processes and HBV replication in hepatic cells. In the present study, we focused on the interaction of IFNα signaling with other cellular signaling pathways and the consequence for HBV replication. The results showed that with the concentration of 6000 U/ml IFNα-2a treatment downregulated the activity of not only the Akt/mTOR signaling but also the AMPK signaling. Additionally, IFNα-2a treatment increased the formation of the autophagosomes by blocking autophagic degradation. Furthermore, IFNα-2a treatment inhibited the Akt/mTOR signaling and initiated autophagy under low and high glucose concentrations. In reverse, inhibition of autophagy using 3-methyladenine (3-MA) and glucose concentrations influenced the expression of IFNα-2a-induced ISG15 and IFITM1. Despite of ISGs induction, HBV replication and gene expression in HepG2.2.15 cells, a cell model with continuous HBV replication, were slightly increased at high doses of IFNα-2a. In conclusion, our study indicates that IFNα-2a treatment may interfere with multiple intracellular signaling pathways, facilitate autophagy initiation, and block autophagic degradation, thereby resulting in slightly enhanced HBV replication.
    Keywords:  AMPK; Akt/mTOR signaling; Hepatitis B virus; IFNα-2a; autophagy
    DOI:  https://doi.org/10.3389/fcimb.2022.804011
  46. Mol Cell Biochem. 2022 Feb 23.
      The progression of atherosclerotic plaque is accelerated by death of foam cells during the development of the plaque. There are several forms of foam cell death, such as autophagy and ferroptosis forms of cell death together are commonly predominant. Therefore, it is particularly important to study the crosstalk between various forms of cell death in atheroscler and ferroptosis. Although there is a dominant form of cell death that plays a role in the disease, motic plaques. Nuclear factor NF-E2-related factor (Nrf2) has been considered as a major regulator of antioxidant in previous studies, but recent studies have revealed that insufficient cellular autophagy can turn off Nrf2-mediated antioxidant defense while initiating Nrf2-manipulated iron deposition and lipid peroxidation, leading to the development of iron ferroptosis. The present experiment aimed to explain the regulatory mechanism between autophagy and ferroptosis through Nrf2. In this experiment, differentiated human THP-1 macrophages were used, which were treated with ox-LDL into foam cells with the addition of the autophagy inhibitor chloroquine (CQ), the inhibitor of Nrf2 (ML385), the promoter of Nrf2 (t-BHQ), and the inhibitor of ferroptosis (Liproxstatin-1), and the expression levels of autophagy-related proteins p62 and LC3, as well as Nrf2 and ferroptosis-related proteins xCT and GPX4 by WB, foam cell survival by CCK8, and intracellular reactive oxygen levels by Flow cytometry analysis and fluorescence microscopy. The effect of autophagy through Nrf2 on ferroptosis in foam cells was determined. The results revealed that insufficient autophagy in CQ-induced foam cells could lead to foam cell death in atherosclerotic plaques, and the cause of cell death was that insufficient autophagy in foam cells turned off the positive effect of Nfr2 antioxidant, initiated the negative effect of Nrf2 to promote intracellular reactive oxygen species production, and this negative effect promoted ferroptosis in foam cells.
    Keywords:  Atherosclerosis; Autophagy; Ferroptosis; Nrf2
    DOI:  https://doi.org/10.1007/s11010-021-04347-3
  47. Neuron. 2022 Feb 19. pii: S0896-6273(22)00105-2. [Epub ahead of print]
      PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.
    Keywords:  OMP25; PINK1; Parkinson disease; RNA transport; SYNJ2BP; hitchhiking; local translation; mitophagy; synaptojanin2
    DOI:  https://doi.org/10.1016/j.neuron.2022.01.035
  48. FEBS Open Bio. 2022 Feb 25.
      More than fifty years have passed since Nobel laureate Cristian de Duve described for the first time the presence of tiny subcellular compartments filled with hydrolytic enzymes: the lysosome. For a long time, lysosomes were deemed simple waste bags exerting a plethora of hydrolytic activities involved in the recycling of biopolymers, and lysosomal genes were considered to just be simple housekeeping genes, transcribed in a constitutive fashion. However, lysosomes are emerging as multifunctional signalling hubs involved in multiple aspects of cell biology, both under homeostatic and pathological conditions. Lysosomes are involved in the regulation of cell metabolism through the mTOR/TFEB axis. They are also key players in the regulation and onset of the immune response. Furthermore, it is becoming clear that lysosomal hydrolases can regulate several biological processes outside of the lysosome. They are also implicated in a complex communication network among subcellular compartments that involves intimate organelle-to-organelle contacts. Furthermore, lysosomal dysfunction is nowadays accepted as the causative event behind several human pathologies: low frequency inherited diseases, cancer, or neurodegenerative, metabolic, inflammatory, and autoimmune diseases. Recent advances in our knowledge of the complex biology of lysosomes have established them as promising therapeutic targets for the treatment of different pathologies. Although recent discoveries have started to highlight that lysosomes are controlled by a complex web of regulatory networks, that in some cases seem to be cell- and stimuli-dependent, to harness the full potential of lysosomes as therapeutic targets we need a deeper understanding of the little-known signalling pathways regulating this subcellular compartment and its functions.
    Keywords:  STATs; TFEB; lysosomes; mTORC1; signalling pathways; transcriptional regulation
    DOI:  https://doi.org/10.1002/2211-5463.13387