bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2021–05–23
34 papers selected by
Viktor Korolchuk, Newcastle University



  1. J Biol Chem. 2021 May 14. pii: S0021-9258(21)00573-1. [Epub ahead of print] 100780
      Macroautophagy (hereafter, autophagy) is a process that directs the degradation of cytoplasmic material in lysosomes. In addition to its homeostatic roles, autophagy undergoes dynamic positive and negative regulation in response to multiple forms of cellular stress, thus enabling the survival of cells. However, the precise mechanisms of autophagy regulation are not fully understood. To identify potential negative regulators of autophagy, we performed a genome-wide CRISPR screen using the quantitative autophagic flux reporter GFP-LC3-RFP. We identified phosphoribosylformylglycinamidine synthase (PFAS), a component of the de novo purine synthesis pathway, as one such negative regulator of autophagy. Autophagy was activated in cells lacking PFAS or phosphoribosyl pyrophosphate amidotransferase (PPAT), another de novo purine synthesis enzyme, or treated with methotrexate when exogenous levels of purines were insufficient. Purine starvation-induced autophagy activation was concomitant with mTORC1 suppression, and was profoundly suppressed in cells deficient for TSC2, which negatively regulates mTORC1 through inhibition of RHEB, suggesting that purines regulate autophagy through the TSC-RHEB-mTORC1 signaling axis. Moreover, depletion of the pyrimidine synthesis enzymes carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) and dihydroorotate dehydrogenase (DHODH) activated autophagy as well, although mTORC1 activity was not altered by pyrimidine shortage. These results suggest a different mechanism of autophagy induction between purine and pyrimidine starvation. These findings provide novel insights into the regulation of autophagy by nucleotides and possibly the role of autophagy in nucleotide metabolism, leading to further developing anticancer strategies involving nucleotide synthesis and autophagy.
    Keywords:  CRISPR/Cas; mammalian target of rapamycin (mTOR); nucleoside/nucleotide biosynthesis; nucleoside/nucleotide metabolism; nucleotide; phosphoribosylformylglycinamidine synthase (PFAS); tuberous sclerosis complex (TSC)
    DOI:  https://doi.org/10.1016/j.jbc.2021.100780
  2. J Cell Sci. 2020 Jan 01. pii: jcs.246306. [Epub ahead of print]
      The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a sub-group of SNXs in selective and non-selective forms of (macro)autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein, SNX4, is needed for efficient LC3 lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and heterodimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveal that SNX4:SNX7 is the autophagy-specific SNX-BAR heterodimer, required for efficient recruitment/retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially co-localises with juxtanuclear ATG9A-positive membranes, with our data linking the SNX4 autophagy defect to the mis-trafficking and/or retention of ATG9A in the Golgi region. Together, our findings show that the SNX4:SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.
    Keywords:  ATG9A; Autophagy; Endosomes; SNX30; SNX4; SNX7; Sorting nexin
    DOI:  https://doi.org/10.1242/jcs.246306
  3. J Cell Sci. 2020 Jan 01. pii: jcs.247817. [Epub ahead of print]
      In Schizosaccharomyces pombe, a general strategy for survival in response to environmental changes is sexual differentiation, which is triggered by TORC1 inactivation. However, mechanisms of TORC1 regulation in fission yeast remain poorly understood. In this study, we found that Pef1, which is an ortholog of mammalian CDK5, regulates the initiation of sexual differentiation through positive regulation of TORC1 activity. Conversely, deletion of pef1 leads to activation of autophagy and subsequent excessive TORC1 reactivation during the early phases of the nitrogen starvation response. This excessive TORC1 reactivation results in the silencing of the Ste11-Mei2 pathway and mating defects. Additionally, we found that pef1 genetically interacts with tsc1/2 in TORC1 regulation, and physically interacts with three types of cyclins, Clg1, Pas1, and Psl1. The double deletion of clg1 and pas1 promotes activation of autophagy and TORC1 during nitrogen starvation, similar to pef1Δ cells. Overall, our work suggests that Pef1-Clg1 and Pef1-Pas1 complexes regulate initiation of sexual differentiation through control of the TSC-TORC1 pathway and autophagy.
    Keywords:  Autophagy; CDK5; Cyclin; Pef1; Sexual differentiation; TORC1
    DOI:  https://doi.org/10.1242/jcs.247817
  4. J Cell Sci. 2020 Jan 01. pii: jcs.246868. [Epub ahead of print]
      In our previous report, we demonstrated that one of the catalytic subunits of the I-κB kinase (IKK) complex, IKKα, performs an NF-κB-independent cytoprotective role in human hepatoma cells under the treatment of the anti-tumor therapeutic reagent arsenite. IKKα triggers its own feedback degradation by activating p53-dependent autophagy and therefore contributes largely to hepatoma cell apoptosis induced by arsenite. Interestingly, IKKα is unable to interact with p53 directly but plays a critical role in mediating p53 phosphorylation (at Ser15) by promoting CHK1 activation and CHK1/p53 complex formation. In the current study, we found that p53 acetylation (at Lys373/382) was also critical for the induction of autophagy and the autophagic degradation of IKKα in the arsenite responses. Furthermore, IKKα was involved in p53 acetylation through interaction with the acetyltransferases for p53, p300 and CBP, inducing CHK1-dependent p300/CBP activation and promoting p300/p53 or CBP/p53 complex formation. Therefore, taken together with the previous report, we conclude that both IKKα- and CHK1-dependent p53 phosphorylation and acetylation contribute to mediating selective autophagy targeting feedback degradation of IKKα in arsenite-induced proapoptotic responses.
    Keywords:  Apoptosis; Autophagy; IKKα; p300/CBP; p53 acetylation
    DOI:  https://doi.org/10.1242/jcs.246868
  5. Autophagy. 2021 May 19. 1-3
      In eukaryotes, ATG4/Atg4 is a critical regulator of macroautophagy/autophagy. The protease activity of Atg4/ATG4, involved in conjugation and deconjugation of Atg8-family proteins, was so far regarded as its sole functional contribution. However, the role of individual ATG4-family proteins during mammalian autophagy had previously not been examined in vivo. During their recent investigation, Nguyen et al. discovered a hitherto unexplored role for mammalian ATG4s during mitophagy - the recruitment of ATG9A-containing vesicles. Their article, highlighted here, discusses the finding, which uses a novel artificial intelligence (AI)-directed analysis technique for focused ion beam-scanning electron microscopy (FIB-SEM) imaging to demonstrate the role of ATG4s in promoting phagophore growth and establishing phagophore-ER contacts.
    Keywords:  ATG9; autophagosome; autophagy; deconjugation; mitophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1917284
  6. J Cell Sci. 2020 Jan 01. pii: jcs.251835. [Epub ahead of print]
      Autophagy is a degradative cellular pathway that targets cytoplasmic contents and organelles for turnover by the lysosome. Various autophagy pathways play key roles in the clearance of viral infections, and many families of viruses have developed unique methods for avoiding degradation. Some positive stranded RNA viruses, such as enteroviruses and flaviviruses, usurp the autophagic pathway to promote their own replication. We previously identified the endoplasmic reticulum-localized protein BPIFB3 as an important negative regulator of non-canonical autophagy that uniquely impacts the replication of enteroviruses and flaviviruses. Here, we find that many components of the canonical autophagy machinery are not required for BPIFB3 depletion induced autophagy and identify the host factors that facilitate its role in the replication of enteroviruses and flaviviruses. Using proximity-dependent biotinylation (BioID) followed by mass spectrometry, we identify ARFGAP1 and TMED9 as two cellular components that interact with BPIFB3 to regulate autophagy and viral replication. Importantly, our data demonstrate that non-canonical autophagy in mammalian cells can be controlled outside of the traditional pathway regulators and define the role of two proteins in BPIFB3 depletion mediated non-canonical autophagy.
    Keywords:  Autophagy; BPI-like proteins; BPIFB3; Enterovirus; Flavivirus
    DOI:  https://doi.org/10.1242/jcs.251835
  7. EMBO J. 2021 May 21. e105990
      Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann-Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4-phosphate (PtdIns4P) countertransport cycle between Golgi-endoplasmic reticulum (ER), as well as lysosome-ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4-kinases-PI4KIIα and PI4KIIIβ-which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease.
    Keywords:  Niemann-Pick Type C; mTORC; membrane contact sites; neurodegeneration; phosphoinositides
    DOI:  https://doi.org/10.15252/embj.2020105990
  8. Development. 2020 Jan 01. pii: dev.181727. [Epub ahead of print]
      In many eukaryotes, the small GTPase Rheb functions as a switch to toggle activity of TOR complex 1 (TORC1) between anabolism and catabolism, thus controlling lifespan, development, and autophagy. Our CRISPR-generated, fluorescently tagged endogenous C. elegans RHEB-1 and DAF-15/Raptor are expressed ubiquitously and localize to lysosomes. Disruption of LET-363/TOR and DAF-15/Raptor are required for development past the third larval stage (L3). We observed that deletion of RHEB-1 similarly conferred L3 arrest. Unexpectedly, robust RNAi-mediated depletion of TORC1 components caused arrest at stages prior to L3. Accordingly, conditional depletion of endogenous DAF-15/Raptor in the soma revealed that TORC1 is required at each stage of the life cycle to progress to the next stage. Reversal of DAF-15 depletion permits arrested animals to recover to continue development. Our results are consistent with TORC1 functioning as a developmental checkpoint that governs at each stage the decision of the animal to progress through development.
    Keywords:  Ral; RalGAP; TSC; Tuberous sclerosis complex; mTOR; mTORC1
    DOI:  https://doi.org/10.1242/dev.181727
  9. J Cell Sci. 2020 Jan 01. pii: jcs.240622. [Epub ahead of print]
      Foot-and-mouth disease virus (FMDV) is a picornavirus that causes contagious acute infection in cloven-hoofed animals. FMDV replication associated viral protein expression induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR), in turn inducing autophagy to restore cellular homeostasis. We observed that inhibition of BiP, a master regulator of ER stress and UPR, decreased FMDV infection confirming their involvement. Further, we show that the FMDV infection induces UPR mainly through PKR-like ER kinase (PERK)-mediated pathway. Knockdown of PERK and chemical inhibition of PERK activation resulted in decreased expression of FMDV proteins along with the reduction of autophagy marker protein LC3B-II. There are conflicting reports on the role of autophagy in FMDV multiplication. Our study systematically demonstrates that during FMDV infection, PERK mediated UPR stimulated an increased level of endogenous LC3B-II and turnover of SQSTM1, thus confirming the activation of functional autophagy. Modulation of UPR and autophagy by pharmacological and genetic approaches resulted in reduced viral progeny, by enhancing antiviral interferon response. Taken together, this study underscores the prospect of exploring the PERK mediated autophagy as an antiviral target.
    Keywords:  Autophagy; Foot-and-mouth disease virus; Interferon; LC3; P-eIF2α; PERK; Unfolded protein response
    DOI:  https://doi.org/10.1242/jcs.240622
  10. J Cell Sci. 2020 Jan 01. pii: jcs.241356. [Epub ahead of print]
      NFE2L2/NRF2 is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, and conversely NRF2 activity is diminished with age and in neurodegenerative as well as metabolic disorders. Though NRF2 activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here we used a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the understudied protein kinase Brain Specific Kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives AMPK signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppressed ribosome-RNA complexes, global protein synthesis, and NRF2 protein levels. Collectively our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis may prove useful for therapeutically targeting NRF2 in human disease.
    Keywords:  AMPK; BRSK1; BRSK2; Functional genomics; Kinase; MTOR; NRF2; Oxidative stress response; Phosphoproteomics
    DOI:  https://doi.org/10.1242/jcs.241356
  11. J Cell Sci. 2020 Jan 01. pii: jcs.239822. [Epub ahead of print]
      Optineurin (OPTN) is a multifunctional protein involved in autophagy, secretion as well as NF-κB and IRF3 signalling and OPTN mutations are associated with several human diseases. Here we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations linked to POAG cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. Using proximity labelling proteomics, we identify the LUBAC complex, CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment leading to altered pro-inflammatory cytokine secretion.
    Keywords:  ATG9A; BioID; Functional proteomics; IFN; LUBAC; Linear ubiquitin; NF-κB; OPTN; TBK1
    DOI:  https://doi.org/10.1242/jcs.239822
  12. J Cell Sci. 2020 Jan 01. pii: jcs.236661. [Epub ahead of print]
      Epithelial cells such as liver-resident hepatocytes rely heavily on the Rab family of small GTPases to perform membrane trafficking events that dictate cell physiology and metabolism. Not surprisingly, disruption of several Rabs can manifest in metabolic diseases or cancer. Rab32 is expressed in many secretory epithelial cells but its role in cellular metabolism is virtually unknown. In this study, we find that Rab32 associates with lysosomes and regulates proliferation and cell size of Hep3B hepatoma and HeLa cells. Specifically, we identify that Rab32 supports mTORC1 signaling under basal and amino acid stimulated conditions. Consistent with inhibited mTORC1, an increase in nuclear TFEB localization and lysosome biogenesis is also observed in Rab32-depleted cells. Finally, we find that Rab32 interacts with mTOR kinase and that loss of Rab32 reduces the association of mTOR and mTORC1 pathway proteins with lysosomes, suggesting that Rab32 regulates lysosomal mTOR trafficking. In summary, these findings suggest that Rab32 functions as a novel regulator of cellular metabolism through supporting mTORC1 signaling.
    Keywords:  Lysosome; MTORC1; S6K; Small Rab GTPase; TFEB
    DOI:  https://doi.org/10.1242/jcs.236661
  13. J Cell Sci. 2020 Jan 01. pii: jcs.252015. [Epub ahead of print]
      Autophagy plays an essential role in the defence against many microbial pathogens as a regulator of both innate and adaptive immunity. Among some pathogens, sophisticated mechanisms have evolved that promote their ability to evade or subvert host autophagy. Here, we describe a novel mechanism of autophagy modulation mediated by the recently discovered Vibrio cholerae cytotoxin, MakA. pH-dependent endocytosis of MakA by host cells resulted in the formation of a cholesterol-rich endolysosomal membrane aggregate in the perinuclear region. Aggregate formation induced the noncanonical autophagy pathway driving unconventional LC3 lipidation on endolysosomal membranes. Subsequent sequestration of the ATG12-ATG5-ATG16L1 E3-like enzyme complex required for LC3 lipidation at the membranous aggregate resulted in an inhibition of both canonical autophagy and autophagy-related processes including the unconventional secretion of IL-1β. These findings identify a novel mechanism of host autophagy modulation and immune modulation employed by V. cholerae during bacterial infection.
    Keywords:  Bacterial toxin; IL-1 beta; MakA; Membrane aggregate; Noncanonical autophagy; Unconventional secretion
    DOI:  https://doi.org/10.1242/jcs.252015
  14. J Cell Sci. 2020 Jan 01. pii: jcs.250241. [Epub ahead of print]
      Defective intracellular trafficking and export of microRNAs have been observed in growth retarded mammalian cells having impaired mitochondrial potential and dynamics. Uncoupling Protein 2 mediated depolarization of mitochondrial membrane also results in progressive sequestration of microRNAs with polysomes and lowered their release via extracellular vesicles. Interestingly, impaired miRNA-trafficking process in growth retarded human cells could be reversed in presence of Genipin an inhibitor of Uncoupling Protein 2. Mitochondrial detethering of endoplasmic reticulum, observed in mitochondria depolarized cells, found to be responsible for defective compartmentalization of translation initiation factor eIF4E to endoplasmic reticulum attached polysomes. It causes retarded translation process accompanied by enhanced retention of miRNAs and target mRNAs with endoplasmic reticulum attached polysomes to restrict extracellular export of miRNAs. Reduced compartment specific activity of mTORC1 complex, the master regulator of protein synthesis, in mitochondria defective or ER- detethered cells, causes reduced phosphorylation of eIF4E-BP1 to prevent eIF-4E targeting to ER attached polysome and microRNA export. These data suggest how mitochondrial membrane potential and dynamics, by affecting mTORC1 activity and compartmentalization, determine sub-cellular localization and export of microRNAs.
    Keywords:  EIF4E and mTORC1; Exosomes; Extracellular vesicles; MiRNA; Mitochondria; P-body; Polysome; Processing bodies
    DOI:  https://doi.org/10.1242/jcs.250241
  15. J Cell Sci. 2020 Jan 01. pii: jcs.248336. [Epub ahead of print]
      Lysosomes are compartments for the degradation of both endocytic and autophagic cargoes. The shape of lysosomes changes with cellular degradative demands, however, there is limited knowledge about the mechanisms or significance that underlies distinct lysosomal morphologies. Here, we found an extensive tubular autolysosomal network in Drosophila abdominal muscle remodeling during metamorphosis. The tubular network transiently appeared and exhibited the capacity to degrade autophagic cargoes. The tubular autolysosomal network was uniquely marked by the autophagic SNARE protein, Syntaxin 17, and its formation depended on both autophagic flux and degradative function, with the exception of the Atg12 and Atg8 ubiquitin-like conjugation systems. Among ATG-deficient mutants, the efficiency of lysosomal tubulation correlated with the phenotypic severity in muscle remodeling. The lumen of the tubular network was continuous and homogeneous across a broad region of the remodeling muscle. Altogether, we revealed that the dynamic expansion of a tubular autolysosomal network synchronizes the abundant degradative activity required for developmentally regulated muscle remodeling.
    Keywords:  Atrophy; Autolysosome; Drosophila; Metamorphosis; Muscle; Syntaxin17
    DOI:  https://doi.org/10.1242/jcs.248336
  16. Nat Commun. 2021 May 21. 12(1): 3014
      Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.
    DOI:  https://doi.org/10.1038/s41467-021-23327-1
  17. J Cell Sci. 2020 Jan 01. pii: jcs.245555. [Epub ahead of print]
      Mechanical stresses including high hydrostatic pressure elicit diverse physiological effects on organisms. Gtr1/Gtr2 and Ego1/Ego3, central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa stimulates TORC1 to promote phosphorylation of Sch9, which depends on the EGO complex (EGOC) and Pib2. Incubation of cells at this pressure aberrantly increased the glutamine and alanine levels in the ego1Δ, gtr1Δ, tor1Δ, and pib2Δ mutants, whereas the polysome profiles were unaffected. Moreover, we found that glutamine levels were reduced by combined deletions of EGO1, GTR1, TOR1, and PIB2 with GLN3. These results suggested that high pressure leads to the intracellular accumulation of amino acids. Subsequently, Pib2 loaded with glutamine stimulates the EGOC-TORC1 complex to inactivate Gln3, downregulating glutamine synthesis. Our findings illustrated the regulatory circuit that maintained the intracellular amino acid homeostasis and suggested the critical roles the EGOC-TORC1 and Pib2-TORC1 complexes played in the growth of yeast under high hydrostatic pressure.
    Keywords:  EGO complex; Glutamine; Gtr1/Gtr2; High hydrostatic pressure; Pib2; Polysome profile; TORC1
    DOI:  https://doi.org/10.1242/jcs.245555
  18. Autophagy. 2021 May 16. 1-11
      S-adenosyl-l-homocysteine (SAH), an amino acid derivative, is a key intermediate metabolite in methionine metabolism, which is normally considered as a harmful by-product and hydrolyzed quickly once formed. AHCY (adenosylhomocysteinase) converts SAH into homocysteine and adenosine. There are two other members in the AHCY family, AHCYL1 (adenosylhomocysteinase like 1) and AHCYL2 (adenosylhomocysteinase like 2). Here we define AHCYL1 function as a SAH sensor to inhibit macroautophagy/autophagy through PIK3C3. The C terminus of AHCYL1 interacts with SAH specifically and the interaction with SAH promotes the binding of the N terminus to the catalytic domain of PIK3C3, resulting in inhibition of PIK3C3. More importantly, this observation was further validated in vivo, indicating that SAH functions as a signaling molecule. Our study uncovers a new axis of SAH-AHCYL1-PIK3C3, which senses the intracellular level of SAH to inhibit autophagy in an MTORC1-independent manner.Abbreviations: ADOX: adenosine dialdehyde; AHCY: adenosylhomocysteinase; AHCYL1: adenosylhomocysteinase like 1; cLEU: cycloleucine; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; SAH: S-adenosyl-l-homocysteine; SAM: S-adenosyl-l-methionine.
    Keywords:  Metabolite; metabolite sensing; methionine cycle; methyltransferase; one-carbon metabolism; signaling molecule
    DOI:  https://doi.org/10.1080/15548627.2021.1924038
  19. J Cell Biol. 2021 Jul 05. pii: e202010179. [Epub ahead of print]220(7):
      Autophagy is a degradative pathway required to maintain homeostasis. Neuronal autophagosomes form constitutively at the axon terminal and mature via lysosomal fusion during dynein-mediated transport to the soma. How the dynein-autophagosome interaction is regulated is unknown. Here, we identify multiple dynein effectors on autophagosomes as they transit along the axons of primary neurons. In the distal axon, JIP1 initiates autophagosomal transport. Autophagosomes in the mid-axon require HAP1 and Huntingtin. We find that HAP1 is a dynein activator, binding the dynein-dynactin complex via canonical and noncanonical interactions. JIP3 is on most axonal autophagosomes, but specifically regulates the transport of mature autolysosomes. Inhibiting autophagosomal transport disrupts maturation, and inhibiting autophagosomal maturation perturbs the association and function of dynein effectors; thus, maturation and transport are tightly linked. These results reveal a novel maturation-based dynein effector handoff on neuronal autophagosomes that is key to motility, cargo degradation, and the maintenance of axonal health.
    DOI:  https://doi.org/10.1083/jcb.202010179
  20. Neurobiol Dis. 2021 May 19. pii: S0969-9961(21)00149-2. [Epub ahead of print] 105400
      Mutations in the ER-network forming GTPase atlastin3 (ATL3) can cause axon degeneration of sensory neurons by not fully understood mechanisms. We here show that the hereditary sensory and autonomous neuropathy (HSAN)-causing ATL3 Y192C or P338R are excluded from distal axons by a barrier at the axon initial segment (AIS). This barrier is selective for mutated ATL3, but not wildtype ATL3 or unrelated ER-membrane proteins. Actin-depolymerization partially restores the transport of ATL3 Y192C into distal axons. The results point to the existence of a selective diffusion barrier in the ER membrane at the AIS, analogous to the AIS-based barriers for plasma membrane and cytosolic proteins. Functionally, the absence of ATL3 at the distal axon reduces axonal autophagy and the ER network deformation in the soma causes a reduction in axonal lysosomes. Both could contribute to axonal degeneration and eventually to HSAN.
    Keywords:  Atlastin; Autophagy; Axonopathy; Endoplasmic reticulum; Hereditary sensory neuropathy
    DOI:  https://doi.org/10.1016/j.nbd.2021.105400
  21. Curr Biol. 2021 May 14. pii: S0960-9822(21)00609-6. [Epub ahead of print]
      Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.
    Keywords:  Drosophila; Vmp1; Vps13D; autophagy; membrane contact; mitochondria
    DOI:  https://doi.org/10.1016/j.cub.2021.04.062
  22. Biochim Biophys Acta Rev Cancer. 2021 May 13. pii: S0304-419X(21)00062-7. [Epub ahead of print]1876(1): 188565
      Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
    Keywords:  Anticancer therapy; Autophagy; Cancer metastasis; EMT; Oncogenic proteins
    DOI:  https://doi.org/10.1016/j.bbcan.2021.188565
  23. EMBO J. 2021 May 21. e107607
      The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.
    Keywords:  GTPase; Rab1; autophagy; guanine nucleotide exchange factor; membrane trafficking
    DOI:  https://doi.org/10.15252/embj.2020107607
  24. Cell Mol Biol Lett. 2021 May 18. 26(1): 18
       BACKGROUND: Mammalian/mechanistic target of rapamycin (mTOR) complexes are essential for cell proliferation, growth, differentiation, and survival. mTORC1 hyperactivation occurs in the tuberous sclerosis complex (TSC). mTORC1 localizes to the surface of lysosomes, where Rheb activates it. However, mTOR was also found on the endoplasmic reticulum (ER) and Golgi apparatus (GA). Recent studies showed that the same inputs regulate ER-to-GA cargo transport and mTORC1 (e.g., the level of amino acids or energy status of the cell). Nonetheless, it remains unknown whether mTOR contributes to the regulation of cargo passage through the secretory pathway.
    METHODS: The retention using selective hooks (RUSH) approach was used to image movement of model cargo (VSVg) between the ER and GA in various cell lines in which mTOR complexes were inhibited. We also investigated VSVg trafficking in TSC patient fibroblasts.
    RESULTS: We found that mTOR inhibition led to the overall enhancement of VSVg transport through the secretory pathway in PC12 cells and primary human fibroblasts. Also, in TSC1-deficient cells, VSVg transport was enhanced.
    CONCLUSIONS: Altogether, these data indicate the involvement of mTOR in the regulation of ER-to-GA cargo transport and suggest that impairments in exocytosis may be an additional cellular process that is disturbed in TSC.
    Keywords:  Endoplasmic reticulum; Golgi apparatus; MTOR; Retention using selective hooks; Tuberous sclerosis complex; VSVg
    DOI:  https://doi.org/10.1186/s11658-021-00262-z
  25. Eur J Pharmacol. 2021 May 15. pii: S0014-2999(21)00337-X. [Epub ahead of print] 174184
      Autophagy is essential to vessel homeostasis and function in the cardiovascular system. Ligustilide (LIG) is one of the main active ingredients extracted from traditional Chinese medicines, such as Ligusticum chuanxiong, Angelica, and other umbelliferous plants, and reported to have cardiovascular protective effects. In this study, we explore the effects and the potential mechanism of ligustilide on the Ang II-induced autophagy in A7r5 cells. Our results showed that ligustilide inhibited the Ang II-induced autophagy in A7r5 cells and down regulated the expression of autophagy-related proteins LC3, ULK1, and Beclin-1. Ligustilide exerted a protective effect on the reduction of the concentrations of reactive oxygen species and Ca2+ and upregulated the nitric oxide concentration in A7r5 cells with Ang II-induced autophagy. Additionally, the analyses of network pharmacological targets and potential signal pathways indicated that the target of ligustilide to regulate autophagy was related to the Akt/mTOR signaling pathway. Furthermore, ligustilide could upregulate the expression of p-Akt and p-mTOR and inhibit the expression of LC3II in A7r5 cells with Ang II-induced autophagy. These findings showed that ligustilide inhibited the autophagic flux in A7r5 cells induced by Ang II via the activation of the Akt/mTOR signaling pathway.
    Keywords:  A7r5 cells; Akt/mTOR signaling pathway; autophagy; ligustilide; network pharmacology analysis
    DOI:  https://doi.org/10.1016/j.ejphar.2021.174184
  26. Biochem Biophys Res Commun. 2021 May 17. pii: S0006-291X(21)00787-7. [Epub ahead of print]561 59-64
      Autophagy is a pathway through which cells execute a plethora of functions, such as macromolecules and organelles quality control, recycling of building blocks and apoptosis. Numerous studies have shown in the past that autophagy is an important mechanism associated with the pathology of various neurodegenerative diseases, whose impairment may lead to several disease-characteristic phenotypes (e.g. misfolded protein and defective organelles accumulation). With this in mind, we aimed to investigate whether alterations in expression of autophagy-related proteins would show before hyperphosphorylation of Tau, a hallmark of Alzheimer's disease (AD). After analyzing 7 different proteins, we observed that, while Pink1 and p62 show an age-related reduction in the Ts65Dn mice respectively in the locus coeruleus and hippocampus, Parkin shows an age-genotype interaction-associated reduction in both brain areas. This suggests potential outcomes in pathways associated with Parkin that could relate to later stages of the disease development.
    Keywords:  Ageing; Autophagy; Neurodegeneration; Parkin
    DOI:  https://doi.org/10.1016/j.bbrc.2021.05.016
  27. FEBS J. 2021 May 16.
      The retinal pigment epithelium (RPE) is a highly specialised monolayer of polarized, pigmented epithelial cells that resides between the vessels of the choriocapillaris and the neural retina. The RPE is essential for the maintenance and survival of overlying light-sensitive photoreceptors, as it participates in the formation of the outer blood retinal barrier, phagocytosis, degradation of photoreceptor outer segment (POS) tips, maintenance of the retinoid cycle, and protection against light and oxidative stress. Autophagy is an evolutionarily conserved "self-eating" process, designed to maintain cellular homeostasis. The daily autophagy demands in the RPE require precise gene regulation for the digestion and recycling of intracellular and POS components in lysosomes in response to light and stress conditions. In this review, we discuss selective autophagy and focus on the recent advances in our understanding of the mechanism of cell clearance in the RPE for visual function. Understanding how this catabolic process is regulated by both transcriptional and post-transcriptional mechanisms in the RPE will promote the recognition of pathological pathways in genetic disease and shed light on potential therapeutic strategies to treat visual impairments in patients with retinal disorders associated with lysosomal dysfunction.
    Keywords:  AMD; Autophagy; Lysosomal storage disease; Retinal Pigment Epithelium; mTOR
    DOI:  https://doi.org/10.1111/febs.16018
  28. Diabetes. 2021 May 20. pii: dbi200014. [Epub ahead of print]
      Insulin-producing pancreatic β-cells are central to glucose homeostasis, and their failure is a principal driver of diabetes development. To preserve optimal health β-cells must withstand both intrinsic and extrinsic stressors, ranging from inflammation to increased peripheral insulin demand, in addition to maintaining insulin biosynthesis and secretory machinery. Autophagy is increasingly being appreciated as a critical β-cell quality control system vital for glycemic control. Here we focus on the underappreciated, yet crucial, roles for selective and organelle-specific forms of autophagy as mediators of β-cell health. We examine the unique molecular players underlying each distinct form of autophagy in β-cells, including selective autophagy of mitochondria, insulin granules, lipid, intracellular amyloid aggregates, endoplasmic reticulum, and peroxisomes. We also describe how defects in selective autophagy pathways contribute to the development of diabetes. As all forms of autophagy are not the same, a refined view of β-cell selective autophagy may inform new approaches to defend against the various insults leading to β-cell failure in diabetes.
    DOI:  https://doi.org/10.2337/dbi20-0014
  29. J Cancer. 2021 ;12(12): 3418-3426
      Metastasis is the major reason for poor prognosis and high fatality in hepatocellular carcinoma (HCC). Due to the "Warburg effect", an acidic tumor microenvironment (TME) exists in solid tumors and plays a critical role in cancer metastasis. Thus, clarifying the mechanism underlying the acidic TME in tumor metastasis could facilitate the development of new therapeutic strategies for HCC. Anoikis resistance is one of the most important events in the early stage of cancer metastasis. Here, we report that acidic extracellular pH (pHe) promotes autophagy of HCC cells via the AMPK/mTOR pathway. We found that autophagy induced by acidity enhances anoikis resistance of HCC cells, which could be reversed by autophagy inhibitors. Furthermore, miR-3663-3p was downregulated by acidity, and overexpression of miR-3663-3p abolished acidic pHe-induced autophagy and anoikis resistance. In summary, acidic pHe enhances anoikis resistance of HCC cells by inducing autophagy, which is regulated by miR-3663-3p. Our findings provide new insight into how the acidic TME is involved in HCC progression.
    Keywords:  acidic tumor microenvironment; anoikis resistance; autophagy; hepatocellular carcinoma; miR-3663-3p
    DOI:  https://doi.org/10.7150/jca.51849
  30. Exp Neurol. 2021 May 13. pii: S0014-4886(21)00165-5. [Epub ahead of print] 113759
      Zinc and ring finger 2 (ZNRF2), an E3 ubiquitin ligase, plays a crucial role in many diseases. However, its role in cerebral ischemia/reperfusion injury (CIRI) still remains unknown. In this study, the function and molecular mechanism of ZNRF2 in CIRI in vivo and vitro was studied. ZNRF2 was found to be dramatically downregulated in CIRI. Overexpression of ZNRF2 could significantly reduce the neurological deficit, brain infarct volume and histopathological damage of cortex in middle cerebral artery occlusion/reperfusion. Concomitantly, overexpression of ZNRF2 increased the primary neuronal viability and decreased the neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation (OGD/R). Mechanistically, overexpression of ZNRF2 inhibited the over-induction of autophagy induced by OGD/R which was abolished by mTORC1 inhibitor rapamycin. It can be concluded that ZNRF2 plays a protective effect in CIRI and the underlying mechanism may be related to the inhibition of mTORC1-mediated autophagy.
    Keywords:  Autophagy; CIRI; OGD/R; Primary neurons; ZNRF2; mTOR
    DOI:  https://doi.org/10.1016/j.expneurol.2021.113759
  31. J Gerontol A Biol Sci Med Sci. 2021 May 18. pii: glab142. [Epub ahead of print]
      Alzheimer's disease (AD) is a chronic neurodegenerative disease, which is characterized by cognitive and synaptic plasticity damage. Rapamycin is an activator of autophagy/mitophagy, which plays an important role in identifying and degrading damaged mitochondria. The aim of this study was to investigate the effect of rapamycin on cognitive and synaptic plasticity defects induced by AD, and further explore if the underlying mechanism was associated with mitophagy. The results show that rapamycin increases parkin-mediated mitophagy and promotes fusion of mitophagosome and lysosome in the APP/PS1 mouse hippocampus. Rapamycin enhances learning and memory viability, synaptic plasticity and the expression of synapse related proteins, and impedes Cytochrome C-mediated apoptosis, decreases oxidative status and recovers mitochondrial function in APP/PS1 mice. The data suggest that rapamycin effectively alleviates AD-like behaviors and synaptic plasticity deficits in APP/PS1 mice, which is associated with enhanced mitophagy. Our findings possibly uncover an important function of mitophagy in eliminating damaged mitochondria to attenuate Alzheimer's disease-associated pathology.
    Keywords:  Apoptosis; Dementia; Mitophagy; Oxidative stress; Rapamycin
    DOI:  https://doi.org/10.1093/gerona/glab142
  32. Dev Cell. 2021 May 17. pii: S1534-5807(21)00362-2. [Epub ahead of print]56(10): 1361-1362
      Niemann-Pick is a lysosomal storage disease caused by loss of the lysosomal cholesterol exporter NPC1 and leads to axon degeneration. Roney et al. report that immature autophagosomes accumulate in axons because cholesterol-laden lysosomes in the soma are not transported to the axon for autophagosome fusion and maturation because they aberrantly sequester non-functioning kinesin-1.
    DOI:  https://doi.org/10.1016/j.devcel.2021.04.024
  33. J Cell Mol Med. 2021 May 18.
      To investigate the therapeutic effects of phellodendrine in ulcerative colitis (UC) through the AMPK/mTOR pathway. Volunteers were recruited to observe the therapeutic effects of Compound Cortex Phellodendri Liquid (Huangbai liniment). The main components of Compound Cortex Phellodendri Liquid were analysed via network pharmacology. The target of phellodendrine was further analysed. Caco-2 cells were cultured, and H2 O2 was used to stimulate in vitro cell model. Expression levels of LC3, AMPK, p-AMPK, mTOR and p-mTOR were detected via Western blotting and through immunofluorescence experiments. The therapeutic effects of phellodendrine were analysed via expression spectrum chip sequencing. The sequencing of intestinal flora further elucidated the therapeutic effects of phellodendrine. Compared with the control group, Compound Cortex Phellodendri Liquid could substantially improve the healing of intestinal mucosa. Network pharmacology analysis revealed that phellodendrine is the main component of Compound Cortex Phellodendri Liquid. Moreover, this alkaloid targets the AMPK signalling pathway. Results of animal experiments showed that phellodendrine could reduce the intestinal damage of UC compared with the model group. Findings of cell experiments indicated that phellodendrine treatment could activate the p-AMPK /mTOR signalling pathway, as well as autophagy. Expression spectrum chip sequencing showed that treatment with phellodendrine could promote mucosal healing and reduce inflammatory responses. Results of intestinal flora detection demonstrated that treatment with phellodendrine could increase the abundance of flora and the content of beneficial bacteria. Phellodendrine may promote autophagy by regulating the AMPK-mTOR signalling pathway, thereby reducing intestinal injury due to UC.
    Keywords:  AMPK/mTOR signalling pathway; autophagy; network pharmacology; phellodendrine; ulcerative colitis
    DOI:  https://doi.org/10.1111/jcmm.16587
  34. Autophagy. 2021 May 19. 1-16
      Relatively quiescent tissues like salivary glands (SGs) respond to stimuli such as injury to expand, replace and regenerate. Resident stem/progenitor cells are key in this process because, upon activation, they possess the ability to self-renew. Macroautophagy/autophagy contributes to and regulates differentiation in adult tissues, but an important question is whether this pathway promotes stem cell self-renewal in tissues. We took advantage of a 3D organoid system that allows assessing the self-renewal of mouse SGs stem cells (SGSCs). We found that autophagy in dormant SGSCs has slower flux than self-renewing SGSCs. Importantly, autophagy enhancement upon SGSCs activation is a self-renewal feature in 3D organoid cultures and SGs regenerating in vivo. Accordingly, autophagy ablation in SGSCs inhibits self-renewal whereas pharmacological stimulation promotes self-renewal of mouse and human SGSCs. Thus, autophagy is a key pathway for self-renewal activation in low proliferative adult tissues, and its pharmacological manipulation has the potential to promote tissue regeneration.
    Keywords:  Autophagy; maintenance; salivary glands; self-renewal; stem cells
    DOI:  https://doi.org/10.1080/15548627.2021.1924036