bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2021‒11‒21
67 papers selected by
Viktor Korolchuk, Newcastle University



  1. Autophagy. 2021 Nov 15. 1-3
      Mitochondria are critical organelles that maintain cellular metabolism and overall function. The catabolic pathway of autophagy plays a central role in recycling damaged mitochondria. Although the autophagy pathway is indispensable for some cancer cell survival, our latest study shows that rare autophagy-dependent cancer cells can adapt to loss of this core pathway. In the process, the autophagy-deficient cells acquire unique dependencies on alternate forms of mitochondrial homeostasis. These rare autophagy-deficient clones circumvent the lack of canonical autophagy by increasing mitochondrial dynamics and by recycling damaged mitochondria via mitochondrial-derived vesicles (MDVs). These studies are the first to implicate MDVs in cancer cell metabolism although many unanswered questions remain about this non-canonical pathway.
    Keywords:  Cancer; mitochondrial fusion; mitochondrial-derived vesicles; mitophagy; non-canonical autophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1999562
  2. Autophagy. 2021 Nov 18. 1-12
      Macroautophagy/autophagy, a mechanism of degradation of intracellular material required to sustain cellular homeostasis, is exacerbated under stress conditions like nutrient deprivation, protein aggregation, organelle senescence, pathogen invasion, and hypoxia, among others. Detailed in vivo description of autophagic responses triggered by hypoxia is limited. We have characterized the autophagic response induced by hypoxia in Drosophila melanogaster. We found that this process is essential for Drosophila adaptation and survival because larvae with impaired autophagy are hypersensitive to low oxygen levels. Hypoxia triggers a bona fide autophagic response, as evaluated by several autophagy markers including Atg8, LysoTracker, Lamp1, Pi3K59F/Vps34 activity, transcriptional induction of Atg genes, as well as by transmission electron microscopy. Autophagy occurs in waves of autophagosome formation and maturation as hypoxia exposure is prolonged. Hypoxia-triggered autophagy is induced cell autonomously, and different tissues are sensitive to hypoxic treatments. We found that hypoxia-induced autophagy depends on the basic autophagy machinery but not on the hypoxia master regulator sima/HIF1A. Overall, our studies lay the foundation for using D. melanogaster as a model system for studying autophagy under hypoxic conditions, which, in combination with the potency of genetic manipulations available in this organism, provides a platform for studying the involvement of autophagy in hypoxia-associated pathologies and developmentally regulated processes.Abbreviations: Atg: autophagy-related; FYVE: zinc finger domain from Fab1 (yeast ortholog of PIKfyve); GFP: green fluorescent protein; HIF: hypoxia-inducible factor; hsf: heat shock factor; Hx: hypoxia; mCh: mCherry; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; Rheb: Ras homolog enriched in brain; sima: similar; Stv: Starvation; TEM: transmission electron microscopy; Tor: target of rapamycin; UAS: upstream activating sequence; Vps: vacuolar protein sorting.
    Keywords:  Autophagosome; Drosophila; autophagy; hypoxia; oxygen; starvation
    DOI:  https://doi.org/10.1080/15548627.2021.1991191
  3. Autophagy. 2021 Nov 19. 1-11
      PINK1 accumulation at the outer mitochondrial membrane (OMM) is a key event required to signal depolarized mitochondria to the autophagy machinery. How this early step is, in turn, modulated by autophagy proteins remains less characterized. Here, we show that, upon mitochondrial depolarization, the proautophagic protein AMBRA1 is recruited to the OMM and interacts with PINK1 and ATAD3A, a transmembrane protein that mediates mitochondrial import and degradation of PINK1. Downregulation of AMBRA1 expression results in reduced levels of PINK1 due to its enhanced degradation by the mitochondrial protease LONP1, which leads to a decrease in PINK1-mediated ubiquitin phosphorylation and mitochondrial PRKN/PARKIN recruitment. Notably, ATAD3A silencing rescues defective PINK1 accumulation in AMBRA1-deficient cells upon mitochondrial damage. Overall, our findings underline an upstream contribution of AMBRA1 in the control of PINK1-PRKN mitophagy by interacting with ATAD3A and promoting PINK1 stability. This novel regulatory element may account for changes of PINK1 levels in neuropathological conditions.
    Keywords:  Autophagy; LONP1; PRKN/PARKIN; TOMM complex; ubiquitin phosphorylation
    DOI:  https://doi.org/10.1080/15548627.2021.1997052
  4. Nat Commun. 2021 Nov 16. 12(1): 6622
      The mammalian target of rapamycin (mTORC1) has been shown to regulate autophagy at different steps. However, how mTORC1 regulates the N-ethylmaleimide-sensitive protein receptor (SNARE) complex remains elusive. Here we show that mTORC1 inhibits formation of the SNARE complex (STX17-SNAP29-VAMP8) by phosphorylating VAMP8, thereby blocking autophagosome-lysosome fusion. A VAMP8 phosphorylation mimic mutant is unable to promote autophagosome-lysosome fusion in vitro. Furthermore, we identify SCFD1, a Sec1/Munc18-like protein, that localizes to the autolysosome and is required for SNARE complex formation and autophagosome-lysosome fusion. VAMP8 promotes SCFD1 recruitment to autolysosomes when dephosphorylated. Consistently, phosphorylated VAMP8 or SCFD1 depletion inhibits autophagosome-lysosome fusion, and expression of phosphomimic VAMP8 leads to increased lipid droplet accumulation when expressed in mouse liver. Thus, our study supports that mTORC1-mediated phosphorylation of VAMP8 blocks SCFD1 recruitment, thereby inhibiting STX17-SNAP29-VAMP8 complex formation and autophagosome-lysosome fusion.
    DOI:  https://doi.org/10.1038/s41467-021-26824-5
  5. Mol Cell. 2021 Nov 18. pii: S1097-2765(21)00931-X. [Epub ahead of print]
      Autophagy is a conserved intracellular degradation pathway exerting various cytoprotective and homeostatic functions by using de novo double-membrane vesicle (autophagosome) formation to target a wide range of cytoplasmic material for vacuolar/lysosomal degradation. The Atg1 kinase is one of its key regulators, coordinating a complex signaling program to orchestrate autophagosome formation. Combining in vitro reconstitution and cell-based approaches, we demonstrate that Atg1 is activated by lipidated Atg8 (Atg8-PE), stimulating substrate phosphorylation along the growing autophagosomal membrane. Atg1-dependent phosphorylation of Atg13 triggers Atg1 complex dissociation, enabling rapid turnover of Atg1 complex subunits at the pre-autophagosomal structure (PAS). Moreover, Atg1 recruitment by Atg8-PE self-regulates Atg8-PE levels in the growing autophagosomal membrane by phosphorylating and thus inhibiting the Atg8-specific E2 and E3. Our work uncovers the molecular basis for positive and negative feedback imposed by Atg1 and how opposing phosphorylation and dephosphorylation events underlie the spatiotemporal regulation of autophagy.
    Keywords:  Atg8 lipidation; autophagy; metabolism; phosphorylation; protein kinases; protein phosphatases; signaling; ubiquitin-like proteins
    DOI:  https://doi.org/10.1016/j.molcel.2021.10.024
  6. Front Cell Dev Biol. 2021 ;9 751892
      The tuberous sclerosis protein complex (TSC complex) is a key integrator of metabolic signals and cellular stress. In response to nutrient shortage and stresses, the TSC complex inhibits the mechanistic target of rapamycin complex 1 (mTORC1) at the lysosomes. mTORC1 is also inhibited by stress granules (SGs), RNA-protein assemblies that dissociate mTORC1. The mechanisms of lysosome and SG recruitment of mTORC1 are well studied. In contrast, molecular details on lysosomal recruitment of the TSC complex have emerged only recently. The TSC complex subunit 1 (TSC1) binds lysosomes via phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]. The SG assembly factors 1 and 2 (G3BP1/2) have an unexpected lysosomal function in recruiting TSC2 when SGs are absent. In addition, high density lipoprotein binding protein (HDLBP, also named Vigilin) recruits TSC2 to SGs under stress. In this mini-review, we integrate the molecular mechanisms of lysosome and SG recruitment of the TSC complex. We discuss their interplay in the context of cell proliferation and migration in cancer and in the clinical manifestations of tuberous sclerosis complex disease (TSC) and lymphangioleiomyomatosis (LAM).
    Keywords:  G3BP1 (G3BP stress granule assembly factor 1); HDLBP; TSC complex; autophagy; lymphangioleiomyomatosis (LAM); lysosomes; mTORC1 (mechanistic target of rapamycin complex 1); stress granules (SG)
    DOI:  https://doi.org/10.3389/fcell.2021.751892
  7. J Mol Biol. 2021 Nov 16. pii: S0022-2836(21)00597-0. [Epub ahead of print] 167360
      Phosphatidylinositol 3-phosphate (PI3P), a scaffold of membrane-associated proteins required for diverse cellular events, is produced by Vps34-containing phosphatidylinositol 3-kinase (PI3K). PI3K complex I (PI3KCI)-generated PI3P is required for macroautophagy, whereas PI3K complex II (PI3KCII)-generated PI3P is required for endosomal sorting complex required for transport (ESCRT)-mediated multi-vesicular body (MVB) formation in late endosomes. ESCRT also promotes vacuolar membrane remodeling in microautophagy after nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Whereas PI3KCI and macroautophagy are critical for the nutrient starvation response, the physiological roles of PI3KCII and microautophagy during starvation are largely unknown. Here, we showed that PI3KCII-produced PI3P on vacuolar membranes is required for microautophagy induction and survival in nutrient-stressed conditions. PI3KCII is required for Vps27 (an ESCRT-0 component) recruitment and ESCRT-0 complex formation on vacuolar surfaces after TORC1 inactivation. Forced recruitment of Vps27 onto vacuolar membranes rescued the defect in microautophagy induction in PI3KCII-deficient cells, indicating that a critical role of PI3P on microautophagy induction is Vps27 recruitment onto vacuolar surfaces. Finally, vacuolar membrane-associated Vps27 was able to recover survival during nutrient starvation in cells lacking PI3KCII or Vps27. This study revealed that the PI3KCII-PI3P-Vps27 axis on vacuolar membranes is critical for ESCRT-mediated microautophagy induction and nutrient stress adaptation.
    Keywords:  ESCRT; TORC1; microautophagy; phosphatidylinositol 3-kinase complex II; phosphatidylinositol 3-phosphate
    DOI:  https://doi.org/10.1016/j.jmb.2021.167360
  8. FEBS J. 2021 Nov 17.
      We previously discovered an autophagy-like proteolysis mechanism that uses the Golgi membrane, namely, Golgi membrane-associated degradation (GOMED). Morphologically, GOMED resembles canonical autophagy, but the two mechanisms have different cellular functions, as they degrade different substrates and use different membrane sources. Furthermore, although the molecules involved partially overlap, the core molecules are completely different. GOMED preferentially degrades Golgi-trafficking proteins, including insulin granules in pancreatic β-cells and ceruloplasmin in neurons, and is involved in a wide variety of physiological events.
    Keywords:  GOMED; Golgi; ULK1; autophagy
    DOI:  https://doi.org/10.1111/febs.16281
  9. Front Cell Dev Biol. 2021 ;9 752962
      Autophagy is an evolutionary conserved degradative process contributing to cytoplasm quality control, metabolic recycling and cell defense. Aging is a universal phenomenon characterized by the progressive accumulation of impaired molecular and reduced turnover of cellular components. Recent evidence suggests a unique role for autophagy in aging and age-related disease. Indeed, autophagic activity declines with age and enhanced autophagy may prevent the progression of many age-related diseases and prolong life span. All tissues experience changes during aging, while the role of autophagy in different tissues varies. This review summarizes the links between autophagy and aging in the whole organism and discusses the physiological and pathological roles of autophagy in the aging process in tissues such as skeletal muscle, eye, brain, and liver.
    Keywords:  age-related diseases; aging; autophagy; brain; eye; liver; skeletal muscle
    DOI:  https://doi.org/10.3389/fcell.2021.752962
  10. J Cardiovasc Aging. 2021 ;pii: 9. [Epub ahead of print]1
      Introduction: Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase and a negative regulator of cardiac hypertrophy. Phosphorylation of GSK-3β at Ser9 negatively regulates its kinase activity. The role of GSK-3β in cardiac aging remains poorly understood.Aim: The study aimed to elucidate the role of GSK-3β Ser9 phosphorylation in mediating cardiac aging and the underlying mechanism.
    Methods and Results: Phosphorylation of GSK-3β at Ser9 and the levels of β-catenin and Mcl-1 were increased in the mouse heart during aging, suggesting that GSK-3β is inactivated during aging in the heart. Age-induced cardiac hypertrophy, fibrosis, left ventricular dysfunction, and increases in cardiomyocyte apoptosis and senescence were all attenuated in constitutively active GSK-3βS9A knock-in (KI) mice compared to littermate wild type mice. Although autophagy is inhibited in the heart during aging, KI of GSK-3βS9A reversed the age-associated decline in autophagy in the mouse heart. GSK-3β directly phosphorylates Ulk1, a regulator of autophagy, at Ser913, thereby stimulating autophagy in cardiomyocytes. Ulk1Ser913A KI mice exhibited decreased autophagic flux and increased senescence in cardiomyocytes.
    Conclusion: Our results suggest that GSK-3β is inactivated during aging through Ser9 phosphorylation, which in turn plays an important role in mediating cardiac aging. GSK-3β promotes autophagy through phosphorylation of Ulk1 at Ser913, which in turn prevents aging in the heart.
    Keywords:  GSK-3; Ulk1; aging; autophagy; senescence
    DOI:  https://doi.org/10.20517/jca.2021.13
  11. Autophagy. 2021 Nov 15. 1-3
      ER-specific autophagy (reticulophagy) has emerged as a critical degradative route for misfolded secretory proteins. Our previous work showed that RTN3 (reticulon 3) drives reticulophagic clearance of disease-causing mutant prohormones. How RTN3, a protein residing on the cytosolic leaflet of the ER bilayer, recruits these lumenally-localized cargos has remained a mystery. To address this question, we used an unbiased proteomics approach to identify RTN3-interacting partners. We discovered that RTN3 recruits misfolded prohormones for lysosomal degradation through the ER transmembrane protein PGRMC1. RTN3 complexes with PGRMC1, which directly binds to misfolded prohormones via its distal ER lumenal domain. Cargos for the RTN3-PGRMC1 degradative axis include mutant POMC (proopiomelanocortin) and proinsulin, each of which oligomerizes in the ER during misfolding, entrapping their wild-type counterparts, leading to secretion defects. Although reticulophagy is thought to degrade large protein aggregates, PGRMC1 instead selectively recruits and promotes degradation of only small oligomers of the mutant prohormones. Of physiological importance, genetic or pharmacological inactivation of PGRMC1 in pancreatic β-cells expressing both wild-type and mutant proinsulin impairs mutant proinsulin turnover and promotes trafficking of wild-type proinsulin. These findings pinpoint PGRMC1 as a possible intervention point for diseases caused by ER protein retention.
    Keywords:  MIDY; Reticulophagy; diabetes; endoplasmic reticulum; protein misfolding; protein trafficking
    DOI:  https://doi.org/10.1080/15548627.2021.1997062
  12. J Biol Chem. 2021 Nov 11. pii: S0021-9258(21)01212-6. [Epub ahead of print] 101405
      Several amyotrophic lateral sclerosis (ALS)-related proteins such as FUS, TDP-43, and hnRNPA1 demonstrate liquid-liquid phase separation, and their disease-related mutations correlate with a transition of their liquid droplet form into aggregates. Missense mutations in SQSTM1/p62, which have been identified throughout the gene, are associated with ALS, frontotemporal degeneration (FTD), and Paget's disease of bone. SQSTM1/p62 protein forms liquid droplets through interaction with ubiquitinated proteins, and these droplets serve as a platform for autophagosome formation and the anti-oxidative stress response via the LC3-interacting region (LIR) and KEAP1-interacting region (KIR) of p62, respectively. However, it remains unclear whether ALS/FTD-related p62 mutations in the LIR and KIR disrupt liquid droplet formation leading to defects in autophagy, the stress response, or both. To evaluate the effects of ALS/FTD-related p62 mutations in the LIR and KIR on a major oxidative stress system, the Keap1-Nrf2 pathway, as well as on autophagic turnover, we developed systems to monitor each of these with high sensitivity. These methods such as intracellular protein-protein interaction assay, doxycycline-inducible gene expression system and gene expression into primary cultured cells with recombinant adenovirus revealed that some mutants, but not all, caused reduced NRF2 activation and delayed autophagic cargo turnover. In contrast, while all p62 mutants demonstrated sufficient ability to form liquid droplets, all of these droplets also exhibited reduced inner fluidity. These results indicate that like other ALS-related mutant proteins, p62 missense mutations result in a primary defect in ALS/FTD via a qualitative change in p62 liquid droplet fluidity.
    Keywords:  NRF2; amyotrophic lateral sclerosis; autophagy; liquid droplet; p62
    DOI:  https://doi.org/10.1016/j.jbc.2021.101405
  13. Nat Commun. 2021 Nov 19. 12(1): 6750
      The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.
    DOI:  https://doi.org/10.1038/s41467-021-26999-x
  14. Cell Stress. 2021 Nov;5(11): 173-175
      Cellular adaptation to stress is a crucial homeostatic process for survival, metabolism, physiology, and disease. Cells respond to stress stimuli (e.g., nutrient starvation, growth factor deprivation, hypoxia, low energy, etc.) by changing the activity of signaling pathways, and interact with their environment by qualitatively and quantitatively modifying their intracellular, surface, and extracellular proteomes. How this delicate communication takes place is a hot topic in cell biological research, and has important implications for human disease.
    Keywords:  GRASP55; Golgi; Tuberous Sclerosis Complex (TSC); cellular stress response; mTORC1; rapamycin; unconventional protein secretion (UPS)
    DOI:  https://doi.org/10.15698/cst2021.11.259
  15. Oxid Med Cell Longev. 2021 ;2021 5539161
      Lipids are integral cellular components that act as substrates for energy provision, signaling molecules, and essential constituents of biological membranes along with a variety of other biological functions. Despite their significance, lipid accumulation may result in lipotoxicity, impair autophagy, and lysosomal function that may lead to certain diseases and metabolic syndromes like obesity and even cell death. Therefore, these lipids are continuously recycled and redistributed by the process of selective autophagy specifically termed as lipophagy. This selective form of autophagy employs lysosomes for the maintenance of cellular lipid homeostasis. In this review, we have reviewed the current literature about how lipid droplets (LDs) are recruited towards lysosomes, cross-talk between a variety of autophagy receptors present on LD surface and lysosomes, and lipid hydrolysis by lysosomal enzymes. In addition to it, we have tried to answer most of the possible questions related to lipophagy regulation at different levels. Moreover, in the last part of this review, we have discussed some of the pathological states due to the accumulation of these LDs and their possible treatments under the light of currently available findings.
    DOI:  https://doi.org/10.1155/2021/5539161
  16. Matrix Biol Plus. 2021 Dec;12 100089
      Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
    Keywords:  Adhesion; Autophagy; Extracellular matrix; Huntington’s disease; Integrin; Neurodegenerative disease
    DOI:  https://doi.org/10.1016/j.mbplus.2021.100089
  17. Front Pharmacol. 2021 ;12 741219
      Abnormal accumulation of TDP43-related mutant proteins in the cytoplasm causes amyotrophic lateral sclerosis (ALS). Herein, unbiased drug screening approaches showed that SC75741, a multi-target inhibitor, inhibited inflammation-induced aggregation by inhibiting NF-κB and also degraded already aggregated proteins by inhibiting c-Abl mediated autophagy-lysosomal pathway. We delineate the mechanism that SC75741 could markedly enhance TFEB nuclear translocation by an mTORC1-independent TFEB regulatory pathway. In addition, SC75741 enhanced the interaction between p62 with TDP25 and LC3C, thus promoting TDP25 degradation. Taken together, these findings show that SC75741 has beneficial neuroprotective effects in ALS. Our study elucidates that dual-targeted inhibition of c-Abl and NF-κB may be a potential treatment for TDP43 proteinopathies and ALS.
    Keywords:  ALS; SC75741; TDP25; TDP43; TFEB; autophagy; c-Abl
    DOI:  https://doi.org/10.3389/fphar.2021.741219
  18. Front Plant Sci. 2021 ;12 760407
      Autophagy is a genetically regulated, eukaryotic cellular degradation system that sequestrates cytoplasmic materials in specialised vesicles, termed autophagosomes, for delivery and breakdown in the lysosome or vacuole. In plants, autophagy plays essential roles in development (e.g., senescence) and responses to abiotic (e.g., nutrient starvation, drought and oxidative stress) and biotic stresses (e.g., hypersensitive response). Initially, autophagy was considered a non-selective bulk degradation mechanism that provides energy and building blocks for homeostatic balance during stress. Recent studies, however, reveal that autophagy may be more subtle and selectively target ubiquitylated protein aggregates, protein complexes and even organelles for degradation to regulate vital cellular processes even during favourable conditions. The selective nature of autophagy lends itself to potential manipulation and exploitation as part of designer protein turnover machinery for the development of stress-tolerant and disease-resistant crops, crops with increased yield potential and agricultural efficiency and reduced post-harvest losses. Here, we discuss our current understanding of autophagy and speculate its potential manipulation for improved agricultural performance.
    Keywords:  abiotic stress; autophagy; crop improvement; pathogen resistance; programmed cell death; senescence; stress response
    DOI:  https://doi.org/10.3389/fpls.2021.760407
  19. Nature. 2021 Nov 18.
      Nutrients are emerging regulators of adaptive immunity1. Selective nutrients interplay with immunological signals to activate mechanistic target of rapamycin complex 1 (mTORC1), a key driver of cell metabolism2-4, but how these environmental signals are integrated for immune regulation remains unclear. Here we use genome-wide CRISPR screening combined with protein-protein interaction networks to identify regulatory modules that mediate immune receptor- and nutrient-dependent signalling to mTORC1 in mouse regulatory T (Treg) cells. SEC31A is identified to promote mTORC1 activation by interacting with the GATOR2 component SEC13 to protect it from SKP1-dependent proteasomal degradation. Accordingly, loss of SEC31A impairs T cell priming and Treg suppressive function in mice. In addition, the SWI/SNF complex restricts expression of the amino acid sensor CASTOR1, thereby enhancing mTORC1 activation. Moreover, we reveal that the CCDC101-associated SAGA complex is a potent inhibitor of mTORC1, which limits the expression of glucose and amino acid transporters and maintains T cell quiescence in vivo. Specific deletion of Ccdc101 in mouse Treg cells results in uncontrolled inflammation but improved antitumour immunity. Collectively, our results establish epigenetic and post-translational mechanisms that underpin how nutrient transporters, sensors and transducers interplay with immune signals for three-tiered regulation of mTORC1 activity and identify their pivotal roles in licensing T cell immunity and immune tolerance.
    DOI:  https://doi.org/10.1038/s41586-021-04109-7
  20. Aging Cell. 2021 Nov 19. e13520
      Age-related memory impairment (AMI) occurs in many species, including humans. The underlying mechanisms are not fully understood. In wild-type Drosophila (w1118 ), AMI appears in the form of a decrease in learning (3-min memory) from middle age (30 days after eclosion [DAE]). We performed in vivo, DNA microarray, and behavioral screen studies to identify genes controlling both lifespan and AMI and selected mitochondrial Acon1 (mAcon1). mAcon1 expression in the head of w1118 decreased with age. Neuronal overexpression of mAcon1 extended its lifespan and improved AMI. Neuronal or mushroom body expression of mAcon1 regulated the learning of young (10 DAE) and middle-aged flies. Interestingly, acetyl-CoA and citrate levels increased in the heads of middle-aged and neuronal mAcon1 knockdown flies. Acetyl-CoA, as a cellular energy sensor, is related to autophagy. Autophagy activity and efficacy determined by the positive and negative changes in the expression levels of Atg8a-II and p62 were proportional to the expression level of mAcon1. Levels of the presynaptic active zone scaffold protein Bruchpilot were inversely proportional to neuronal mAcon1 levels in the whole brain. Furthermore, mAcon1 overexpression in Kenyon cells induced mitophagy labeled with mt-Keima and improved learning ability. Both processes were blocked by pink1 knockdown. Taken together, our results imply that the regulation of learning and AMI by mAcon1 occurs via autophagy/mitophagy-mediated neural plasticity.
    Keywords:  aconitase; age-related memory disorders; autophagy; mitochondria; mitophagy; neural plasticity
    DOI:  https://doi.org/10.1111/acel.13520
  21. Autophagy. 2021 Nov 15. 1-2
      Macroautophagy/autophagy is a conserved mechanism responsible for the degradation of unnecessary or dysfunctional components and recycling of the nutrients they contain in order to promote cellular or organismal longevity. In plants photosynthesis is massively impaired under extended darkness stress and the transition to heterotrophic metabolism results in carbon and nitrogen starvation which induces metabolic and autophagic shifts to recycle nutrients for plant survival. The majority of research concerning dark-induced senescence focuses on single genes or pathways, and the global characterization of primary and lipid metabolites and autophagy remains limited. To address these aspects we recently developed a time-resolved genome-wide association-based approach to analyze these shifts following 0 d, 3 d and 6 d of darkness. Six patterns of metabolic shifts and 215 associations with enzymes, transcriptional regulators and autophagy genes (such as AT2G31260/ATG9, AT4G16520/ATG8F, AT5G45900/ATG7 and AT2G05630/ATG8D) were identified. Furthermore detailed characterization of candidate genes further demonstrated that the metabolic and autophagic shifts in response to dark-induced senescence is under tightly coordinated genetic regulation.
    Keywords:  Autophagy; dark-induced senescence; mGWAS; metabolic shift; plants
    DOI:  https://doi.org/10.1080/15548627.2021.2003041
  22. Neuron. 2021 Nov 09. pii: S0896-6273(21)00862-X. [Epub ahead of print]
      Neurodegenerative disorders are characterized by a collapse in proteostasis, as shown by the accumulation of insoluble protein aggregates in the brain. Proteostasis involves a balance of protein synthesis, folding, trafficking, and degradation, but how aggregates perturb these pathways is unknown. Using Parkinson's disease (PD) patient midbrain cultures, we find that aggregated α-synuclein induces endoplasmic reticulum (ER) fragmentation and compromises ER protein folding capacity, leading to misfolding and aggregation of immature lysosomal β-glucocerebrosidase. Despite this, PD neurons fail to initiate the unfolded protein response, indicating perturbations in sensing or transducing protein misfolding signals in the ER. Small molecule enhancement of ER proteostasis machinery promotes β-glucocerebrosidase solubility, while simultaneous enhancement of trafficking improves ER morphology, lysosomal function, and reduces α-synuclein. Our studies suggest that aggregated α-synuclein perturbs the ability of neurons to respond to misfolded proteins in the ER, and that synergistic enhancement of multiple proteostasis branches may provide therapeutic benefit in PD.
    Keywords:  ER stress; Parkinson's disease; alpha-synuclein; beta-glucocerebrosidase; iPSC-derived midbrain dopaminergic neurons; lysosomal dysfunction; protein aggregation
    DOI:  https://doi.org/10.1016/j.neuron.2021.10.032
  23. Mol Ther Oncolytics. 2021 Dec 17. 23 311-329
      Drug resistance has become one of the largest challenges for cancer chemotherapies. Under certain conditions, cancer cells hijack autophagy to cope with therapeutic stress, which largely undermines the chemo-therapeutic efficacy. Currently, biomarkers indicative of autophagy-derived drug resistance remain largely inclusive. Here, we report a novel role of lipid rafts/cholesterol-enriched membrane micro-domains (CEMMs) in autophagosome biogenesis and doxorubicin resistance in breast tumors. We showed that CEMMs are required for the interaction of VAMP3 with syntaxin 6 (STX6, a cholesterol-binding SNARE protein). Upon disruption of CEMM, VAMP3 is released from STX6, resulting in the trafficking of ATG16L1-containing vesicles to recycling endosomes and subsequent autophagosome biogenesis. Furthermore, we found that CEMM marker CAV1 is decreased in breast cancer patients and that the CEMM deficiency-induced autophagy is related to doxorubicin resistance, which is overcome by autophagy inhibition. Taken together, we propose a novel model whereby CEMMs in recycling endosomes support the VAMP3 and STX6 interaction and function as barriers to limit the activity of VAMP3 in autophagic vesicle fusion, thus CEMM deficiency promotes autophagosome biogenesis and doxorubicin resistance in breast tumors.
    Keywords:  CAV1; VAMP3; autophagy; breast cancer; cholesterol-enriched membrane micro-domains; doxorubicin resistance
    DOI:  https://doi.org/10.1016/j.omto.2021.10.005
  24. Biochem Pharmacol. 2021 Nov 12. pii: S0006-2952(21)00453-6. [Epub ahead of print] 114837
      Rupture and permeabilization of endocytic vesicles can be triggered by various causes, such as pathogenic invasions, amyloid proteins, and silica crystals leading to cell death and degeneration. A cellular quality control process, called lysophagy was recently described to target damaged lysosomes for autophagic sequestration within isolation membranes in order to protect the cell from the consequences of lysosomal leakage. This protective process, however, might interfere with treatment conditions, such as photodynamic therapy (PDT) and the intracellular drug delivery method photochemical internalization (PCI). PCI-induced permeabilization of endosomes and lysosomes is purposely triggered to release drugs that are sequestered in these organelles into the cytosol in order to synergistically kill cancer cells. Here, we show that photochemical treatment with the PCI-photosensitizer TPCS2a/fimaporfin results in both induction of autophagy and inhibition of the autophagic flux. The autophagic response is accompanied by recruitment of ubiquitin (Ubq), p62, and microtubule-associated protein 1A/1B-light chain 3 (LC3) to damaged vesicles, marked by Galectin 3 (Gal3). Furthermore, ultrastructural analysis revealed a homogenously thick p62-positive layer surrounding these permeabilized vesicles. Although p62 seems to be important during the selective autophagic sequestration, we show that its presence is not essential for the effective removal of damaged vesicles or the recovery of the lysosomal content. An active autophagic response and the presence of p62, however, is important for cancer cells to survive low-dose TPCS2a-PDT. Thus, targeting both p62 and autophagy together and independently, in a light-controlled/PCI based delivery of cancer therapeutics could increase the effectiveness of the treatment regime.
    Keywords:  FIP200; Photosensitizer; TPCS(2a); cell survival; endo-lysosomal damage; p62
    DOI:  https://doi.org/10.1016/j.bcp.2021.114837
  25. Cell Rep. 2021 Nov 10. pii: S2211-1247(21)01535-7. [Epub ahead of print] 110049
      Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.
    Keywords:  Beclin 1; DFCP1; DMV; PI3P; autophagy; class III PI3K; coronavirus; daclatasvir; hepatitis C virus; replication organelle
    DOI:  https://doi.org/10.1016/j.celrep.2021.110049
  26. J Clin Invest. 2021 Nov 15. pii: e144871. [Epub ahead of print]131(22):
      Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.
    Keywords:  Angiogenesis; Breast cancer; Cancer; Metabolism
    DOI:  https://doi.org/10.1172/JCI144871
  27. Elife. 2021 11 17. pii: e71575. [Epub ahead of print]10
      De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.
    Keywords:  BDNF; GIT1; GluN3A; NMDA receptor; cell biology; mTOR; memory; mouse; protein synthesis; rat; synapse
    DOI:  https://doi.org/10.7554/eLife.71575
  28. Biochem Soc Trans. 2021 Nov 16. pii: BST20210811. [Epub ahead of print]
      Autophagy, the pathways that degrade cytoplasmic constituents in lysosomes, contribute to most biological processes from aging and neurodegeneration to pathogen restriction and immunity. In recent years, it was realized that the autophagy machinery serves additional functions, primarily in endo- and exocytosis. In this review, I summarize recent advances in our understanding on how these non-canonical functions differ from canonical macroautophagy, and contribute to immune activation and viral replication. Understanding these pathways will allow us to harness them for the treatment of human diseases, as well as appreciate how cells use modules of membrane remodeling and trafficking for multiple biological functions.
    Keywords:  Epstein Barr virus; T-cells; endocytosis; exocytosis; major histocompatibility complex; viral particle release
    DOI:  https://doi.org/10.1042/BST20210811
  29. Immune Netw. 2021 Oct;21(5): e37
      Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.
    Keywords:  Autophagy; Beclin-1; Hepatitis B virus; Liver neoplasms; TNF receptor-associated factor 6
    DOI:  https://doi.org/10.4110/in.2021.21.e37
  30. Cell Rep. 2021 Nov 16. pii: S2211-1247(21)01410-8. [Epub ahead of print]37(7): 109937
      Acetyl ligation to the amino acids in a protein is an important posttranslational modification. However, in contrast to lysine acetylation, N-terminal acetylation is elusive in terms of its cellular functions. Here, we identify Nat3 as an N-terminal acetyltransferase essential for autophagy, a catabolic pathway for bulk transport and degradation of cytoplasmic components. We identify the actin cytoskeleton constituent Act1 and dynamin-like GTPase Vps1 (vacuolar protein sorting 1) as substrates for Nat3-mediated N-terminal acetylation of the first methionine. Acetylated Act1 forms actin filaments and therefore promotes the transport of Atg9 vesicles for autophagosome formation; acetylated Vps1 recruits and facilitates bundling of the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complex for autophagosome fusion with vacuoles. Abolishment of the N-terminal acetylation of Act1 and Vps1 is associated with blockage of upstream and downstream steps of the autophagy process. Therefore, our work shows that protein N-terminal acetylation plays a critical role in controlling autophagy by fine-tuning multiple steps in the process.
    DOI:  https://doi.org/10.1016/j.celrep.2021.109937
  31. J Cell Physiol. 2021 Nov 17.
      Intervertebral disc degeneration (IDD) is a leading contributor to low back pain. The intervertebral disc (IVD) is composed of three tissue types: the central gelatinous nucleus pulposus (NP) tissue, the surrounding annulus fibrosus (AF) tissue, and the inferior and superior cartilage endplates. The IVD microenvironment is hypoxic, acidic, hyperosmotic, and low in nutrients because it is mostly avascular. The cellular processes that underlie IDD initiation and progression are still poorly understood. Specifically, a lack of understanding regarding NP cell metabolism and physiology hinders the development of effective therapeutics to treat IDD patients. Autophagy is a vital intracellular degradation process that removes damaged organelles, misfolded proteins, and intracellular pathogens and recycles the degraded components for cellular energy and function. NP cells have adapted to survive within their harsh tissue microenvironment using processes that are largely unknown, and we postulate autophagy is one of these undiscovered mechanisms. In this review, we describe unique features of the IVD tissue, review how physiological stressors impact autophagy in NP cells in vitro, survey the current understanding of autophagy regulation in the IVD, and assess the relationship between autophagy and IDD. Published studies confirm autophagy markers are present in IVD tissue, and IVD cells can regulate autophagy in response to cellular stressors in vitro. However, data are still lacking to determine the exact mechanisms regulating autophagy in IVD cells. More in-depth research is needed to establish whether autophagy is necessary to maintain IVD cell health and validate autophagy as a relevant therapeutic target for treating IDD.
    Keywords:  Intervertebral disc degeneration; autophagy; hypoxia; nucleus pulposus; nutrient deficiency
    DOI:  https://doi.org/10.1002/jcp.30631
  32. Cell Death Discov. 2021 Nov 15. 7(1): 356
      Alzheimer's disease (AD) is characterized by accumulation of senile amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles causing progressive loss of synapse and neuronal death. Out of the various neuron death modalities, autophagy and apoptosis are reported to be the major death paradigms in AD. However, how these two processes lead to neuronal loss is still inconspicuous. Here we report that under Aβ toxicity, aberrant autophagy is induced with inefficient autophagic flux in neurons. Simultaneous activation of both autophagy and apoptosis are seen in primary cortical neurons as well as in transgenic mice brains. We found that induction of autophagy by rapamycin is detrimental for neurons; whereas downregulation of Beclin1, an important autophagy inducing protein, provides significant protection in Aβ treated neuronal cells by blocking cytochrome-c release from the mitochondria. We further report that downregulation of Puma, a BH3-only pro-apoptotic protein, inhibits the induction of aberrant autophagy and also ameliorates the autophagy flux under the influence of Aβ. Notably, stereotactic administration of shRNAs against Puma and Beclin1 in adult Aβ-infused rat brains inhibits both apoptotic and autophagic pathways. The regulation of both of the death processes is brought about by the direct interaction between Puma and Beclin1 upon Aβ treatment. We conclude that both Beclin1 and Puma play essential roles in the neuronal death caused by the induction of aberrant autophagy in AD and targeting their interaction could be vital to understand the crosstalk of autophagy and apoptosis as well as to develop a potential therapeutic strategy in AD.
    DOI:  https://doi.org/10.1038/s41420-021-00748-x
  33. FEBS J. 2021 Nov 16.
      Communication between organelles is an essential process that helps maintain cellular homeostasis and organelle contact sites have emerged recently as crucial mediators of this communication. The emergence of a class of molecular bridges that span the inter-organelle gaps has now been shown to direct the flow of lipid traffic from one lipid bilayer to another. One of the keys components of these molecular bridges is the presence of an N-terminal Chorein/VPS13 domain. This is an evolutionarily conserved domain present in multiple proteins within the endocytic and autophagy trafficking pathways. Herein, we discuss the current state-of-the-art of this class of proteins, focusing on the role of these lipid transporters in the autophagy and endocytic pathways. We discuss the recent biochemical and structural advances that have highlighted the essential role Chorein-N domain containing ATG2 proteins play in driving the formation of the autophagosome and how lipids are transported from the endoplasmic reticulum to the growing phagophore. We also consider the VPS13 proteins, their role in organelle contacts and the endocytic pathway and highlight how disease-causing mutations disrupt these contact sites. Finally, we open the door to discuss other Chorein_N domain containing proteins, for instance UHRF1BP1/1L, their role in disease and look towards prokaryote examples of Chorein_N-like domains. Taken together, recent advances have highlighted an exciting opportunity to delve deeper into inter-organelle communication and understand how lipids are transported between membrane bi-layers and how this process is disrupted in multiple diseases.
    Keywords:  ATG2; Autophagy; Chorein; Lipid transfer; UHRF1BP1; VPS13; endosome; organelle contacts
    DOI:  https://doi.org/10.1111/febs.16280
  34. In Vitro Cell Dev Biol Anim. 2021 Nov 15.
      As the active form of vitamin D3, 1α,25-(OH)2-D3 promotes receptor activator for nuclear factor-κB ligand (RANKL)-induced autophagy in osteoclast precursors (OCPs). However, the relationship between 1α,25-(OH)2-D3 and RANKL signaling is still unknown. This study aimed to explore whether 1α,25-(OH)2-D3 regulates OCP autophagy and osteoclastogenesis through RANKL signaling. Our results showed that 1α,25-(OH)2-D3 directly decreased OCP autophagy while significantly enhancing the ability of RANKL to promote OCP autophagy. Moreover, 1α,25-(OH)2-D3 not only promoted the expression of key signaling proteins in OCPs induced by RANKL but also enhanced the coimmunoprecipitation levels of RANK and TRAF6. Notably, 1α,25-(OH)2-D3 significantly enhanced the autophagic activity and osteoclast differentiation of RANK-positive OCPs but did not affect the autophagic activity or osteoclast differentiation of RANK-negative OCPs. More importantly, 1α,25-(OH)2-D3 had no effect on autophagy or osteoclastogenesis in TRAF6-silenced OCPs. Overall, 1α,25-(OH)2-D3 could upregulate RANKL-RANK-TRAF6 signaling in OCPs, thereby promoting OCP autophagy and osteoclastogenesis.
    Keywords:  1α,25-(OH)2-D3; Autophagy; Osteoclast; RANK; RANKL; TRAF6
    DOI:  https://doi.org/10.1007/s11626-021-00632-z
  35. Autophagy. 2021 Nov 15. 1-2
      When I invite authors to submit a punctum to Autophagy, my e-mail includes the following: "Note for international authors: I would like to point out that I personally edit all the puncta for accuracy, but also for English grammar and spelling. I make this point to all international authors as I do not want you to worry extensively about the writing. As a native English speaker, it is easy for me to make small changes of this nature." I do not claim to be an expert in English grammar; however, I am indeed a native English speaker, I read a lot, and I am even fond of using the dictionary (both hard copy and online). Also, I do a lot of editing. Thus, I thought I would share some common mistakes to help reduce the required edits for papers that are submitted to Autophagy.
    Keywords:  Autophagy; English; grammar; spelling; writing
    DOI:  https://doi.org/10.1080/15548627.2021.1999162
  36. Autophagy. 2021 Nov 15. 1-16
      Modulation of the host cell cycle has emerged as a common theme among the pathways regulated by bacterial pathogens, arguably to promote host cell colonization. However, in most cases the exact benefit ensuing from such interference to the infection process remains unclear. Previously, we have shown that Salmonella actively induces G2/M arrest of host cells, and that infection is severely inhibited in cells arrested in G1. In this study, we demonstrate that Salmonella vacuolar replication is inhibited in host cells blocked in G1, whereas the cytosolic replication of the closely related pathogen Shigella is not affected. Mechanistically, we show that cells arrested in G1, but not cells arrested in G2, present dysregulated endolysosomal trafficking, displaying an abnormal accumulation of vesicles positive for late endosomal and lysosomal markers. In addition, the macroautophagic/autophagic flux and degradative lysosomal function are strongly impaired. This endolysosomal trafficking dysregulation results in sustained activation of the SPI-1 type III secretion system and lack of vacuole repair by the autophagy pathway, ultimately compromising the maturation and integrity of the Salmonella-containing vacuole. As such, Salmonella is released in the host cytosol. Collectively, our findings demonstrate that the modulation of the host cell cycle occurring during Salmonella infection is related to a disparity in the permissivity of cells arrested in G1 and G2/M, due to their intrinsic characteristics.
    Keywords:  Autophagy; G1 arrest; Salmonella; Salmonella cytosolic replication; Salmonella-containing vacuole; cell cycle; endolysosomal trafficking; type III secretion system
    DOI:  https://doi.org/10.1080/15548627.2021.1999561
  37. Curr Drug Metab. 2021 Nov 17.
      Antimalarial drugs from different classes have demonstrated anticancer effects in different types of cancer cells, but their complete mode of action in cancer remains unknown. Recently, several studies reported the important role of palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme, as the molecular target of chloroquine and its derivates in cancer. It was also found that PPT1 is overexpressed in different types of cancer, such as breast, colon, etc. Our group has found a synergistic interaction between antimalarial drugs, such as mefloquine, artesunate and chloroquine and antineoplastic drugs in breast cancer cells, but the mechanism of action was not determined. Here, we describe the importance of autophagy and lysosomal inhibitors in tumorigenesis and hypothesize that other antimalarial agents besides chloroquine could also interact with PPT1 and inhibit the mechanistic target of rapamycin (mTOR) signalling, an important pathway in cancer progression. We believe that PPT1 inhibition results in changes in the lysosomal metabolism that result in less accumulation of antineoplastic drugs in lysosomes, which increases the bioavailability of the antineoplastic agents. Taken together, these mechanisms help to explain the synergism of antimalarial and antineoplastic agents in cancer cells.
    Keywords:  Antimalarial drugs; Antineoplastic drugs; Autophagy; Drug combination.; PPT1; mTOR
    DOI:  https://doi.org/10.2174/1389200222666211118114057
  38. Proc Natl Acad Sci U S A. 2021 Nov 23. pii: e2110755118. [Epub ahead of print]118(47):
      Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron spine numbers. By providing evidence that CYLD can modulate mechanistic target of rapamycin (mTOR) signaling and autophagy at the synapse, we propose that synaptic K63-linked ubiquitination processes could be fundamental in understanding the pathomechanisms underlying autism spectrum disorder.
    Keywords:  CYLD; autism spectrum disorder; autophagy; mTOR signaling; synapse
    DOI:  https://doi.org/10.1073/pnas.2110755118
  39. J Biol Chem. 2021 Nov 13. pii: S0021-9258(21)01217-5. [Epub ahead of print] 101410
      Pluripotent stem cells are known to shift their mitochondrial metabolism upon differentiation, but the mechanisms underlying such metabolic rewiring are not fully understood. We hypothesized that during differentiation of human induced pluripotent stem cells (hiPSCs), mitochondria undergo mitophagy and are then replenished by the biogenesis of new mitochondria adapted to the metabolic needs of the differentiated cell. To evaluate mitophagy during iPSC differentiation, we performed live cell imaging of mitochondria and lysosomes in hiPSCs differentiating into vascular endothelial cells using confocal microscopy. We observed a burst of mitophagy during the initial phases of hiPSC differentiation into the endothelial lineage, followed by subsequent mitochondrial biogenesis as assessed by the mitochondrial biogenesis biosensor MitoTimer. Furthermore, hiPSCs undergoing differentiation showed greater mitochondrial oxidation of fatty acids and an increase in ATP levels as assessed by an ATP biosensor. We also found that during mitophagy, the mitochondrial phosphatase PGAM5 is cleaved in hiPSC-derived endothelial progenitor cells and in turn activates β-catenin-mediated transcription of the transcriptional co-activator PGC-1α, which upregulates mitochondrial biogenesis. These data suggest that mitophagy itself initiates the increase in mitochondrial biogenesis and oxidative metabolism through transcriptional changes during endothelial cell differentiation. In summary, these findings reveal a mitophagy-mediated mechanism for metabolic rewiring and maturation of differentiating cells via the β-catenin signaling pathway. We propose that such mitochondrial-nuclear crosstalk during hiPSC differentiation could be leveraged to enhance the metabolic maturation of differentiated cells.
    Keywords:  cell differentiation; induced pluripotent stem cells; mitochondrial metabolism; mitophagy; β-catenin
    DOI:  https://doi.org/10.1016/j.jbc.2021.101410
  40. J Neurooncol. 2021 Nov 19.
      PURPOSE: Autophagy-dependent tumorigenic growth is one of the most commonly reported molecular mechanisms in glioblastoma (GBM) progression. However, the mechanistic correlation between autophagy and GBM is still largely unexplored, especially the roles of autophagy-related genes involved in GBM oncogenesis. In this study, we aimed to explore the genetic alterations that interact with both autophagic activity and GBM tumorigenesis, and to investigate the molecular mechanisms of autophagy involved in GBM cell death and survival.METHOD: For this purpose, we systematically explored the alterations of autophagic molecules at the genome level in human GBM samples through deep RNA sequencing. The effect of genetic and pharmacologic inhibition of ERK on GBM growth in vitro and in vivo was researched. An image-based tracking analysis of LC3 using mCherry-eGFP-LC3 plasmid, and transmission electron microscopy were utilized to monitor autophagic flux. Immunoblot analysis was used to measure the related proteins.
    RESULTS: MAPK ERK expression was identified as one of the most probable autophagy-related transcriptional responses during GBM growth. The genetic and pharmacologic inhibition of ERK in vivo and in vitro led to cell death, demonstrating its critical role for GBM proliferation and survival. To our surprise, autophagic activities were excessively activated and resulted in cytodestructive effects on GBM cells upon ERK inhibitor treatment. Furthermore, based on the observation of downregulation of mTOR signaling, we speculated the ERK inhibitor-induced GBM cells death might depend on mTOR-mediated pathway, leading to autophagy dysregulation. Accordingly, the in vivo and in vitro experiments revealed that the mTOR inhibitor rapamycin further increased cell mortality and exhibited enhanced antitumor effect on GBM cells when co-treated with the ERK inhibitor.
    CONCLUSION: Our data creatively demonstrated that the autophagy-related regulator ERK maintains autophagic activity during GBM tumorigenesis via mTOR signaling pathway. The pharmacologic inhibition of both mTOR and ERK signaling exhibited synergistic therapeutic effect on GBM growth in vivo and in vitro, which has certain novelty and may provide a potential therapeutic approach for GBM treatment in the future.
    Keywords:  Autophagy; Extracellular signal regulated kinase; Glioblastoma; Mammalian target of rapamycin
    DOI:  https://doi.org/10.1007/s11060-021-03896-3
  41. Elife. 2021 Nov 19. pii: e70905. [Epub ahead of print]10
    Queen Square Genomics
      SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human SARM1 variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common SARM1 intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.
    Keywords:  genetics; genomics; human; neuroscience
    DOI:  https://doi.org/10.7554/eLife.70905
  42. Nat Metab. 2021 Nov;3(11): 1445-1465
      The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
    DOI:  https://doi.org/10.1038/s42255-021-00493-6
  43. Front Neurosci. 2021 ;15 769331
      Mitochondrial dysfunction plays a significant role in the pathogenesis of Parkinson's disease (PD). Consistent with this concept, loss of function mutations in the serine/threonine kinase- PINK1 (PTEN-induced putative kinase-1) causes autosomal recessive early onset PD. While the functional role of f-PINK1 (full-length PINK1) in clearing dysfunctional mitochondria via mitophagy is extensively documented, our understanding of specific physiological roles that the non-mitochondrial pool of PINK1 imparts in neurons is more limited. PINK1 is proteolytically processed in the intermembrane space and matrix of the mitochondria into functional cleaved products (c-PINK1) that are exported to the cytosol. While it is clear that posttranslational processing of PINK1 depends on the mitochondria's oxidative state and structural integrity, the functional roles of c-PINK1 in modulating neuronal functions are poorly understood. Here, we review the diverse roles played by c-PINK1 in modulating various neuronal functions. Specifically, we describe the non-canonical functional roles of PINK1, including but not limited to: governing mitochondrial movement, neuronal development, neuronal survival, and neurogenesis. We have published that c-PINK1 stimulates neuronal plasticity and differentiation via the PINK1-PKA-BDNF signaling cascade. In addition, we provide insight into how mitochondrial membrane potential-dependent processing of PINK1 confers conditional retrograde signaling functions to PINK1. Further studies delineating the role of c-PINK1 in neurons would increase our understanding regarding the role played by PINK1 in PD pathogenesis.
    Keywords:  BDNF (brain derived neurotrophic factor); PKA signaling; Parkinson’s disease; cleaved PINK1; mitochondrial retrograde signaling; neuronal plasticity and neurogenesis
    DOI:  https://doi.org/10.3389/fnins.2021.769331
  44. Mol Cell Endocrinol. 2021 Nov 10. pii: S0303-7207(21)00349-X. [Epub ahead of print] 111505
      Although the follicle-stimulating hormone (FSH) plays a vital role in male reproduction, the molecular relationships among FSH, autophagy, and the secretory function of Sertoli cells remain largely undetermined. In this study, we sought to investigate the effects of FSH on dairy goat Sertoli cell autophagy and the role of autophagy in protein clearance. FSH treatment of primary Sertoli cells was found to enhance the expression level of LC3-II, reduce p62 degradation and the number of lysosomes, and downregulate the levels of LAMP2 protein and lysosomal gene mRNAs. Further analyses revealed that starvation-induced autophagy promotes the translocation of transcription factor EB (TFEB) from the cytoplasm to nucleus and its binding to the promoter region of LAMP2, whereas FSH suppresses the nuclear translocation of TFEB. Moreover, we found that the FSH-mediated inhibition of autophagy extends the biological half-lives of androgen-binding protein (ABP), glial-derived neurotrophic factor (GDNF), and stem cell factor (SCF) and promotes the secretion of these proteins. Collectively, these observations indicate that FSH inhibits autophagy by reducing lysosomal biogenesis, which is associated with the suppression of TFEB nuclear translocation via activation of the PI3K/Akt/mTOR pathway, thereby extending the biological half-lives and enhancing the expression of ABP, GDNF, and SCF in dairy goat Sertoli cells.
    Keywords:  Autophagy; Dairy goat; FSH; Sertoli cell; TFEB
    DOI:  https://doi.org/10.1016/j.mce.2021.111505
  45. Cancer Lett. 2021 Nov 16. pii: S0304-3835(21)00581-4. [Epub ahead of print]
      The monotherapy of mTOR inhibitors (mTORi) in cancer clinical practice has achieved limited success due to the concomitant activation of compensatory pathways, such as Akt signaling and cytoprotective autophagy. Thus, the combination of mTORi and the inhibitors of these pro-survival pathways has been considered a promising therapeutic strategy. Herein, we report the synergistic effects of a natural anti-cancer agent Jolkinolide B (JB) and mTORi (temsirolimus, rapamycin, and everolimus) for the effective treatment of bladder cancer. A mechanistic study revealed that JB induced a dual inhibition of Akt feedback activation and cytoprotective autophagy, potentiating the anti-proliferative efficacy of mTORi in both PTEN-deficient and cisplatin-resistant bladder cancer cells. Meanwhile, mTORi augmented the pro-apoptotic and pro-paraptotic effects of JB by reinforcing JB-activated endoplasmic reticulum stress and MAPK pathways. These synergistic mechanisms are related to cellular reactive oxygen species accumulation. Our study suggests that dual inhibition of Akt feedback activation and cytoprotective autophagy is an effective strategy in mTORi-based therapy, and JB + mTORi combination associated with multiple anti-cancer mechanisms and good tolerance in mouse models may serve as a promising treatment for bladder cancer.
    Keywords:  Apoptosis; Drug resistance; Natural diterpenoid; Paraptosis; Reactive oxygen species
    DOI:  https://doi.org/10.1016/j.canlet.2021.11.014
  46. Protein Cell. 2021 Nov 20.
      In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains. CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology. Importantly, PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival. Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.
    Keywords:  Parkinson’s disease; mitochondria; neurodegeneration; neurogenesis; non-human primates
    DOI:  https://doi.org/10.1007/s13238-021-00888-x
  47. Biochem Pharmacol. 2021 Nov 11. pii: S0006-2952(21)00455-X. [Epub ahead of print] 114839
      Autophagy is being increasingly recognized as an important regulator of intestinal ischemia-reperfusion(I/R)injury, but its exact role is still debated. Emerging evidence suggests that miR-146a-5p is involved in the initiation and development of I/R injury, but its role in intestinal I/R injury remains unclear. The present study generated an intestinal I/R mouse model and an oxygen glucose deprivation/reoxygenation (OGD/R) Caco-2 cell model and found that autophagy was increased and contributed to the intestinal injury and cell death induced by I/R and OGD/R. In addition, in both I/R and OGD/R models, the miR-146a-5p expression level was decreased and accompanied by an increase in TXNIP expression. By transfecting cells with an miR-146a-5p inhibitor or mimic, we observed that miR-146a-5p inhibits autophagy during OGD/R by targeting TXNIP; this was confirmed by the dual luciferase reporter gene assay. Additionally, through overexpression and knockdown cell lines, we established that TXNIP regulates autophagy during intestinal I/R via the PRKAA/mTOR pathway. The interaction between TXNIP and p-PRKAA was verified by immunofluorescence co-localization and immunoprecipitation assays. Moreover, we confirmed that TXNIP is indispensable for miR-146a-5p-mediated cell protection. Finally, we observed that miR-146a-5p overexpression inhibits autophagy and attenuates intestinal I/R injury via the PRKAA/mTOR pathway by targeting TXNIP in vivo. In conclusion, this study highlights the role of miR-146a-5p in regulating autophagy by targeting TXNIP, suggesting that miR-146a-5p may be a novel drug target for intestinal I/R therapy.
    Keywords:  Autophagy; Intestinal ischemia-reperfusion; PRKAA; TXNIP; mTOR; miR-146a-5p
    DOI:  https://doi.org/10.1016/j.bcp.2021.114839
  48. Cell Mol Life Sci. 2021 Nov 15.
      Secretion and quality control of large extracellular matrix proteins remain poorly understood and debated, particularly transport intermediates delivering folded proteins from the ER to Golgi and misfolded ones to lysosomes. Discrepancies between different studies are related to utilization of exogenous cargo, off-target effects of experimental conditions and cell manipulation, and identification of transport intermediates without tracing their origin and destination. To address these issues, here we imaged secretory and degradative trafficking of type I procollagen in live MC3T3 osteoblasts by replacing a region encoding N-propeptide in endogenous Col1a2 gDNA with GFP cDNA. We selected clones that produced the resulting fluorescent procollagen yet had normal expression of key osteoblast and ER/cell stress genes, normal procollagen folding, and normal deposition and mineralization of extracellular matrix. Live-cell imaging of these clones revealed ARF1-dependent transport intermediates, which had no COPII coat and delivered procollagen from ER exit sites (ERESs) to Golgi without stopping at ER-Golgi intermediate compartment (ERGIC). It also confirmed ERES microautophagy, i.e., lysosomes engulfing ERESs containing misfolded procollagen. Beyond validating these trafficking models for endogenous procollagen, we uncovered a probable cause of noncanonical cell stress response to procollagen misfolding. Recognized and retained only at ERESs, misfolded procollagen does not directly activate the canonical UPR, yet it disrupts the ER lumen by blocking normal secretory export from the ER.
    Keywords:  Autophagy; Collagen; Live-cell imaging; Quality control; Trafficking
    DOI:  https://doi.org/10.1007/s00018-021-04017-z
  49. Aging Cell. 2021 Nov 14. e13514
      Adiponectin (APN) deficiency has also been associated with Alzheimer-like pathologies. Recent studies have illuminated the importance of APN signaling in reducing Aβ accumulation, and the Aβ elimination mechanism remains rudimentary. Therefore, we aimed to elucidate the APN role in reducing Aβ accumulation and its associated abnormalities by targeting autophagy and lysosomal protein changes. To assess, we performed a combined pharmacological and genetic approach while using preclinical models and human samples. Our results demonstrated that the APN level significantly diminished in the plasma of patients with dementia and 5xFAD mice (6 months old), which positively correlated with Mini-Mental State Examination (MMSE), and negatively correlated with Clinical Dementia Rating (CDR), respectively. APN deficiency accelerated cognitive impairment, Aβ deposition, and neuroinflammation in 5xFAD mice (5xFAD*APN KO), which was significantly rescued by AdipoRon (AR) treatment. Furthermore, AR treatment also markedly reduced Aβ deposition and attenuated neuroinflammation in APP/PS1 mice without altering APP expression and processing. Interestingly, AR treatment triggered autophagy by mediating AMPK-mTOR pathway signaling. Most importantly, APN deficiency dysregulated lysosomal enzymes level, which was recovered by AR administration. We further validated these changes by proteomic analysis. These findings reveal that APN is the negative regulator of Aβ deposition and its associated pathophysiologies. To eliminate Aβ both extra- and intracellular deposition, APN contributes via the autophagic/lysosomal pathway. It presents a therapeutic avenue for AD therapy by targeting autophagic and lysosomal signaling.
    Keywords:  adiponectin; autophagy-lysosomal pathway; cognitive impairments; dementia; neuroinflammation
    DOI:  https://doi.org/10.1111/acel.13514
  50. Free Radic Biol Med. 2021 Nov 11. pii: S0891-5849(21)00795-4. [Epub ahead of print]
      Hepatocyte necroptosis is a core pathogenetic event during alcoholic liver disease. This study was aimed to explore the potential of tetramethylpyrazine (TMP), an active hepatoprotective ingredient extracted from Ligusticum Wallichii Franch, in limiting alcohol-triggered hepatocyte necroptosis and further specify the molecular mechanism. Results revealed that TMP reduced activation of receptor-interacting protein kinase 1 (RIPK1)/RIPK3 necrosome in ethanol-exposed hepatocytes and phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which thereby diminished necroptosis and leakage of damage-associated molecular patterns. Suppression on mitochondrial translocation of p-MLKL by TMP contributed to recovery of mitochondrial function in ethanol-damaged hepatocytes. TMP also disrupted necroptotic signal loop by interrupting mitochondrial reactive oxygen species (ROS)-dependent positive feedback between p-MLKL and RIPK1/RIPK3 necrosome. Further, TMP promoted clearance of impaired mitochondria in ethanol-incubated hepatocytes via restoring PINK1/parkin-mediated mitophagy. Ubiquinol-cytochrome c reductase core protein 2 (UQCRC2) was downregulated in ethanol-exposed hepatocytes, which was restored after TMP treatment. In vitro UQCRC2 knockdown lowered the capacities of TMP in reducing mitochondrial ROS accumulation, relieving mitochondria damage, and enhancing PINK1/parkin-mediated mitophagy in ethanol-exposed hepatocytes. Analogously, systematic UQCRC2 knockdown interrupted the actions of TMP to trigger autophagic signal, repress necroptotic signal, and protect against alcoholic liver injury, inflammation, and ROS overproduction. In conclusion, this work concluded that TMP rescued UQCRC2 expression in ethanol-challenged hepatocytes, which contributed to necroptosis inhibition by facilitating PINK1/parkin-mediated mitophagy. These findings uncovered a potential molecular pharmacological mechanism underlying the hepatoprotective action of TMP and suggested TMP as a promising therapeutic candidate for alcoholic liver disease.
    Keywords:  Alcoholic liver disease; Hepatocyte; Mitophagy; Necroptosis; Tetramethylpyrazine; UQCRC2
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.11.008
  51. Mol Cell. 2021 Nov 15. pii: S1097-2765(21)00949-7. [Epub ahead of print]
      The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.
    Keywords:  ATP13A2; MD simulation; P-type ATPase; P5B-ATPase; PARK9; Parkinson's disease; cryo-EM; lysosome; membrane protein; polyamine
    DOI:  https://doi.org/10.1016/j.molcel.2021.11.001
  52. Infect Immun. 2021 Nov 15. IAI0025021
      Respiratory infections by Gram-negative bacteria are a major cause of global morbidity and mortality. Alveolar macrophages (AMs) play a central role in maintaining lung immune homeostasis and host defense by sensing pathogens via pattern recognition receptors (PRR). The PRR Toll-like receptor (TLR) 4 is a key sensor of lipopolysaccharide (LPS) from Gram-negative bacteria. Pulmonary surfactant is the natural microenvironment of AMs. Surfactant protein A (SP-A), a multifunctional host defense collectin, controls LPS-induced pro-inflammatory immune responses at the organismal and cellular level via distinct mechanisms. We found that SP-A post-transcriptionally restricts LPS-induced TLR4 protein expression in primary AMs from healthy humans, rats, wild-type and SP-A-/- mice by further decreasing cycloheximide-reduced TLR4 protein translation and enhances the co-localization of TLR4 with the late endosome/lysosome. Both effects as well as the SP-A-mediated inhibition of LPS-induced TNFα release are counteracted by pharmacological inhibition of the small GTPase Rab7. SP-A-enhanced Rab7 expression requires β-arrestin2 and, in β-arrestin2-/- AMs and after intratracheal LPS challenge of β-arrestin2-/- mice, SP-A fails to enhance TLR4/lysosome co-localization and degradation of LPS-induced TLR4. In SP-A-/- mice, TLR4 levels are increased after pulmonary LPS challenge. SP-A-induced activation of mechanistic target of rapamycin complex 1 (mTORC1) kinase requires β-arrestin2 and is critically involved in degradation of LPS-induced TLR4. The data suggest that SP-A post-translationally limits LPS-induced TLR4 expression in primary AMs by lysosomal degradation comprising Rab7, β-arrestin2, and mTORC1. This study may indicate a potential role of SP-A-based therapeutic interventions in unrestricted TLR4-driven immune responses to lower respiratory tract infections caused by Gram-negative bacteria.
    DOI:  https://doi.org/10.1128/IAI.00250-21
  53. EMBO J. 2021 Nov 18. e105026
      Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.
    Keywords:   C9orf72 ; C9ALS/FTD; DPR; PKA; protein clearance
    DOI:  https://doi.org/10.15252/embj.2020105026
  54. Mol Cancer Res. 2021 Nov 15. pii: molcanres.MCR-21-0444-A.2021. [Epub ahead of print]
      AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anti-cancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of cancer and COVID-19 patients underscores the need to better characterize the cellular effects of AXL targeting. In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. Implications: Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-21-0444
  55. Mol Carcinog. 2021 Nov 15.
      Autophagy is an evolutionarily conserved cell survival mechanism that degrades damaged proteins and organelles to generate cellular energy during times of stress. Recycling of these cellular components occurs in a series of sequential steps with multiple regulatory points. Mechanistic dysfunction can lead to a variety of human diseases and cancers due to the complexity of autophagy and its ability to regulate vital cellular functions. The role that autophagy plays in both the development and treatment of cancer is highly complex, especially given the fact that most cancer therapies modulate autophagy. This review aims to discuss the balance of autophagy in the development, progression, and treatment of head and neck cancer, as well as highlighting the need for a deeper understanding of what is still unknown about autophagy.
    Keywords:  autophagy; cancer; chemotherapy; radiation
    DOI:  https://doi.org/10.1002/mc.23372
  56. J Stroke Cerebrovasc Dis. 2021 Nov 11. pii: S1052-3057(21)00607-8. [Epub ahead of print]31(1): 106202
      OBJECTIVE: Electroacupuncture (EA) pretreatment has been shown to alleviate cerebral ischemia-reperfusion (I/R) injury; however, the underlying mechanism remains unclear. To investigate the involvement of mTOR signaling in the protective role of EA in I/R-induced brain damage and mitochondrial injury.METHODS: Sprague-Dawley male rats were pretreated with vehicle, EA (at Baihui and Shuigou acupoints), or rapamycin + EA for 30 min daily for 5 consecutive days, followed by the middle cerebral artery occlusion to induce I/R injury. The neurological functions of the rats were assessed using the Longa neurological deficit scores. The rats were sacrificed immediately after neurological function assessment. The brains were obtained for the measurements of cerebral infarct area. The mitochondrial structural alterations were observed under transmission electron microscopy. The mitochondrial membrane potential changes were detected by JC-1 staining. The alterations in autophagy-related protein expression were examined using Western blot analysis.
    RESULTS: Compared with untreated I/R rats, EA-pretreated rats exhibited significantly decreased neurological deficit scores and cerebral infarct volumes. EA pretreatment also reversed I/R-induced mitochondrial structural abnormalities and loss of mitochondrial membrane potential. Furthermore, EA pretreatment downregulated the protein expression of LC3-II, p-ULK1, and FUNDC1 while upregulating the protein expression of p-mTORC1 and LC3-I. Rapamycin effectively blocked the above-mentioned effects of EA.
    CONCLUSION: EA pretreatment at Baihui and Shuigou alleviates cerebral I/R injury and mitochondrial impairment in rats through activating the mTORC1 signaling. The suppression of autophagy-related p-ULK1/FUNDC1 pathway is involved in the neuroprotective effects of EA.
    Keywords:  Cerebral ischemia-reperfusion injury; Electroacupuncture; FUNDC1; Mitophagy; ULK1
    DOI:  https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106202
  57. J Neurol. 2021 Nov 20.
      BACKGROUND: Frontotemporal dementia (FTD) is a neurodegenerative disease, resulting in progressive problems in language and/or behaviour and is often diagnosed before 65 years of age. Ubiquitin positive protein aggregates in the brain are among the key pathologic hallmarks of frontotemporal lobar degeneration (FTLD) postmortem. The TANK-binding kinase 1 gene (TBK1) is on the list of genes that can contribute to the development of FTD as well as the related neurodegenerative disease amyotrophic lateral sclerosis (ALS).METHODS: In this study, using an array of clinical and neuropathological data combined with biochemical and proteomics assays, we analyze the TBK1 splice-mutation (c.1340 + 1G > A) in a Swedish family with a history of FTD and ALS. We also explore the K63 ubiquitination landscape in post-mortem brain tissue and fibroblast cultures.
    RESULTS: The intronic (c.1340 + 1G > A) mutation in TBK1 results in haploinsufficiency and affects the activity of the protein in symptomatic and pre-symptomatic mutation carriers.
    CONCLUSION: Our results suggest that the mutation leads to a significant reduction of TBK1 activity and induce alterations in K63 ubiquitination profile of the cell already in the presymptomatic stages.
    Keywords:  ALS; Autophagy; FTD; FTLD; Frontotemporal dementia; Haploinsufficiency; Neurodegeneration; TBK1; Ubiquitination
    DOI:  https://doi.org/10.1007/s00415-021-10887-x
  58. Proc Natl Acad Sci U S A. 2021 Nov 23. pii: e2100122118. [Epub ahead of print]118(47):
      Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.
    Keywords:  LMP; Lipofuscin; aging; lipid-bisretinoids; necroptosis
    DOI:  https://doi.org/10.1073/pnas.2100122118
  59. J Biochem Mol Toxicol. 2021 Nov 19. e22957
      The hypothalamic paraventricular nucleus (PVN) is a specific center in the brain that regulates gastric mucosal injury following gastric ischemia-reperfusion (GI-R) injury. This study aimed to investigate whether autophagy-lysosome dysfunction in the PVN tissues of GI-R rats is involved in the gastric injury, and the underlying molecular mechanisms. The rat model of GI-R was established by clamping the celiac artery for 30 min and reperfusion for different hours (1, 3, and 6 h). The gastric injury was evaluated by hematoxylin and eosin staining of the stomach and the gastric mucosal index. The autophagy-lysosome dysfunction in the PVN was evaluated by the protein levels of LC3 II and Beclin-1 (markers for autophagosome activity) and the activity of acid phosphatase (a representative lysosomal enzyme). Immunohistochemical staining of ionized calcium-binding adaptor molecule 1 in the PVN was performed to evaluate microglial activation. Reactive oxygen species (ROS) content and phosphorylated γ-aminobutyric acid B receptor (p-GABAB R) expression in the PVN were also examined. The results revealed that, in GI-R rats, the shorter the reperfusion duration, the more severe the gastric mucosal damage. The autophagy-lysosome dysfunction exhibited by GI-R rats further enhanced microglial activation, ROS production, p-GABAB R expression, and gastric injury. In addition, activating microglial cells increased ROS production, p-GABAB R expression, and gastric injury in GI-R rats, while inhibiting microglial activation resulted in the opposite results. Taken together, autophagy-lysosome dysfunction induced by GI-R aggravated the gastric injury by inducing microglia activation.
    Keywords:  autophagy; gastric ischemia-reperfusion; lysosome microglial activation
    DOI:  https://doi.org/10.1002/jbt.22957
  60. Mol Cancer Ther. 2021 Nov 17. pii: molcanther.0224.2021. [Epub ahead of print]
      Hurthle cell carcinomas (HCC) are refractory to radioactive iodine and unresponsive to chemotherapeutic agents, with a fatality rate that is the highest among all types of thyroid cancer after anaplastic thyroid cancer. Our previous study on the genomic landscape of HCCs identified a high incidence of disruptions of mTOR pathway effectors. Here, we report a detailed analysis of mTOR signaling in cell line and patient-derived xenograft (PDX) mouse models of HCCs. We show that mTOR signaling is upregulated and that targeting mTOR signaling using mTOR inhibitors suppresses tumor growth in primary tumors and distant metastasis. Mechanistically, ablation of mTOR signaling impaired the expression of p-S6 and cyclin A2, resulting in the decrease of S phase and blocking of cancer cell proliferation. Strikingly, mTOR inhibitor treatment significantly reduced lung metastatic lesions, with the decreased expression of Snail in xenograft tumors. Our data demonstrates that mTOR pathway blockade represents a novel treatment strategy for HCC.
    DOI:  https://doi.org/10.1158/1535-7163.MCT-21-0224
  61. Neural Regen Res. 2022 Jun;17(6): 1357-1363
      Autophagy has been shown to play an important role in Parkinson's disease. We hypothesized that skin-derived precursor cells exhibit neuroprotective effects in Parkinson's disease through affecting autophagy. In this study, 6-hydroxydopamine-damaged SH-SY5Y cells were pretreated with a culture medium containing skin-derived precursors differentiated into Schwann cells (SKP-SCs). The results showed that the SKP-SC culture medium remarkably enhanced the activity of SH-SY5Y cells damaged by 6-hydroxydopamine, reduced excessive autophagy, increased tyrosine hydroxylase expression, reduced α-synuclein expression, reduced the autophagosome number, and activated the PI3K/AKT/mTOR pathway. Autophagy activator rapamycin inhibited the effects of SKP-SCs, and autophagy inhibitor 3-methyladenine had the opposite effect. These findings confirm that SKP-SCs modulate the PI3K/AKT/mTOR pathway to inhibit autophagy, thereby exhibiting a neuroprotective effect in a cellular model of Parkinson's disease. This study was approved by the Animal Ethics Committee of Laboratory Animal Center of Nantong University (approval No. S20181009-205) on October 9, 2018.
    Keywords:  PI3K/AKT/mTOR pathway; Parkinson's disease; alpha-synuclein; autophagosomes; autophagy; neural regeneration; neuroprotection; skin-derived precursor Schwann cells
    DOI:  https://doi.org/10.4103/1673-5374.327353
  62. Front Immunol. 2021 ;12 763831
      Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.
    Keywords:  HDAC6; NLRP3 inflammasome; autophagy; inflammation; post-translational modification
    DOI:  https://doi.org/10.3389/fimmu.2021.763831
  63. J Agric Food Chem. 2021 Nov 15.
      Rotenone, a component of pesticides, is widely used in agriculture and potentially causes Parkinson's disease (PD). However, the regulatory mechanisms of rotenone-induced PD are unclear. Here, we revealed a novel feedback mechanism of p38-Parkin-ROS regulating rotenone-induced PD. Rotenone treatment led to not only the activation of p38 but also Parkin inactivation and reactive oxygen species (ROS) overproduction in SN4741 cells. Meanwhile, p38 activation regulated Parkin phosphorylation at serine 131 to disrupt Parkin-mediated mitophagy. Notably, both p38 inhibition and Parkin overexpression decreased ROS levels. Additionally, the ROS inhibitor N-acetyl-l-cysteine (NAC) inhibited p38 and activated Parkin-mediated mitophagy. Both p38 inhibition and the ROS inhibitor NAC exerted a protective effect by restoring cell death and mitochondrial function in rotenone-induced PD models. Based on these results, the p38-Parkin-ROS signaling pathway is involved in neurodegeneration. This pathway represents a valuable treatment strategy for rotenone-induced PD, and our study provides basic research evidence for the safe use of rotenone in agriculture.
    Keywords:  Parkin; Parkinson disease; ROS; p38; rotenone
    DOI:  https://doi.org/10.1021/acs.jafc.1c04190
  64. Front Oncol. 2021 ;11 739145
      Chemoresistance remains as a major hindrance in the treatment of hepatocellular carcinoma (HCC). High mobility group box protein 1 (HMGB1) enhances autophagic flux and protects tumor cells from apoptosis, which results in acquired drug resistance. However, the exact mechanisms underlying HMGB1-modulated autophagy in HCC chemoresistance remain to be defined. In the present study, we found that administration of doxorubicin (DOX) significantly promoted HMGB1 expression and induced HMGB1 cytoplasmic translocation in human HCC cell lines BEL7402 and SMMC7721, which enhanced autophagy that contributes to protecting HCC cells from apoptosis and increasing drug resistance. Moreover, we observed HMGB1 translocation and elevation of autophagy in DOX-resistant BEL7402 and SMMC7721 cells. Additionally, inhibition of HMGB1 and autophagy increased the sensitivities of BEL-7402 and SMMC-7721 cells to DOX and re-sensitized their DOX-resistant cells. Subsequently, we confirmed with HMGB1 regulated autophagy by activating the 5' adenosine monophosphate-activated protein kinase (AMPK)/mTOR pathway. In summary, our results indicate that HMGB1 promotes acquired DOX resistance in DOX-treated BEL7402 and SMMC7721 cells by enhancing autophagy through the AMPK/mTOR signaling pathway. These findings provide the proof-of-concept that HMGB1 inhibitors might be an important targeted treatment strategy for HCC.
    Keywords:  AMPK/mTOR pathway; HMGB1; autophagy; doxorubicin; drug resistance; hepatocellular carcinoma cell
    DOI:  https://doi.org/10.3389/fonc.2021.739145
  65. Hepatoma Res. 2021 ;7 72
      Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide. It comprises simple steatosis and non-alcoholic steatohepatitis (NASH), which can further progress to cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD involves genetic, environmental, and endocrine factors, and several molecular mechanisms have been identified. In this review, we discuss the recent findings on the role of autophagy, in particular lipophagy and mitophagy, in hepatic lipid oxidation. We discuss the pre-clinical and clinical evidence suggesting that impairment of autophagy exacerbates NAFLD progression and restoration of autophagy exerts beneficial effects on NAFLD. We discuss how thyroid hormone (TH) simultaneously regulates lipophagy, mitophagy, and mitochondrial biogenesis to increase β-oxidation of fatty acids and reduce steatosis in the liver. Lastly, we discuss the recent clinical progress in using TH or thyromimetics in treating NAFLD/NASH.
    Keywords:  Autophagy; NAFLD; lipid oxidation; mitophagy; thyroid hormone
    DOI:  https://doi.org/10.20517/2394-5079.2021.82
  66. ACS Chem Neurosci. 2021 Nov 17.
      Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in elderly individuals and characterized by impaired cognition and accumulation of β-amyloid (Aβ). Activating autophagy to clear Aβ is a plausible approach for AD treatment. The levels of Aβ and autophagy signaling factors in APP695/PS1-dE9 transgenic (APP/PS1) mice were detected by immuno histological analysis, real-time PCR, and the western blotting assay. The progression of AD was determined by Aβ levels, activated neurons (MAP2+), and microglia (Iba-1+). The learning ability was measured using a Morris water maze. Reactive oxygen species (ROS) production, malondialdehyde (MDA) levels, and mitochondrial superoxide dismutase (SOD) activity were checked to determine oxidative stress. AD mice exhibited impaired autophagy and a decreased level of SIRT5. SIRT5 overexpression promoted autophagy, manifested by elevated Becn1 and ratio of LC3b-II/I, as well as suppressed oxidative stress. The SIRT5-ameliorated neuron damage was correlated with suppressed activation of microglia and astrocytes. Elevated SIRT5 expression decreased the inflammation in AD brains and neurons. Inhibition of autophagy abolished the protective role of SIRT5 in neurons during AD. Our findings suggested that SIRT5 overexpression could ameliorate the progression of AD both in vitro and in vivo through activating autophagy. We presented ectopic expression of SIRT5 as a promising therapeutic approach for AD.
    Keywords:  Alzheimer’s disease; SIRT5; autophagy; oxidative stress
    DOI:  https://doi.org/10.1021/acschemneuro.1c00468
  67. Oncogene. 2021 Nov 19.
      Autophagy is an essential catabolic process that orchestrates cellular homeostasis and plays dual roles in tumor promotion and suppression. However, the mechanism by which autophagy affects the self-renewal of cancer stem cells (CSCs) remains unclear. In this study, we investigated whether autophagy activation contributes to CSC properties of head and neck squamous cell carcinoma (HNSCC). The results showed that the autophagy level and CSC properties of HNSCC cells were elevated in response to several adverse conditions, including treatment with cisplatin, starvation, and hypoxia. Pretreatment with autophagy inhibitors, such as 3-MA and chloroquine, diminished the CSC properties acquired under adverse conditions. In addition, the isolated CSCs were endowed with stronger autophagic activity than non-CSCs, and the CSC properties were dampened when autophagy was inhibited either by 3-MA, chloroquine, or Beclin1 knockdown. Notably, the tumor-initiating activity of CSCs was decreased upon knocking down Beclin1. Further study revealed that FOXO3, a substrate for autophagy, was enriched in the nucleus of cells with lower autophagy levels. Nuclear FOXO3 directly bound to the promoter region of SOX2 and negatively regulated its transcriptional activity. Overexpression of FOXO3 decreased the expression of SOX2 and thereby impaired the CSC phenotype both in vitro and in vivo. Taken together, our findings suggest that the activation of autophagy is essential for the acquisition of CSC properties in adverse conditions and the self-renewal of CSCs. We clarify the role of autophagy in regulating the CSC phenotype and demonstrate that the noncanonical FOXO3/SOX2 axis is the intrinsic regulatory mechanism.
    DOI:  https://doi.org/10.1038/s41388-021-02115-7